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Abstract. We develop a systematic perturbation and resonance theory for the
one-dimensional Schrodinger equation of the form

(=d¥dx*+Ux)+AV(x) — EW(x)=0, 0<x< o0,

where the barrier potential V(x) is supported only where x =1 and is non-
negative there, and 1 is a real parameter tending to infinity. We prove that
every 4 = co eigenvalue turns into a resonance or an eigenvalue for finite 4.

1. Introduction

One of the standard problems treated in elementary quantum mechanics textbooks
is the decay of a nucleus via alpha emission. The discussion is customarily based
on a simplified model wherein the alpha particle is acted upon by a spherically
symmetric potential comprising a short-range negative piece from the attraction
between nucleons and a long-range repulsive piece from the electric interaction
between protons. The large potential barrier has two effects, viz., that it confines
the alpha particle for long periods until it escapes by tunneling, and that it alters
the energy levels of the bound or quasi-bound states. A representative discussion
is to be found in [1].

This paper addresses the two principal mathematical problems connected
with this model:

1. To develop a perturbation series for the bound states and resonance energies
in the limit as the barrier size is elevated to infinity. This does not appear to have
been done systematically before, probably owing to the very singular sort of limit
as A — oo, It will turn out that the series involves fractional powers of 1/4, 4 being
the variable parametrizing the height of the barrier; in particular, when V(x) ~
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(x — 1)? as x |0, p =0, the fractional power is A~ ¥®*2 Moreover, the series is
sensitive only to the inner edge of the barrier, for which reason it can not generally
converge to the correct value for finite A, but is valid in the usual asymptotic sense
of perturbation theory. We therefore also derive formulae for the exponentially
small effect of varying the interior of the barrier (at x =1 + ¢) on the eigenvalues.

2. To evaluate the exponentially small resonance widths, which we regard
simply as (proportional to) the imaginary parts of resonance eigenvalues as
defined with Gamow-Siegert boundary conditions outside the barrier. See [2]
for a discussion of the connection between this point of view and those involving
poles of the S-matrix or time-dependent quantities. A rather extensive literature
already exists on this second problem and can be traced through quantum-
mechanics textbooks [1, 3]. We would like, however, to call attention to the
recent work of N. Froman et al. [4], whose highly developed variation-of-para-
meters techniques have been used to analyze the resonances, considered as zeroes
of the Jost function, in the case of analytic barrier potentials. Their situation
does not involve the limit 41— co, and they discuss tunneling near the top of the
barrier, which will not be attempted here. Their formulae would agree with some
of ours in the appropriate limit. Related ideas have been used to study resonances
in the Stark effect [5], where there are, however, several important technical
differences (and additional complications).

The discussion below will be in the language of ordinary differential equations
and perturbation theory. Though it would seem to apply only to the case of spher-
ical symmetry in the n-dimensional case, it is clear that asymmetries in the region
r> 1 + ¢ affect very little, because upper and lower bounds for the eigenvalue
perturbations are obtainable from the min-max principle by comparison with
spherically symmetric potentials that have been maximized or minimized in the
angular variables for each value of r, and the spherically symmetric comparison
operators have identical perturbation series (see below). Moreover, as has been
stressed by Lavine [6], decay rates of resonances can be estimated above and
below by comparison with angularly maximized and minimized problems.

Hence, from the outset we shall consider the ordinary differential operator

H() = — d?/dx* + U(x) + AV(x) on [AR*), (1.1)

where U is supported in [0, 1] and continuous except for a finite number of finite
jump discontinuities. Also lxm(} x2u(x)=4(/+1),4=0,1,2,.... We assume V, sup-
ported in [1, o), is C* except for a finite number of finite jump discontinuities and
satisfies conditions appropriate for either 1) the bound-state problem, or 2)
the resonance problem, i.e.:
1) supp(V)=[1,©)and ¥V =b >0 on [1, o),

except possibly in a neighborhood of x = 1, where V'(x) > 0, V(1) =0 is allowed,
and, as technical hypotheses we shall- require that V(x)e™* is bounded for some
¢ > 0and that

T1veo - E)'”“;;(V(x) — E)"4|dx (1.2)

is finite for 1 <x and all E <0;0or
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2) Supp(V) =1, a] for some a < o, and V >0 on (1, a).
It should not be difficult to extend case (2) to cover tails of V extending to infinity,
either scaled with 4 or not, except that the connections among the various notions
of resonance become less clear. It also becomes more laborious to work with the
resonance condition: a resonance state becomes asymptotic to

(E—AV)~ U4 exp(i’f« /E — AVdx)

as x — oo (or something worse if V' does not fall off nicely enough), which leads
to A-dependent ranges in x and more complicated asymptotic estimates.

The problem to be perturbed about has A formally infinite, so it will be supposed
that the solution y, of

(—d?*/dx* + U(x) — E)y,(x) =0, 0<x <1, (1.3)

with Dirichlet boundary conditions at x =0 is known for a range of E. Its nor-
malization can be fixed so that it is an entire function of E[7, 8]. Observe that the
domain of definition of (1.1) suffers a sudden contraction at A = o, and that as
A— oo the eigenvalues E(4) ought to approach the eigenvalues e of (1.3) with the
additional requirement that y (1) =0 (indices on eigenvalues will be dropped
whenever no confusion can result). We prove this fact below. The way to cope with
the sudden domain change will be to identify a modified “unperturbed” problem
containing the dominant effect of the ¥ and having computable asymptotics.

