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Abstract. In this paper we complete the proof of global existence of Yang-
Mills-Higgs fields in 4-dimensional Minkowski space by showing that an
appropriate norm of the solutions cannot blow up in a finite time. A key step in
the proof is the demonstration that the L°° norm of the curvature is bounded a
priori. Our results apply to any compact guage group and to any invariant Higgs
self-coupling which is positive and of no higher than quartic degree.

I. Introduction

In this paper we shall complete the proof of global existence of Yang-Mills-Higgs
(YMH) fields which we began in Ref. 1 (referred to hereinafter as paper 1). In
paper 1 we established local existence, uniqueness and smoothness properties of
YMH fields in the temporal gauge, improving earlier results [2,3] for this system
by essentially one order of differentiability. To extend the argument to a global
existence proof we must show that the (H2 x H± x H2 x HJ norm of (Ai9 Ai9 φ, φ)
does not blow up in a finite time. To accomplish this we shall first derive an a
priori bound on the norms ||(4)F(ί)||Lco and ||D</>(ί)||Lα> where (4)F is the curvature
of the Yang-Mills potential (4U and Dφ is the covariant gradient of the Higgs
field φ. Given this estimate we can easily complete the proof by showing that a
suitably defined higher order "energy" does not blow up.

To derive an estimate on the "curvatures" ((4)F, Dφ) we adopt a method inspired
by Jorgens' treatment of the non-linear wave equation [4]. We write an integral
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equation for the values ((4)F(p\Dφ(p)) of the curvatures at an arbitrary point p
within the domain of local existence by using the retarded (or advanced)
fundamental solution of the linear wave equation, treating the non-linear terms
as "sources" for the solution. This expresses the curvatures at p in terms of integrals
over the past (or future) light cone from p to the initial surface and in terms of
data on the initial surface itself. We then show that the most troublesome terms
in the light cone integrals can be bounded by expressions of the form

where E0 is the energy of the solution. This result yields an integral inequality from
which the bound on || (4)F(ί) || L«> and \\Dφ(t)\\L«> readily follows.

One can define the norms so that || (4)F||Loo and ||Dφ||L°o are gauge invariant.
In deriving the integral inequality described above, we make use of this invariance
to transform the potentials ((4}A, φ) to a convenient gauge for making the estimates.
A gauge which is especially suited to this purpose is Cronstrom's gauge [5] which
is defined so that (xμ — x£)Aμ(x) = 0. A remarkable feature of this gauge condition
is that it allows one to express the potential (4)A explicitly in terms of the curvature
(4}F. By introducing Cronstrom's gauge (relative to the light cone vertex p) we can
eliminate the potentials from the light cone integrals and thereby derive the
inequality described above. In the appendix we show that Cronstrom's gauge
condition can always be imposed throughout the domain of local existence. This
method works because the fundamental solution to the ordinary wave equation
is, in Cronstrom's gauge, a parametrix for the covariant wave equations satisfied
by the curvatures (4)F and Dφ [6].

Other recent work on the global existence of Yang -Mills fields has been carried
out by Christodoulou and Choquet-Bruhat [7]. They make special use of the
conformal invariance of the Yang- Mills equations to prove global existence for
solutions with sufficiently small initial data. Though their method seems limited
to this class of solutions it has the advantage of being able to treat Dirac fields
coupled to YMH fields. Our approach on the other hand leans heavily on the
positivity of energy for YMH fields and does not seem readily extendible to the
Dirac case. In addition Glassey and Strauss [8], using a particular ansatz for the
form of the potentials considered, have proven the global existence of a special
class of solutions of the Yang-Mills equations.

We have not attempted here to characterize the general solution of the initial
value constraint equations. In Ref. (9) however, one of us solved this problem
within the context of certain weighted Sobolev spaces. A more extensive treatment
would be needed to solve the corresponding problem in ordinary Sobolev spaces.
Nevertheless it's clear that the constraints possess infinite dimensional families of
non-trivial solutions in these spaces. As an example one can take (in the notation
used herein) Et = π = 0 and choose At and φ arbitrarily. This corresponds to "time
symmetric" initial data. The constraints are of course preserved by the evolution
equations.
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II. Global Bounds on Growth of Norms

A. Preliminaries

We shall adopt here the same notation used in paper 1, writing for example
(4)A = A(«}θadxμ = Aμdxμ (2.1)
(4)F - F(fiθadxμ Λ dxv = Fμvdxμ Λ dxv

for the Yang-Mills potential and its curvature. Here {θa} is a basis for a real
matrix representation of the Lie algebra ^ of an arbitrary compact Lie group G.
Thus