The following section will define the eigenvalues and other objects of interest,
and will prove that eigenvalues and resonances converge properly and have power
series sensitive only to values of ¥ in an arbitrarily small neighborhood of x = 1.
The exponentially small differences due to the interior of the barrier and the re-
sonance widths from tunneling will be estimated. An important consequence of
this is that it enables a modified problem, which contains part of the perturbation
but can be analyzed by hand, to be identified. The modified problem controls the
form of the perturbation series and the leading term. Then a careful analysis of
the spectral projection operators yields the perturbation series in inverse fractional
powers of the barrier height; the term formally similar to ordinary first-order
perturbation theory will only show up at the second lowest order.

2. Definitions, Convergence, and the Exponentially Small Effect of the Interior
of the Barrier

In the language of ordinary differential equations, eigenvalues and resonances
will be considered as determined by linear dependence of solutions. The definitions
are equivalent to those by square-integrability and “purely outgoing exterior
waves.” Let s, variously subscripted, denote a solution of

(—d?*/dx* + U(x) + AV(x) — EW(x) = 0. (2.1)

The solution with Dirichlet boundary conditions (or, respectively, Dirichlet-like
conditions, that it is ~ x?) at x = 0 will be denoted Y ; clearly, for 0 <x <1,y =
yo- For bound states (case (1) or case (2) with E < 0),y  denotes the subdominant
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solution, normalized so that
Y NV (x) — E)™ Y exp(— [(AV(X) — E)?dx) > lasx—» 0,  (2.2)
1

and for resonances (case (2) with ReE > 0), ¥ denotes the outgoing solution
defined by ¥ (a) = l,wﬁn(a):i\/f. (Our convention is that the branch cut for
z'/2 is on the negative real axis.)

Definition 2.1. An eigenvalue of (1.1) is a real solution E(4) of the implicit equation
Vo(LE A Y, (5 E D) WY, } 2.3)
Yo(LE A W (LLE L) Yy, (1)’

for case (1) or case (2) with E < 0. A resonance of (1.1) is a complex solution of the
same equation with _ defined as for resonances. The parameter 2 is allowed to
assume the value oo, in which casey_ /{/ lx= . is interpreted as 0. (Prime means

0=F(E, )=

di’ and the parameters E and 2 will often be suppressed below.)
X

Remark. It is of course conceivable that the denominators in (2.3) vanish, in which
case the conditions are replaced with the conditions that y /iy, —y/ /¥ = 0. In
the limit we consider, however, only the numerators vanish (approximate Dirichlet
conditions at x = 1, c.f. the pointwise estimates (2.6) — (2.11)).

Lemma 2.2. For any sufficiently large, fixed 1 < oo, there is a complex neighborhood
in E of any unperturbed eigenvalue, on which F(E, 1) is analytic in E.

Remark. The domain of analyticity is restricted only by the possible vanishing of
the denominator.

Proof. This is more or less standard ; in {7, 9] (see also [ 10] for a streamlined proof
and [23] for related material) it is shown that the solutions of (2.1) and their
derivatives are analytic in E at any fixed x, when there is a boundary condition
fixing them at some point x,, or making them depend analytically on E at x,.
This proves the Lemma for resonances, which have boundary conditions only at
finite points. (Resonances at 0, if 0 is an eigenvalue at 4 = o0, are not considered.)
The case involving subdominancy is essentially equivalent to the well-known fact
[9, 23] that the Green function

Glx, x', E) = o(x Y o, )/ W{Yo, ¥ o} 24

where x_ and x are the lesser and greater of x and x', is analytic except at the
spectrum of (1.1), having simple poles for E <lim infl V(x) at the eigenvalues,

X 00

coming only from the zeroes of the Wronskian. Since
1/G(L 1, E) = (L,E, D) (L E, 2) — Yo (L E, D/ (15 E, A),

and we already know the analyticity of ) and s, this establishes the analyticity
of /W (1; E, A), except at zeroes of Y/ . For 4 large enough, these zeroes will
not occur, because ¥/ is strictly decreasing in absolute value on the largest
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interval [x,, c0) on which V — E >0 [11]. (If ¥(1) =0, and lim V’(x) > 0, then
x|1

this fact does not suffice to eliminate the zeroes, and we instead appeal to the
asymptotic estimate (2.7) below.) O

We next collect some fairly standard pointwise asymptotic estimates for /_ .
Suppose first that case (1) applies and that V(1) > 0. Then because of the scaling
with 4 and the assumptions on (1.2),

!

is O(4~'/?) uniformly for all negative E and x = 1. This ensures [12] that WKB
approximations are valid in the sense that, uniformly in x > 1 and for E 0,

AV(x)—E)” ”4%22(/1V(x) — E)" Y4 |dx (2.5)

P

t//w(x)=(/1V(x)—E)'”4exp<—j lV(x')—de’)-(l+O(/1‘1/2)), (2.6a)

1

and this formula remains valid when differentiated:

Vo) = = (AV(x) — E)" M exp <” [ VAT = de’>'<1 + 0(1“”2))

(2.6b)
In case (1) with V(1) = 0, lim V'(x) > O, if E is real or nearly so, then Egs. (2.6) are

xl1
valid only on the interval [1+ A7 Y3%% o0) 0 <a <1/3, with multiplicative
errors 1 + O(4~3%2), by a computation of (2.5). For 1 £x <A~ Y3*% 4+ 1 one must
use Langer’s uniform approximation,

X

2/3
t,boo(x)=constAi<<§ j /lV(x’)—de'> >.(1+0(1—1/3+3a/2))’
1+E/AV'(1)
! 4 il(3 T ] / 23 —1/3+3a2
ww(X)=constaAz 3 ) AV(x') — Edx (1+0(A~ )
L+E/AV (1)
2.7)

[13, 14, 15]. Clearly, o« must be chosen between 0 and 2/9 for the interval of validity
to overlap, though as usual the exact value of « will be irrelevant to any actual
computations.