[0βA] = /βfcc0c (2 2)

for some constants fabc. We choose the basis so that the θa are real d x d
antisymmetric matrices obeying1

τr{θa,θb} = δab (2.3)

and so that the/αbc are completely antisymmetric.
The Higgs field φ = {φκ}9κ= l,...,d, takes values in the real ^-dimensional

vector space associated to the given representation of .̂ The covariant derivative
of φ is defined by

Dμφ = dμφ + Aμφ, (2.4)

and we define a gauge invariant contraction "." by

φ φ = φκφκ, (Dμφ) (Dvφ) = (Dμφ)κ(Dvφ)κ, (2.5)

etc.
The Lagrangian for the Yang-Mills-Higgs (YMH) equations, with spacetime

metric ημv of signature ( — h + -f ), is

& = Ύr{-±FμvF
μ*}-±(Dμφ)'(Dμφ) - P(φ), (2.6)

where P(φ) is a gauge invariant, positive polynomial in φ of no higher than quartic
degree. For any sufficiently smooth G-valued function ty over spacetime the gauge
transformations are defined by

(2.7)

and the invariance condition on P means P(tfίφ) = P(φ)Vφ and V
From & one derives, in the usual way, a gauge invariant energy-momentum

tensor Tμv given by

= Tr |FμαFvα _ ±ηι» F ΛβF**} + (D"φ) (Dvφ)

(2.8)

1 For convenience we have defined the trace operation Tr to be the negative of the usual matrix trace
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which satisfies

δvT"v = 0, (2.9)

as a consequence of the equations of motion

VvF
μv=-((D»φ)'θaφ)θa (2.10)

and

(DμD
μφ)κ = , (2.11)

where

V Γ7 3 Z7 Γ A ΈΓ ~\ /Ό 1 O"\
v aft ~~ v tiΆ " " L ̂ ^ V ? otβJ" \ )

The curvature also obeys the Bianchi identity

Taking the covariant divergence of (2.13) and making use of the field equation
(2.10), one derives

VyV/α/? = ((FΛβφ) θaφ)θa + l(Dβφ) θa(Daφ) - (DΛφ)'θa(DβφWa + 2[ α̂, Fyβ]9

(2.14)
where, written out explicitly,

In a similar way one derives

DμD»(DΛφ)=((Daφ) θaφ)θaφ - 2Fa"(Dμφ) + D*j (2.16)

where ( — ) =-—. Equations (2.14) and (2.16) will play a key role in the
\dφjκ dφκ

analysis below.

If we contract Tμv with the timelike killing field X = — we get a vector field
ot

Ja = XβT* = T*0, (2.17)

which satisfies the continuity equation

δαJα = 0. (2.18)

If we integrate this equation over the interior of the past light cone Kp from a
point p to the (ί = ί0 = constant) initial data surface and use Gauss' theorem, we
may express the result as the vanishing of a surface integral over the boundary of
this region. To write this explicitly, let us translate the coordinate system until p
lies at the origin and introduce spherical spatial coordinates (r,θ, φ) centered at p
and a system of basis vector fields

2 8 d - _ d d

^~~^ + a? m-+^ + δ?
(2.19)
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Relative to the spacetime metric these vector fields have the inner products

/•/=m m = Q9 Λ w = 2,
(2.20)

where [eA] = {eθ,eφ} and ί m = /μwμ, etc. The null field ί is tangent to the light
.
i

J

cone Kp.
In this notation the conservation law described above yields the equation2

(2.21)

BP

where dΩ = sin θdθdφ and we have defined

£f = F0l, B
i = ε-^-Fjk, π = D0φ9 Λ

(4)F m = t"Fμvm
v

9 etc. (2.22)

and
D*φ = JμDμφ, etc. (2.23)

Here Bp represents the solid sphere in the initial surface ί = ί0 which is bounded
by the intersection of Kp with this surface. Thus Bp is a solid sphere of radius r0 = |ί0|.

The right hand side of Eq. (2.21) represents the energy contained within the
region Bp at ί = t0. Since P(0) is positive by assumption, this energy is bounded
by the total (conserved) energy F0,

E 0 = J ^x^TrC^^ + β'BJ+iπ-π + iίD^-ίD^ + P^)}, (2.24)

of the solution considered.
The left hand side of Eq. (2.21) represents the flux of energy through the cone

Kp. Note especially that the integrand in this flux integral consists (except for P(φ))
of a sum of squares of projections of the curvature (4)F and the gradient Dμφ of
φ. Not all of the projections occur in this integral. In particular, m (4}F-eA and
Dftφ are absent. Roughly speaking, this means that the flux integral measures
energy flowing "across the cone" Kp but not energy flowing "along the cone."
That such flux integrals are always bounded by the total energy of the solution
will play a crucial role in the argument below.

If Kp is, as above, a light cone from p to the initial data surface which lies
within the domain of local existence of some solution ((4}A, φ) then we can define,
on an open set Sp containing the set bounded by KpuBp, the Cronstrόm transform
((4)Ά, φ) of the given solution. The Cronstrόm [5] transform is simply the gauge
transform of ((4}A, φ) defined so that

(x"-xj)^(x) = 0, 4μ(xp) = 0 (2.25)

2 This and other conservation laws for the Yang-Mills equations have been studied extensively by
R. Glassey and W. Strauss in Commun. Math. Phys. 67, 51-67 (1979)
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on Sp . In the appendix we prove that a unique gauge transformation U (with U (x ) =
id) always exists which transforms (Aμ9 φ) to Cronstrom's gauge on suitably shaped
regions of spacetime. We shall make use of Cronstrom's gauge in the next section
to derive an a priori estimate on the (gauge invariant) L°° norms of (4)F and Dμφ.

A remarkable feature of Cronstrom's gauge is that it allows one to express the
potential Aμ explicitly in terms of the curvature Fμv. Translating the origin of
coordinates to p as before, we can express this relationship as [5]

(2.26)
o

Differentiating this formula and using the field equations one can also derive

3μ>(x) = } dλ{λ2x«ίFaμ(λx), λ"(λx)-\ - λ2x«((Da$(λx)) θa$(λx))θa}. (2.27)
0

These formulas were given in Cronstrom [5]. For completeness we sketch their
derivation in the appendix.

In paper 1 we showed that if the temporal gauge (AQ = 0) initial data
UQ = ( A i 9 E ί 9 φ 9 π ) \ t = Q lies in the Sobolev space Jjf = (Hs+i xHsxHs+i xHs) =
(Hs + ί x Hs)

2 for 5^ 1 then there is a unique solution u(t) of the integral equation
associated to the YMH system on some interval (ία, tb) containing the initial surface
f = 0 and having u(0) = w0. Furthermore, either ||u(ί)||^-» oo as t-+ta or ί-»ίb (or
both) or else (ta9 tb) = (— oo, oo) and the "abstract" solution u(t) is global. Within
this context we also showed that if the initial data is restricted to lie (Hs+1+k x
Hs+k)

2 for s ̂  1, fe ̂  2 and to satisfy the initial value constraint equation (i.e., the
μ = 0 component of Eq. (2.10) above), then the abstract solution u(t) defines Ck

potentials (Aί9 φ) and Ck ~ 1 momenta (Ei9 π) on (ta, tb) x R* which satisfy the temporal
gauge YMH equations (including constraint) in the classical sense. If k ̂  3 then
(Fμv and DΆφ) will in turn satisfy Eqs. (2.14) and (2.16) above in the classical sense.
Paper 1 actually treated a wider class of (distributional) solutions of the YMH
equations but for simplicity we shall in this paper restrict our attention to the
classical solutions.

As we shall show in the appendix, the gauge transformation to Cronstrom's
gauge is a G- valued Ck function U which takes (AμίFμv,φ,Daφ)e(Ck x Ck~l x
Ck x Ck~l) to (Άμ,Fμv,φ,Daφ)ε(Ck-1,Ck-1,Ck,Ck-1) throughout the domain of
U. Thus for fc^> 3 (e.g., for u0e(H2+k x //1+/c)

2, fc^ 3) the transformed fields will
also satisfy their respective second order field equations in the classical sense. The
global existence of such solutions may be established by showing that their
(H2 x H^)2 norms do not blow up in a finite time (and thus that they are globally
defined abstract solutions). The smoothness results of paper 1 will then ensure
that the solutions retain the full differentiability of their initial data (hence remain
classical solutions) throughout their (global) existence on Minkowski space.

B. An L°° Estimate for the Curvature

Suppose p i s a point within the domain of local existence of some solution (Aμ9 φ).
Then we can define (as shown in the appendix) the Cronstrom transform (A 9 φ)
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of this solution on an open set containing the light cone Kp from p to the initial
surface. Since U(p) = id in this construction it follows that Fμv(p) = Fμv(p\ φ(p) =
φ(p) and Daφ(p) = Daφ(p).