Remark. Early references to Langer’s approximation make somewhat too res-
trictive assumptions, while later ones to this popular method have a disturbing
tendency to ignore conditions for its validity. However, a slight modification of the
variation-of-parameters argument of [5, 16] shows that (2.7) depends on knowing
that

1+A-1/3+e

B(x; A, E)a(x; A, E) b(x; 4, E)
W{a(x; 1, E),b(x; A, E)}

dx = O (A~ 13 +3u2) (2.8)

1

where a and b are respectively Ai and Bi with the arguments

<% } VAV (X)) — de’>2/3,

1+E/AV'(1)
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and Bis defined by
2
(—%+1V E) a(x) = B(x) a(x).

Though B is somewhat unpleasant, it is straightforward to show (2.8) with the

asymptotics of Airy functions of [17] and some simple Taylor expansions. The

constant in (2.7) can be read off from the known asymptotics of the Airy functions

when y_ is required to be continuous at the matching point; it is 2. /7 (AV/(1)) 1/°.
In case (2), if V(a) > 0O, then the outer boundary condition implies

/“/ _E 1/4 a
Y (x) = </TVEZ;*—E> cosh<§ lV(x’)—de')

1\/-smh< (x) —
(AV(x) — E)(4V(a) — E

and, as before this formula remains valid when differentiated (indeed, the second
term is only relevant for Y/, and then only for x near a). If V(a) = 0, lim V'(x) <0,
xta

))1/4>} (1+ 0(1—1/2))’ (29)

then the outer turning point must again be taken care of with Langer’s approxima-
tion, which in this case says that for xe[a — 17 3%% q],

V()= [m;(@”wwal/ x)—de) )
+dBl<<;a+E//w(a) ———x)— dx> >:| 1+0(/1_1/3+3a/2)),

where 210
¢ = n(Bi'(0) — i Bi(O)/E /(1V'( “””3"’r(1;§)
and
d= = 7(41(0) =i MO/ BIAV' (@)) > 35

Formula (2.10) may be differentiated. In the rest of the barrier we then get
(=AV'(@)"od

Volx) = T AV(x)—E)” “4exp<f W(x’)—de')(l+0(A-3a/2)),
n b
_ ’ 1/6
Volx)= —(—ﬂj—z))—g(lﬂx) E)”“exp(j AV(x')—~E >'(1+0(/1’3“’2))
2.11)

(again with terms proportional to (2.7) near x = 1). We shall not consider the
cases where V'(1) or V'(a) = 0 as well, but note that everything is similar except
that parabolic cylinder functions and the like appear.

These basic estimates will appear in several later applications. Less refined
ones would have sufficed for the following:
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0
Lemma 2.3. F(E, 1) and — F(E, 1) are continuous in A as A1 oo,

OE

: Yo(;E;l) . 0 0 (w (1;E,/1)>
and lim F(E, }) = -2 "Zand lim —F(E, ) = —( -2~ |.

oo (.4 Yol EA) - 44, OE =38 Yy(1;E, )
Proof. Since y is independent of 4, this is equivalent to continuity of ( Zf" > and
5%( Zf" ) The former fact is obvious from the estimates (2.6) — (2.11), which show
that %‘3 — 0 1in all cases. The latter fact follows from the formula

o Ix=1

—[¥2 (x'; E, Dax’
X case (1)

A

8 (VBN _ | Vel EAP
SE\Y' (x; E, 2) ; .
3BT = YL B

, . 2.12
W E AP case(2).  (212)

If x=1, formulae (2.6)-(2.11) and integration by parts show that i

OE
s E A . . : ;
Vo(ls ) 4) — 0 like a negative power of 1. The proof of (2.12) is that since
¥ (1, E, 4)

<.

y_is differentiable in E and x, letting v =

w ‘ v ’
vy =0> = 20v,(AV — E).

The solution of this is easily verified to be

b (V2 (x';E, 2)dx’

L (GE AP

Equation (2.12) is just this with the limits of integration chosen to satisfy the

condition of subdominancy or respectively the boundary condition at a. O

A corollary of Lemmas 2.2 and 2.3 with the implicit function theorem is that

the eigenvalues and resonances are stable. The implicit function theorem is needed
in the following form:

Theorem 2.4. Let F(E,n) and OF(E,n)/0E be defined and continuous complex-
valued functions of the variables (E, n)e C x R™ in a neighborhood of (E,, 0). Suppose
that F(E,,0)=0 and OF(E,,0)/0E # 0. Then there exists an interval [0, &) for n
and a unique function, denoted E(n), continuous on [0, &), with E(0) = E,, and such
that F(E(n), n) =0 for all n€[0, ¢). In case E and n are both complex variables and
F is analytic in both of them at (E, 0), E(7) becomes a unique analytic function of n
in a complex neighborhood of 0.