We can write an integral equation for Fμv(p) by using the retarded fundamental
solution for the linear wave operator and the covariant wave equation for Fμv

given by (2.14). Translating the origin of coordinates to p we get, by a standard
argument,

- - j rdrdΩ{-2dy(lΆ\fΛβ])

+ ((Dβφ) θa(DΛφ] - (Daφ) θa(Dβφ))θa}\t = _„
(2.28)

where Fffix) is that solution of the linear wave equation, ημvdμdvf^(x) = 0,

which has the same Cauchy data as Faf on the initial surface, i.e.,

Pfin\ — F IJ aβ l ί = t o J α/Slί = ί0>

(2.29)
Λ c V i n i _ 3 p I
ϋtroίβ Iί = ί0 ~~ ϋtraβ\t = t0'

In an analogous way we can write an integral equation for

= Zλ<7$/in(0) f rdrdΩ{— 2du4π κ [

+ ((Da$) θa$)θaφ + DΛ(?£}-
\cφ J

where Daφ^n(x) satisfies the linear wave equation and has the same Cauchy data
as DΛ$.

The solutions Fμ" and Daφ^'ln of the linear wave equation can be expressed
explicitly in terms of their Cauchy data on the surface f = ί0 by the method of
spherical means [10].
In particular, we get

1 - . - f 3F«β , v dFaβ- [- r
0 dr

(2.31)
1

4π s2

where the integral is over the sphere of radius r = r0 = \t0\ which is defined by the
intersection of Kp with the initial surface.
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We express the Cauchy data for Faβ in terms of that for Faβ by means of the
gauge transformation formula. Thus,

(2.32)

and

f = tf^λj + U?*-U-*- l/CF^ygi/-1 (2.33)

The terms in the integral expression for F^n(0) involving U may be estimated
at ί = ί0 even though U is not explicitly known. This follows from noting that

ι^ι2^ΣWc;=τr(FΛ)
(2.34)

= Tr(Fα/JFα/?),

and similarly that

μFα/J)
2 (2.35)

and

\(UίFΛβ9m»AJU-ψ\2£ττ(lFΛβ,m*AJ)\ (2.36)

The first integral on the right hand side of Eq. (2.28), namely

/^EE-1- J rdrdΩ{dy(lΆ\FΛβ])}\t=_r (2.37)
Zπ κp

may be evaluated explicitly in terms of the initial data. To see this one need only
write out the divergence explicitly and make use of the gauge condition xμAμ = 0
to simplify a step in the integration by parts. The result is3

which precisely cancels a term in the expression for F^(Q). Thus we have shown
that

(2.39)

and that each term on the right hand side may be estimated in terms of the
(temporal gauge) initial data.

Next consider the integrals

(2.40)

3 In evaluating this and similar integrals it is important to note that Faβ stands for the projection
d Λ d

(4)^.— ancj thus transforms as a scalar
δxα dxβ
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and

which occur on the right hand side of Eq. (2.28).
Making use of Eqs. (2.26) and (2.27) to substitute for the potential and its

divergence and reexpressing the integrals somewhat we find that

^λx° F Jλx),
o o

(2.42)

Let us write IF

Λβ for the integral involving the cubic term in (4)F and I%β for the
integral involving the Higgs field and its gradient. By reexpressing the integral
over μ and λ in I*β9 making use of the fact that xσFσy(λx] = nfσFσy(λx) for xeKp,
etc., one can show that

s2 o

\r,θ,φ})2 + Σ(/(4) F(a}'eA( - r, r, 0, φ))2

A

l l ι » > (2.43)
0

where

1/2

y pwpWίt)
aβa L°°

(144)

and where we have used the conservation of energy equation (2.21) in the last step.
Notice that since £ F($(x)F($(x) is gauge invariant, the L°° norm of (4)F, as defined

α

above, is also gauge invariant. This justifies the last equality in Eq. (2.44).