(2.13)
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Remark. The analytic implicit function theorem can be found in [18]. The proof
of the ordinary implicit function theorem in [19] makes no essential use of its
assumption that the # neighborhood extends in both directions from 0, and its
assumption of differentiability in # is used a) for the formula for implicit differentia-
tion and b) to identify a small neighborhood in (E, #) on which 0F/JE is bounded
away from zero. We shall not require the formula for implicit differentiation except
in the analytic case, and continuity of 0F/JFE suffices for b).

Corollary 2.5. Given any A = oo eigenvalue e, for A large enough there is a unique
eigenvalue or resonance E(A) in a complex neighborhood of e, converging to e as
A1 co. E(4) is real for bound states. T here are no finite accumulation points of solutions
to F(E, A1) =0 as A1 o other than the 1 = o eigenvalues.

Proof. Let n in the implicit function Theorem 2.4 be a negative power of 4, and
abuse notation by letting F(E, ) denote F(E, 1). The assumptions of 2.4 (without
analyticity) hold by 2.2 and 2.3, and because by definition if E | = e, then F(E,n =
0) =0, and by (2.13) with ¥, replacing ¥/

OF(Eq,n=0) _ ((1;E, A))-Z}(xpo(x;E, A))2dx > 0.
O0E 0

The reality of bound states follows from self-adjointness (and the non-zero imagi-
nary parts of resonances are calculated explicitly below). Now consider E in a
fixed, finite, complex neighborhood N. For 4 very large, the estimates (2.6)—(2.11)
hold uniformly on N (except that for Im E fixed different from 0 the Airy functions
will not be needed when / is large enough). The explicit formulae then show that
v (LE AN, (1;E, 2)— 0 uniformly on N as A1 co. However, from the continuity
of Y, /¢y, in E and the known spectrum of the 4 = co problem, ¥, /¥, = ¢ for some
¢> 0 throughout N with some arbitrarily small neighborhoods of the e’s removed.
Thus eventually there can not be any extraneous solutions on N. O

Note. The referee has informed us that stability also follows from material in [24].

Before developing a systematic perturbation series, we shall show that it can
only depend on V in an arbitrarily small neighborhood of x = 1 and estimate the
(exponentially-small) effects due to the interior of the barrier. Suppose V, and
V, agree for 1 < x <1 +¢, but may differ beyond that point, and let E (1) and
E,(4) denote eigenvalues or resonances with ¥, and V, respectively. Subscripting
the eigenvalue conditions also with a and b, we then have

8(E, 2)=F(E,A) = F(E, )=y, W, (GE )=y, S, (1E2)
=W, oV IV (E W, (1GE, )
Y (L4 e E AW (1+&E, 1)
T (LGEAW, (LE )

'[w—f@(l +&E, 1) —ﬂﬁ—"l(l +¢&;E, /I)J,

l//oc,b l//oc,a

(2.14)
since the Wronskian is constant for 1 £x <1 +e.
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Now, this is an exponentially small function of A uniformly for E confined to any
compact set, because of the exponential shrinking contained in the estimates-
(2.6)—(2.11) and the consequence of the same estimates that the inverse logarithmic
derivatives are bounded by a negative power of 4. Next, make a Taylor expansion
in E for fixed 4, using the knowledge that E_ , — e:

0=F(E,, A)=F,E,,?) +(E,, )

oF,

=0+(E,— Eb)<~a~E~(Eb, A)+ R(E,, l)) +4(E,, A),

where by analyticity

R(E,, 4)
oF

)
3E (Ey, 4)

—0asE —E,

for any fixed 4, and the limit is uniform for A~! in the compact set [0, ¢], & >0,
Therefore

—0(E,, A)

OF, ’

—%E,, A

(B, 7)

(Ea - Eb) ~

and (for case (1)), by (2.13) and its analogue with ¥/,

[ dx)dx Tqbfo’b(x)dx
_ 0 1
TR A TA);

[y2(x, e)dx

0

7 i1, e)?

(and similarly for case (2)). By hypothesis this is a known, positive number, so
we have proved:

oF,
C(E,, A
aE( b A

Theorem 2.6. For eigenvalues or resonances as defined above,
— 0(E,, D1, e)* _
1

fy2(x, e)dx
0

Ea_Eb~

0(A7"),

for all n < o, where ¢ is given by (2.14).

Remark. The tilde means that the ratio approaches 1.

There is an alternative formula for the imaginary part of a resonance, which
makes the problem of controlling real and imaginary errors separately in Theorem
6 somewhat easier:

Theorem 2.7. Let E be a resonance; then its real part has the same Taylor series
as any related problem such that V = C > 0, but V agrees with V on an arbitrarily
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small neighborhood [1,1+ ¢]. The Taylor series coefficients are all real (if they
exist). The imaginary part satisfies

Im E(4) = MM (2.15)

o d
0
(Where y(x) ocyyo(x; E(4), A) ocip _ (x;E(4), ).
Remark. An analogous formula for the Stark effect has been used in [20].