Making use of Holder's inequality with exponents (6, 2, 3) applied to the integral
of

(\φ(λx)\\ΓDvφ(λx)\ l), (2.45)

we can estimate I%β via

1/6

f dΩ f f2df\φ(-r, f,θ,
52 o

52 o

ro / \ l / 6

^CEV2 f dr||<4^(-r)||LJ J dΩ J f2dr\φ(- f9f,θ,φ)\6 , (2.46)
0 \S2 0 /
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where we have again used the conservation of energy. The L6 norm of φ which
occurs in the final expression above is defined over the subcone Kp(r) of Kp having
r ̂  r ̂  r0. We can bound this norm by using the gauge invariant Sobolev estimate
of Jaffe and Taubes [11]. Regard the integral as defined over a solid sphere of
radius r with Riemannian metric d£2 = dr2 + F2(dθ2 + sin2 θdφ2) and orthonormal

basis fields < —, eA > and note that

—-φ( — r, r, θ, φ) = ιfvdvφ(t, r, 0, φ)\t= _-. (2.47)
^r r

The gauge invariant Sobolev estimate gives

(2.48)

where ((2>)Dφ) = (ΓDvφ,DέAφ) and where the norms are defined through
integration over the solid sphere. The last term on the right (which could be
replaced by ||φ||L4 for any g>0) is necessary because of the compactness of the
region of integration [12].

We shall show in the appendix that the term ||$||L2 can always be bounded
by an expression involving the energy. However, this result is immediate if the
Higgs potential P(φ) has a suitable form. The requirements of positivity of P and
finiteness of energy for φeHs imply that P(φ) cannot have a non-zero constant
term or a term linear in φ. Let us assume that P has the form

P(φ)=±mκλφκφλ + P«\φ), (2.49)

where mκλ is a positive definite (mass) matrix and where P(4) is a positive quartic
term. Then from Eq. (2.21) it is clear that we can bound the L2 norm of φ on the
light cone by the square root of the energy. Since ||(3)Dφ||L2= \\(D/φ,DέAφ)\\L2 is
already so bounded we get from Eq. (2.48) that

\\$\\L6£KEV2

9 (2.50)

and thus from Eqs. (2.43) and (2.46) that

(2.51)
o

Returning to Eq. (2.28) we now define

*ϊβ =-^$ rdrdΩ(Ξaβ)\t= _Γ, (2.52)

where

Λβ = α, Fyβ\ + ((Dβφ) θa(Daφ) - (Daφ) θa(Dβφ))θa. (2.53)

A remarkable feature of Ξaβ is that it can be expressed as a sum of products of
projections of (4)F and DΛφ such that each term in the sum has (at least) one factor
whose square integral over Kp is boundable by the total energy E0.

To see this let us introduce the spatial orthonormal basis {et} where

{έt} = {el9eA}9 e , = . (2.54)
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This basis is related to the Cartesian orthonormal basis < — : > by an orthogonal
[dxj\

transformation

where OjV- = O^x) satisfies the orthogonality relations

Oie-0jf = δip 0JfOJA = δ^. (2.56)

We also define e0 =— and note that (recalling Eq. (2.19))

e0=i(m-4 e 1=i(m + £). (2.57)

It is straightforward to show that

A + Ofl <y (4)F /)] - Okϊ [m ™F t, Ffcj]

(2.58)

The analogous expression for Ξ^ and for the corresponding terms in the Higgs
field equation are given in the appendix. It follows from inspection of these formulas
that Ξaβ has the special property mentioned above4. Since \0^(x)\ ^ 1 the factors
involving 0^ may be bounded by constants in making the estimates below.

From these considerations it follows that

l/2

(2.59)
where

1/2

Σ(Dμφ Dμφ)(t)

(2.60)

Finally the integral

/*, = -^ ί rdrdΩ((Fxβφ) θaφ)θa (2.61)
K-p

is boundable via
f° - V / 2 / - V / 2

o / \Kp /

and the gauge invariant Sobolev estimate (for norms defined over Kp)
4 | |φ||i/24 + K1 | |φ||L 2. (2.63)

4 i.e., the algebraic property mentioned following Eq. (2.53)
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This estimate follows from the usual Sobolev estimate on smoothly bounded
regions in R2 and the Jaffe-Taubes invariance argument [12,11].

It follows that

(2.64)

and thus, from Eq. (2.62) that

\ l / 2

dr||<4tf(-r) Ilk . (2.65)
o /

Recalling Eq. (2.39) and Eqs. (2.34)-(2.36) we also have that

|F3?(0) + /i| ί C{ ||<4>F(ί0) ||Loo+ r0 \\m»dμ^F(t0) ||L«>

+ r0l|[
(4)F,mMμ](ί0)||^}, (2.66)

where the norms on the right hand side involve only temporal gauge initial data.
We may now combine Eqs. (2.51), (2.59), (2.65) and (2.66) to obtain

1 (̂0) I = \FΛβ(0) l^C.E,] dr || <4>F( - r) || L*
o

1/2

l /2

(2-67)

where we have used the gauge invariance of ||(4)F||Loo and ||Dφ||L°o to reexpress
the result and where K1(t0) and £2^0) are ^m^Q constants which depend on the
temporal gauge initial data only.