Proof. We have already established that the Taylor series, in so far as they exist,
are identical by Theorem 2.6, and reality follows from the self-adjointness of the
problem with V. Equation (2.15) results from integrating

E(/I)Hlﬁ(x)lzdx = f!ﬁ(x)( —+U+ iV)tﬁ(x)dx

by parts twice and solving for Im E(1) = E_(A%@ O
i

_ The value a is special only in that Im Y/} is not dominated by the errors in
V'Y by (2.6)-(2.11) when x = a; if the integral ran only to some x, < a, then Im ¥y
would be dominated by them. Noting that

[ /2V0) = Edx = [/IV(9dx + 00~ 172)
1 1

and using (2.6)—(2.11) in the various cases produces the following specific estimates:

Theorem 2.8. If V(1) and V(a) are both positive, then

4/Re E(A)/V()yi({1, E(l))exp<—2} itV(x)dx)

Im E(A) ~ — i (2.16a)
V V(@) [ yix, e)dx
0
If V(1) >0, V(a) = 0, and V'(a) = lim V'(x) < 0, then

xta

lm By ~ — S L20/3)y/Re Euz\/V(l)yé(l, E2)) ;16 exp< Y NATe dx)_

(= V'(a)'" | y3(x,e)dx
0

(2.16b)
Ifv(y=0,V'(1)=lim V'(x) > 0, and V(a) > 0, then
x|1
34/3 2 1 a
Im E() ~ — >+ 2/3)\/%1 ED)VMOIT, -6 eXp<—2jmdx>.
n/ V(a) jyé(x e)dx 1

(2.16¢)
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IfV(1)=0=V(a), V'(1) >0, and V'(a) <0, then

Im E() ~ —3\1/2%(1;’3”))/ _V/V(,l() )Usexp( 3‘ V(%) dx> (2.16d)
§ vi(x, e)dx 9)
0

3. The Perturbation Expansion

In this section we turn our attention to the development of an asymptotic series
expansion in powers of 1/ for E(A), where E(1) is an eigenvalue or resonance
of H(4) as given in Definition 2.1. The information provided by Theorems 2.6
and 2.7 allows us to concentrate exclusively upon bound-state problems (case (1))
without loss of generality. Since in this case we are dealing with eigenvalues of
a self-adjoint operator we are in a position to bring standard techniques and re-
sults from operator theory [21] to bear upon the problem.

As noted previously, the problem we address should be considered as a per-
turbed problem related to the 2= oo problem (1.3). However, these problems
are too dissimilar for a direct approach using perturbation theory to be successful.
To make progress, we employ an intermediate operator (to be identifed shortly)
as an unperturbed operator. This operator is chosen close enough to the A = «©
operator that it may be dealt with relatively explicitly while at the same time being
close enough to the operator of the original problem that a perturbation expansion
can succeed. For this unperturbed operator we take

2

Cdxr

where 7(x) is chosen such that lim V(x)/¥(x) = 1. In the following we shall con-

x=1*
cern ourselves only with cases where V(x)=(x — 1)? X1, ) (for some p =0) is
appropriate (up to a nonzero multiplicative constant which can be absorbed
into the parameter A).
The simple scaling behavior of ¥(x) allows a considerable strengthening of
Corollary 2.5:

H %)= + U(x) + AV(x), (3.1)

Theorem 3.1. Given any A = co eigenvalue e, for A large enough there is a unique
eigenvalue E(2) = f(A~Y®*2) of H (A) where f is an analytic function in a neighbor-
hood of 0 and f(0) =

Proof. We must show that the analytic implicit function theorem (see Theorem
2.4) applies in the present context. We shall begin by considering the case of fixed
A and then use scaling to reintroduce the parameter A whereupon the desired
result follows easily. With 4 = A, chosen sufficiently large that Lemma 2.2 applies,
we obtain analyticity in E of y _ /{f’ ]x=  wherey = _(x;E, 4,)is a subdominant
solution to — " + A (x — 1)y = Ey. By arescaling of x — 1, we find

Vo (x B, 2) = (/)2 ¥, ((/ng) ™ (x = 1) + L (n/no) E. Ao),
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where 7 = A~ Y®* 2 and , = A '/"*?. From this it follows that

Y (LE )  ny (1ing*n?E, A)
WO(LE A ngW (Ling *n’E, Ay)

and analyticity in # = A~ Y®*2) is an immediate consequence of the analyticity
in E of Y _(1;E, 2))/¥ (1;E, 4,) established previously. Hence the function F
defined in (2.3) is seen to be analytic in E and # (upon noting that wo/zp’o|x=1 is
independent of #). All other conditions needed for the analytic implicit function
theorem were verified in the proof of Corollary 2.5.

Corollary 2.5 provides us with a basic “stability” result essential for our applica-
tion of perturbation theory. It assures us that for A sufficiently large the first n
cigenvalues of H(4) and H (%) will be given precisely by the implicit functions E ()
and E, {4) converging to e(1 <i <n) as A— co. Here all eigenvalues (E,, El, and

e;) are indexed according to their multiplicity which is one, since in view of the
boundary condition (0) =0 there can be at most one linearly independent
eigenfunction for any E. There is an alternative approach which proceeds from a
treatment of the unperturbed operator H (1) and a direct approach to Theorem
3.1 to this stability result for eigenvalues of the perturbed operator H(A) by means
of the min—-max principle in [10].

Since E(4) and Ei(/l) both converge to e; as A — o0, we may conclude that for
/ sufficiently large, there exists ¢ > 0 such that {E€C||E — E(})| < &} na(H(1)) =
{E (%)} and hence that the operator

1
P, = i

cji (E—H(A) 'dE (3.2)
|E— E, |=¢
is the one-dimensional projection operator which projects onto the eigenspace of
H(Z) corresponding to E,(4). The above representation for P,(4) is the key to our
asymptotic expansion. We start from

Q. HOPA)R) _ ~ 00 (2. WP(1)2,)
@0, P2y~ Y o Piey)

where Q is an eigenvector of H (1) corresponding to Ei(i) and where W = AV — V).
Series expansions can now be obtained by expanding the resolvent in P(1) as a
finite geometric series with remainder (which is the standard perturbation ex-
pansion approach [21]):

E(i)= (3.3)

(E—-H)” Z[E H) 'WI(E-H) "+ [(E-H) 'W]"" (E—H)™",

=0

valid for all nonnegative integers m. Suppressing the index i, we have

EQ) = EQ) +f(W)/g(), (34)
where

m

f) = (Q,, WP()R,) z (3.5a)

g(A) = (Q,, P(A)Q,) = Z b, +S,(4), (3.5b)
¢=0
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with
1 -
a,=5-$(E—E)"" (20, WL(E — Ho)™ W] QoME, (3.6a)
/ 2m§(E E)y2(Q,, W(E—Hy) 'W]"'Q)d (3.6b)
and
1
R ()= 2—ms§(90, WI(E — Ho)™ ' W] 1 (E — H)™ ' Q)dE, (3.7a)

S (ﬂ)——§E E)~? (Q,. W(E—H,)"*W]"(E — H)" 'Q)dE. (3.7b)

To show that these formulae lead to an asymptotic expansion for E(1) we must
begin by showing that the remainders R, and S,, behave suitably. We shall do this
for potentials V' satisfying the conditions of case (1) with the further restriction
that V(x)=1+0(x —1) as x — 17, Thus our unperturbed operator (3.1) has
V(x)= X1,y and expansion parameter #n = A~ "2 These restrictions make it
possible to find explicit expressions for the unperturbed wave-functions Q and for
(E — H,)~ ! (viewed as an integral operator with the Green function (2.4) as kernel).
With such explicit representations for R, and S, we shall be able to estimate their
orders in . Letting I' = {E||E — E| = ¢} we have

IR, | <(2m)~! j|(§20, WI(E—H,) '*W]"*Y(E-H)"'Q,)|dE|,
IS, | <(@2n)” j|E E|"*(Q,, WI(E—Hy) *W]"(E—-H)'Q)|dE|,

and thus

®,| ge{sup |WLE-Hy) W0, n}{sup &y ia, u},

Eel Eel'

5] ={supl WL — 1y e | Hsupl e - 74

Eel' Eel’

where we have used the Schwarz inequality in obtaining the last two equations
above. Since (E — H) ™! is continuous in E and since I' is a compact set, the second
quantity in brackets above is just some constant. To obtain estimates of the order
of both remainders in n=1"Y2 we must study the quantity sup

Eel
|WL(E —Hy)~ 'W1°Q,| for nonnegative integers /. For this we shall need the
following formulae (x =./4 — E):

Yo(x) = Coe*® ™D+ Dge =D for 1 <x;

<C0> <Ky0(1 E) + y,(1, E))
D, 2K kyo(L, E) — yy(1, E)

Y (x)=e 7P for 1<x;

with
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and W, = W{y,. ¥} = —(ky,(1, E) + y,(1, E)). (This ¢  has different nor-
malization from that given by (2.2) but is slightly more convenient in the present
setting.) Furthermore, we have for the unperturbed eigenfunction

Q%) = yo(1, E)e ®=~1 for 1 <x;

where we use £ and & to denote values of E and k =./1 — E which satisfy the
eigenvalue condition xy (1, E) + y,(1, E) = 0. Note that the above information
about the various functions on the exterior region (x > 1) suffices for all matrix
element calculations which we will encounter since the support of W is contained
in this region.

We may view |W[(E—H,) ' W]’®,| as an expression involving ¢ + 1
integrations. After rescaling each integration variable (we replace x by
z=n"1Y(x — 1)), we factor out all identifiable factors of # and show that what
remains is bounded for y sufficiently small and E€l’. To proceed, we need the
following lemma:

Lemma 3.2. Let K (x,y)=e** e™* on [0, ©) x [0, ©) and let q be continuous
and such that |q(x)| <ce ™ where a and c are positive constants. Let r_(x)=

f K . (x, )q(y)dy. Then |r,(x)| £¢, e ~+* where d, and &, are positive constants.

Proof: First consider r_(x) = je *<e™*> g(y)dy =e~* [ e q(y)dy. Then|r_(x)| <
0 o0

‘xje Ylgy)ldy Sc(1+a)~te™*. Next consider r,(x)= [e*<e™*>q(y)dy=
0

e
fe "‘ ¥Iq(y)dy. Then we have
0

Ir(x)| < Je = g(y)|dy + Ie == g(y)|dy

0 x/2
x/2 ©
<e 2 [ |q)|dy + { |a(y)|dy
0 x{2

ée—x/z j‘ ,q(y)|dy + ca—le—ax/z
0

é ca_ 1 (e—x/Z + e—ax/Z)’
from which the conclusion to the lemma follows. O

With the help of this lemma, we can obtain the following rough estimates
ofR, and S :

Lemma 3.3. Let W(x) = Aw(x) and suppose that |w(x)| < c(x — 1)e**~1 on (1, )
for some constants b and c. The remainder terms R, and S, are O(n™*3?)
and O(n™**/?), respectively.