Reversing the steps which shifted the origin of coordinates to the point p we
can reexpress the above result as

\FΛβ(t,x)\ £ (C.E^2 + C2,£i/2 + C3£0)

l /2

+ K1(0) + fK2(0), (2.68)

where (xμ

p) = (ί, x) and ί = 0 is the initial data surface. Since the right hand side
of Eq. (2.68) is independent of the spatial coordinates of p it follows that

ί (Ci£0

2t + C'2E0 + C3E
2

0)

+ Cί)(X1(0) + ίK2(0))2, (2.69)

where the C are positive constants.
We can treat the integral equation (2.30) for DΛφ(Q) in a completely analogous
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way. Following steps essentially identical to those above one finds that

Λφ) + m"Aμ(Daφ)) + U(Dxφ)}(-r0, r0, θ, φ)\

+ \I2

x+IΪ+IΪ + lt\ + \I6

a\

ί C0{ ||D>(ί0)||L«+ r0\\m"dμ(Daφ)(t0) ||t«+ r0||

+ |/β

6|, (2.70)
\ o /

where

- 2FS(Dμφ) + ((D,φ) θaφ)θaφ} (2.71)

and

= <172)

The terms in the first bracket on the right hand side of Eq. (2.70) involve only
the temporal gauge initial data.

Only the integral /f has no direct analogue in the curvature integral equation.
However, we can easily estimate it by first noting that

- I W ) , (2.73)
κ λ

This formula follows from the gauge invariance of P which implies that

(2.74)

From Eq. (2.72) and the foregoing estimates on the norms | |φ||L2 and
\\φ\\L4 (defined over Kp as before) one can easily show that

/ » o \ l / 2

|/α

6 ^(Co + C.r^ + C^o2)1/2- \dr\\Dφ(-r}\fa . (2.75)
\ o /

Thus, reverting to the original notation, we get the estimate

I I 2oo ^ (Ci£2ί + C'2E0 + C'.El + Q + Qί3)

(2.76)
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in which Ki(0) and K'2(0) depend only on the temporal gauge initial data and
are always finite for the class of solutions considered.

Defining

N(t)=\\^F(tnl* + \\Dφ(t)\\2

L*, (2.77)

we see, from Eqs. (2.69) and (2.76), that

N ( t ) ί f ( t ) + g(t)]dsN(s), (2.78)
0

where /(ί) and g(t) are positive polynomials in t with coefficients which depend
only on the energy E0 and the temporal gauge initial data for (4)F and Daφ. To
apply GronwalΓs lemma to get a bound on N(t) we need only show that N(t) is
continuous. However, continuity of || (4)F(ί) || Loo follows from the triangle inequality
and the Sobolev estimate

| |/ | |L»gK||/| | f l 2, (2-79)

since these give

I ^ \\(4)F(t + e) - (4)F(ί) ||L-

2__,0 ) (2<80)

where the last step follows from continuity of (4)F(ί) as a curve in H2. The same
argument obviously applies to \\Dφ(t)\\L^.

We have thus proven that the norms ||(4)F(ί)||Loo and \\DΛφ(t)\\L«> cannot blow
up in a finite time. Another estimate which we shall need below follows from the
(temporal gauge) calculation

d
— J φ φ = 2 J π φ, J π c (2.81)
dtt

A straightforward argument shows that, for ί ̂  0,

We now have the key ingredients to complete the global existence proof.

C. Energy Estimates and the Global Existence Theorem

To complete the global existence proof we need only show that the (H2 x HJ2

norm of (Ai9 Ei9 0, π) cannot blow up in a finite time. From conservation of energy
(see expression (2.24)) we know that ||Fμv(ί)||L2 and \\Dμφ(t)\\Lτ are bounded by a
constant. From the results of the previous section we know that \\(4)F(t)\\L^ ,
\\Dφ(t)\\L°° anc* I I 0(0 I I L 2 cannot blow up in a finite time.

Writing the equation of motion dtAi = Et in integral form,

A f t , x) = A (0, x) + J dsEt(s9 x) (2.83)
o

we see that

I I L (2.84)
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and, in a similar way, that
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(2.85)

Thus the bounds on || (4)F(t) || L* and \\Dφ(t)\\L«> imply that
cannot blow up in a finite time.

Let us define the "energies" <f0 and S>

1 by

and

π π m2φ φ}, (2.86)

and

=i

l\ / Λ Λ J \ 1 ff\ QΠ\

<p) (<7z C/ <p) j, (Z.o I)

where m > 0 is an arbitrary positive constant and where (d$)-(d$) = (5I φκ)(δI φκ),
etc. Clearly (S'0 + S>

1)
112 is equivalent to the (H2xHl)

2 norm of the solution
considered so that it suffices to prove that <f0 and S'1 cannot blow up.

Computing the time derivative of ^0 and using the (conserved) constraint,
diEi = [£;, A^ — (π Θaφ)θa, to reexpress a term in diEi we get, after a straightforward
application of Holder's inequality,

at ^ [C0

where the Ct are positive constants. Making use of the form of

Sect. (II B) and using the Sobolev estimate

we find that

I dP

]>'-
0 + C4 | |π||L«<f0 + C5 | |π||L»

(2.88)

discussed in

(2.89)

(2.90)

and thus that

dt

(2.91)

Using the a priori bounds derived above for the quantities in brackets and applying
GronwalΓs lemma we see that $Q(i) cannot blow up in a finite time,

j e>
Finally, computing —— and proceeding as above with the use of the constraint
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and the Sobolev estimate (valid for functions /eL2(jR3))

\\f\\L*£K\\df\\L2, (2.92)

we get

^ [C0M(ί)||L« + C,\\φ(t)\\L- + C2||
(4)F(ί)||Loo

dt

+ C9||π(ί)||L«]#0. (2.93)

Making use of the foregoing estimates for || φ(ί)||Lα>, etc. and applying GronwalΓs
lemma we thus find that ^(f) cannot blow up in a finite time.

We have thus proven the global existence

Theorem: // u0 = ( A i 9 E i 9 φ 9 π ) is initial data lying in(H2+k x H1+k)
2 for k^ 3 and

satisfying the initial value constraint,

then there is a unique solution u(t)e(H2+k x H1+k)
2 of the temporal gauge YMH

equations defined for all tε( — oo, oo) and having u(Q) = u0. The corresponding fields
(Aμ(x)9 Fμv(x)9 φ(x)9 DΛφ(x}) are globally defined on Minkowski space, lie in
(Ck x C*'1 x Ck x Ck~ ̂  and satisfy Eq. (2.10), (2.11), (2.14) and (2.16) in the classical
sense.

Appendix

A. Cronstrom's Gauge Condition

Suppose that Aμ(x) is a Cr potential (for r ̂  1) on some open set Sp containing
the point p. Assume further that Sp is "star-shaped" relative to p in the sense that
it may be completely covered by connected geodesies through p. We want to show
that there exists a unique Cr gauge transformation U(x) defined on Sp (with
U(xp) = id) which transforms Aμ to Cronstrόm's gauge. Recall that the Cronstrom
transforms Aμ9 Fμv are required to satisfy

Fμv(Xp)=F

μv(Xp) (A-1)

on Sp. For convenience we may translate the origin of coordinates to p.
Consider the linear system of ordinary differential equations (depending upon

a parameter xμ) given by

dW
— + x"All(λx)W=Q9 (A.2)

where W is a real d x d matrix and take, as initial condition for W(λ, x\

W(0,x) = id. (A.3)
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From the antisymmetry of Aμ it follows that — (trace (WTW)) = 0 and thus that
dλ

the Euclidean "length" of W is a constant of the motion. The standard existence
theory for linear systems assures us that there exists a unique solution W(λ,x\
defined throughout the region $ = [0, 1] x Sp, which is a Cr function of both λ
and xμ.

Furthermore, a simple scaling argument (letting xa-+μxa,λ->— λ with μ a
μ

positive constant) applied to the differential equation shows that W(λ,x) is a
function of λxα alone. Therefore, with a slight abuse of notation, we can write

W(λ, x) = W(λx), W(0) = id. (A.4)

We shall now show that W(λ,x) lies in the group G for all (Λ,
First note that since the matrix group G preserves the inner product φ φ = φκφκ,

G must either be the orthogonal group 0(d) or a subgroup thereof. It follows at
once from the differential equation and its transpose (again using the antisymmetry
of Aμ) that

09 (A.5)
dλ

where Wτ is the transpose of W. Thus W(λx) remains in 0(d) for all (λ, x)e [0, 1] x Sp.
We need only show that W cannot leave the subgroup G.