Proof. We estimate | W[(E — H,)™* W)’ OH We have
(WI(E—-H,) "W]'Q,)(x)= W(x)fdx G(x, x,)W(x,) jdx2

g dx,G(x,_ |, x,) W(x,)Q,(x,) = i“ Ly(x) j dx, G(x, x,)
1
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X w(x,) jdx2 fdxt,G(xt,_l, x,)W(x,)Q,(x,).
1 1
Hence

(W[(E — H) " 'W]'Q) (1 +nz) =2y (1, Ew(l + nz)n’ [ dz,
0
x G(1 +nz, L+ nz w(l +nz,) [dz, ...
0

[dz,G(1 +nz,_,, 1 +nz)w(l + nz,)e” <.
0

Now we have
Gl +nz,, 1 +nz,)=W;  [C K, (knz,,knz,) + Dy K _(knz,, xnz,)]
for (z,, z,)e[0, ) x [0, 00). We also have
|w(l + nz)| < cnze;
and hence for w(z) = #~ 'w(l + z), we have
[W(z)| < cze™™.

Therefore, (W[ (E — H,)" ' W]’Q,)(1 + nz) can be written as the sum of 2" terms
where each term has the form

N2 0y (1, Em? t W(z) [dz, K (knz, knz,)W(z,) [ dz, ...
0 0

(dz,K  (xnz,_, xnz,)w(z,)e "= Wy L{CFHID #O),

0
Finally, since K _(xnx, xny)= K (x,y)e* "~ D¥< e (1= 0¥, and xn=1+o(1)
in  we can apply Lemma 3.2 to deduce that the above n-fold integral is bounded
by a decaying exponential for # sufficiently small. This leaves us with

171y (L, EYW, L CEHIDE ) vio(z)e ™

as a bound on a term. Hence | W[(E — H,)~'W]’Q,||* has 2*" terms, where each
term is bounded by a term of the form

|n=2y2(1, EYyWy 2 i D2 | | ndz|w(z)|* e~ 2+
0
< (constyy ~ ' y3(1, E) W4 2/Cy D,

where n, and n, are nonnegative integers such that n, +n, =2¢. To complete
the proof we note that Cy/W, ., Dy/W,.,, and y(1, E) are all O(y) as n decreases
to 0 and this yields

” W[(E — H,)" ! W][‘QO H =0(n’*1?). O

Next, we take a closer look at the individual terms a, and b, (3.6). By an argu-
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ment like that given above the integrals defining these terms exist and a, and b,
are bounded functions of # as 5 decreases to 0. In fact, we shall show the following:

Lemma 3.4. Let a, and b, be defined by (3.6). Then a,=0n*"*?) and b, =0(n*’).

Proof. We shall only sketch how one must modify the proof of Lemma 3.3 to
obtain the above result. Here one does not bound the integral using the Schwarz
inequality but rather one attempts an exact evaluation of the integral using the
calculus of residues. The Wronskian W, _ has E as an isolated simple root so
one must calculate derivatives at E = E Wlth each derivative one finds an as-
sociated n2. These together with the #’s which appear as before combine to produce
the stated behavior with respect to #.
We combine Lemmas 3.3 and 3.4 to obtain our next theorem.

Theorem 3.5. Suppose V(x}=1+0(x—1) as x—> 1" and that V is exponentially

bounded at infinity. Then E(J) = E(1) + h(4), where h(}) = Z c,+ T,(A) for each
£=0

nonnegative integer m and where c,=O0n***?) and T, =O0n****). Furthermore,

the c,’s may be obtained from Z by ,=0a,,m=0,1,2,....

£=0

Proof. First let us consider the function f of (3.5a) (g is treated analogously). From
2m+3

R,= Y a,+R,,.; we see that R, =0(n*""*). Similarly, S, =0(»*""?).

{=m+1
With these improved estimates of the remainders R, and S,, and the fact that

by =(2,,2,) # 0, it is a routine matter to verify the conclusions of the theorem.

O

To guarantee a true power series expansion in # for E(4), we need to place

further conditions on V(x). Specifically, we shall assume that V(x) itself has an
asymptotic power series in x — 1 as x—>17:

Vix)~1+ Z Lx—=1" asx— 17, (3.8)
m=1

Then we have:

Theorem 3.6. Suppose that V(x) satisfies (3.8) and that V is exponentially bounded
at infinity. Then E() has an asymptotic power series expansion in v,

EZ)~ Y. B
m=0
and the f3,, depend on V only through the coefficients w,,.

Proof. The proof of this theorem rests on showing that the terms a, and b, (3.6)
have asymptotic power series expansions in #. This result follows from a series of
technical lemmas which will conclude this section. If we assume that it holds
for the time being we can easily show that f* and g have asymptotic power series
expansions in #. (To any finite order one only has to deal with a finite number of
terms in powers of # and a finite number of remainders.) Finally, the construction
of asymptotic power series for h =f/g and then for E + h follows the patterns
already set.
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The lemmas which allow us to expand the terms g, and b, in powers of # take

(o]

their inspiration from Watson’s Lemma. This lemma tells us that if g(x) ~ z y,x"
=0
and g is exponentlally bounded (ie. |g(x)]| <Ae“" for some constants A a>0)

then fe" g(nx)dx ~ Z V, je *x'dx |n" = Z n !y, n". First, we prove a slightly
n=0 n=0
more general version of Watson s Lemma:

Lemma 3.7. Suppose that f(x, ) obeys the following conditions:
@) 1f(x,n)| < Ae™™ for all xe[0, 00) and for n sufficiently small.

(@) fx,n)~ Y. g (" asn — 0%, where g,(x) is a polynomial for each n.

n=0

(iti) For each N there exists & > 0 such that the N" remainder R(x, ) = f(x, 1)
— %gn(x)n” satisfies |Ry(x, m)| < py(x™ ! for any fixed xe[0, ) and for all
neri(__),oé/x), with py a polynomial.
Let f() = Oje""f(x, ndx. Thenf () ~ i (Ee"‘gn(x)dx>n”

n=0

Proof. We wish to show that R,(n)=f(n) — Z (j e g x)dx) "is oM TY).

n=0

We have Ry(n) = | e"*Ry(x,n)dx and hence
0

o/n
|Rn)| < fe o™t dx + fe‘leN(x n)|dx.

o/n

Now the first integral is bounded by #¥*! f e *py(x)dx = O(n" ") and the second
0

- N
can be shown to be O(e™°") (one substitutes Ry(x,n)=f(x,n)— Y, g,(x)n" and

then makes use of condition (i)) where §&(0, 5). Hence R, (1) = 01" ;1) and we are
done. O
Next, we present a lemma whose proof is even more straightforward:

Lemma 38 Suppose that f(x, ) obeys conditions (i)—(iii) of Lemma 3.7. Let
flen)= nff(y, ndy. Then f(x,n) ~ Z (fg,, 1(y)dy>fl and furthermore f(x,n)

0
obeys condltlons (i)—(iti) (with other chozces of constants and polynomials perhaps).
N

Proof. We have RN(x, n=Ffen- Y (jgn_l(y)dy>n"=11jRN_l(y, n)dy. Hence
0 0

n=1

‘RN(X,W)I §<§PN—1(J’)d.V>77N+1
0

for ne(0, 6/x) and therefore ﬁN(x, 1) obeys condition (iii). This and the observation
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P

that fgn(y)dy is a polynomial yields condition (ii). To verify condition (i) we take
0

|feml =nflf,mldy SAnfe™dy = Aa™ ™ ~1) Sda”te™ O
0 0

There is one other lemma which we shall need:

Lemma 3.9. Suppose that f(x, n)obeys condltlons (i)—(iii) of Lemma 3.7. Let fx,n) =
e~ [e Yf(y,n)dy. Then f(x,n)~z< fe yg"(y)dy)n and furthermore f(x, n)

n=0 x
obeys conditions (i)—(iii).
N

Proof. ﬁN(x,n) =f(x,n) — Y ( fe Vg dy)ﬂ =e* je YRy(y,mdy.  Thus

n=0
o0

o/n
|Ry(x,m)| e [ e *py™*idy +e* | e *|Ry(y,n)|dy, and as in the proof of

x o/
Lemma 3.7 the second integral is exponentially small in #. If we transform to
o/n

u=y—x in the first integral, we obtain e* | e ¥p, (Y *1dy <e* je Yoyl

X

=<j e‘“pN(x+u)du>17N“. Noting that [ e “py(x +u)du is a polynomial
0 0

in x, we see that R(x,n) obeys condition (iii). Likewise e* [ e ?g,(y)dy is a

polynomial and condition (ii) holds. Lastly,

|feem| e [e™?| f(y,m)|dy < Ae* [ e Y e dy = A(1 — an)™ 'e™™ < 24e™™

for # sufficiently small and thus condition (i) is also satisfied. (]
The three preceding lemmas together with an induction argument are all
that is needed to obtain asymptotic power series for a,and b,. Lemma 3.7 is needed
to handle integrals of K _(x,y) over [0, c0), Lemma 3.8 is needed to handle inte-
grals of K _(x,y) over [0,x], and Lemma 3.9 is needed to handle integrals of
K_ (x,y) over [x,00). To start the induction, we must show that
e~ Ly i(y)e ~ 1=y gatisfies conditions (i)—(iii) of Lemma 3.7. These conditions
follow in a straightforward fashion once one notes that ky — 1 = 0(y?).

Remarks. (1) Lemmas 3.7-9 and induction give an asymptotic series for the matrix
elements contained in a, and b,. We complete the argument by recalling that
asymptotic series remain valid when integrated with respect to a parameter [22].
While one might be tempted to count leading powers through the induction
process, we point out that the contour integral over E might very well lead to a
wholesale vanishing of terms (as in the case of b, = 0).

(2) There is no reason to suspect that a result similar to Theorem IIL.6 (with
n = A~ Y®*2) would not hold for a potential V having leading behavior at 1 like
(x — 1)?, p a positive integer. However, technical complications arise when one
tries to obtain the analogues of Lemmas 3.7-9 in these cases.
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(3) The hypothesis concerning the exponential boundedness of V is also
of a purely technical nature. If one included in H (1) terms from the asymptotic
expansion of V through order ¢ (where (x — 1)? has a positive coefficient), it should
in principle be possible to allow V to grow as fast as exp(cx?¥2*1) at infinity (c
arbitrary). The only impediments to obtaining such a result are again the technical
difficulties inherent in generalizing Lemmas 3.7-9.

Note. Motivated by the results presented here, B. Simon has succedded in prov-
ing “stability” results for embedded Dirichlet eigenvalues in the fully n-dimensional
case. These results will appear in B. Simon, “Exterior Complex Scaling and Mole-
cular Resonances in the Born-Oppenheimer Approximation.”
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