Fix xeSp and suppose that W(λ0x)eG for some A0e[0, 1]. By introducing local
charts for G on a neighbourhood of W(λ0x), and recalling that Aμ takes values in
the Lie algebra ̂  of G, we can reexpress the differential equation (A.2) as a non-linear
system (of class Cr) for curves in G. The standard existence theory for non-linear
systems assures us that a solution exists on same neighborhood of λQ. However,
the solution curve (viewed as a curve in the linear space of d x d matrices) also
satisfies the original differential equation (A.2) and thus coincides (on the common
interval of existence) with the solution W(λx). It follows that W(λx) cannot leave
G for any xeSp and any /le[0, 1].

Now, since W(λ, x) = W(λx) we have

dW

~dλ
= x*f^(x) (A.6)

oxμ

λ=l

and thus, from Eq. (A.2), putting λ = 1 and writing U~1(x) for W(x), we get

for xeSp. Thus, recalling the gauge transformation formula, we find that

is a Cr~l potential on Sp satisfying

xM,(x) = 0. (A.9)

The corresponding transform of (4)F,Faβ = UFaβU~l, is a Cr~l curvature on Sp

since Faβ is (in general) C""1 and U is (7. The initial condition 17(0) = id shows

If we recall the defining equation for Faβ in terms of A^ we can easily show,
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using xμAμ(x) = 0, that

x"Pμv(x) = xμ(dμAv(x)) + Άv(x). (A.10)

It follows that

(A.ll)

and thus that

which is Cronstrόm's formula for the potential in terms of the curvature. Note
that it follows immediately from Eq. (A. 12) that

Using Eq. (A. 12) and the field Eq. (2.10) one can easily derive Eq. (2.27) for dvA
v(x).

The Cronstrόm transforms of φ and Daφ are of course defined by φ = Uφ and
D^φ = UDaφ (see Eq. (2.7)) and are respectively Cr and C7"1 maps on Sp if φ and
Daφ are Cr and C1""1. From the gauge covariance of the field equations it follows
that if ((4M, φ) are Cr potentials on Sp with r ̂  3 which satisfy the field equations
(2.10) and (2.11) then ((4)F,Dφ) are C1"1 curvatures which satisfy the field
equations (2.14) and (2.16) and that ((4)A,φ) are C1"1 potentials and ((4)F,D</>) are
Cr~ 1 curvatures which satisfy the corresponding equations in the Cronstrόm gauge.

Thus we can always transform the fields to Cronstrόm's gauge on any
star-shaped region within the domain of local existence of a given solution.

B. A Bound for \\φ\\L2 on the Light Cone

In Sect. II B we made a special assumption about the quadratic term in the
potential P(φ) in order to be able to bound the L2 norm of φ on the light cone
Kp. We here remove that assumption by deriving an a priori bound. Since
φ-φ = φ φ it suffices to bound the L2 norm in temporal gauge.

Define a vector field

j/α = - X«φ-φ = - δ^φ φ, (A.14)

where X = — and integrate the divergence dαFα over the region bounded by the
ot

light cone Kp and the solid sphere Bp in the initial surface (see Sect. II A for
definitions). The result is

J r2drdΩ(φ-φ)= j r2drdΩ(φ-φ)+ f d4x(2φ π), (A.I 5)
K p Dp Ip

where / is the interior of the region bounded by KpuBp. This last integral may
be estimated via
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Using the bound on \\φ(t) \\ L2 derived at the end of Sect. II B, we can easily show
that

+ (2£0)
1/2ί, (A.17)

where the right hand side depends only on the initial data and the energy. Using
this bound in place of the previous one makes only a slight difference in the form
of the subsequent estimates.

C. Algebraic Terms in the Curvature Equations

For completeness we include here the remaining components of Ξaβ (defined in
Sect. II B) and the corresponding terms for the Daφ equation given by

The components are

ΞV = 2{OilOjBOki(Dkφ) θa(D§Bφ) + OflOinOkl(D,Bφ}'θa(Dkφ}

+ OίAOjzOkA(Dkφ).θa(D,Bφ)}θa,

) + OkAFtk(D;J\

Each term in these expressions contains one projection of Daφ or Fα/J whose
square integral over Kp is boundable by the energy.
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