
Communications in
Commun. Math. Phys. 82, 345-360 (1981) Mathematical

Physics
© Springer-Verlag 1981

Integrable Nonlinear Equations and Liouville's Theorem, I

L. A. Dickey
Leningradsky av. 28 fl. 59 125040 Moscow, USSR

Abstract. A symplectic structure for stationary Lax equations of the type
[L, P] = 0 is constructed, where L is a matrix differential operator of the first
order. It is shown that the equation has a sufficient for the complete integrabi-
lity amount of first integrals in involution. The well-known linearization of the
equation by the Abelian mapping is obtained in a natural manner in consequent
exercising of Liouville's procedure.

This paper continues a series of works by Gelfand and the author ([2-4] and
others) which deal with the equations of the Lax type Lt = [P, L]. Here P, L are
differential operators such that the order of [P, L] is less than that of L. Novikov
noticed that the stationary variants of these Lax equations are equally interesting.
These stationary variants are obtained by assuming that P, L are independent of
ί, i.e. equations of the form [P, L] = 0 (sometimes called the Novikov equations).
They are ordinary differential equations, totally integrable in a pure classical
sense, i.e. solvable by quadratures. Since then the theory has branched into two
parts: nonstationary and stationary. They often come into contact. For example,
if there are two commuting Lax equations (e.g. two higher KdV equations) then
the set of all solutions of the stationary problem for one of them is an invariant
(and finite dimensional) manifold for the other. In such a way solitons and periodic
finite-zonal solutions can be obtained. Nevertheless the nonstationary theory and
the stationary one are quite different, with different problems and methods.

Gelfand and the author in their joint work were guided by an idea that it is
the Hamiltonian structure of the equations under consideration which plays the
leading role. The fact that the KdV equation is one of the Hamiltonian types was
first established by Gardner, Zakharov and Faddeev Gelfand and the author have
given the general construction of Lax equations for an arbitrary order of the
operator L, scalar as well as matrix (another construction was given by Kritchever)
and proved that these equations are Hamiltonian. Moreover, they have constructed
explicitly the Hamiltonian structure of the equations. Since then this structure has
been studied by many authors. The greatest progress was achieved by Adler,
Manin and Lebedev who have given a transparent group explanation of this
Hamiltonian structure. Let us also mention works by Kuperschmidt and Wilson,
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Semenov-Tjan-Shanskii and Reyman, Drienfeld and Sokolov. We emphasize that
we are speaking here about the nonstationary equations.

The Hamiltonian structure of the stationary equations has been studied much
less. As stated earlier these equations can be solved by quadrature. This has been
done using algebraic geometry methods by Novikov and Dubrovin, McKean and
Moerbeke, Matveev and Its for the stationary KdV equations, and by Dubrovin
and Kritchever for the general case. On the other hand these equations were ob-
tained from the very beginning in a variational, Lagrangian form. Therefore it was
clear that they were Hamiltonian systems and it was only natural to connect the
fact of their integrability with the existence of a large number of first integrals in
involution, i.e. with the Liouville theorem. The construction of first integrals and
the proof of their involutiveness was given in [2-4]. However, a gap remained
between the proof of the existence of first integrals in involution and effectively
carrying out the Liouville integration procedure and obtaining the solution for-
mulas. To that end an explicit construction of the Hamiltonian structure was
needed. This was done for the KdV equation in [1] and we turn now to the general
case.

Thus, in the present paper the following is done. An explicit expression for the
Hamiltonian structure (the symplectic form and the Hamiltonian) for the stationary
equations is given and the Liouville integration is carried out (i.e. the "action-
angle" variables are obtained). The Abel mapping of a Riemann surface onto its
Jacobi variety comes into existence by itself instead of being brought in from the
outside. The same regular integration process explains the sense of special variables
(proposed by Dubrovin); those are the variables in which the symplectic form
splits up. Thus, this paper contains not new results (except for explicit formulas for
the Hamiltonian structure), but rather a new interpretation of the integration
process, on a basis of the Hamiltonian structure.

The first part of this article deals with equations created by a first order matrix
differential operator L. This part is closely connected with works by Dubrovin
[5, 6]. It was highly stimulating for us to think over his works. In the second part
an nth order differential operator L (scalar, for simplicity) will be considered. This
part is formally connected with works by Kritchever, however, it is considerably
less dependent on them than the first part is on Dubrovin's works, as we use other
variables. We apply a method of reducing nth order differential equations to sets of
first order equations in other words, we imbed the variety of nth order operators L
as a submanifold into the variety of matrix first order operators. Nowadays this
method is widely used, e.g. by Kuperschmidt and Wilson [7], Drienfeld and Sokolov
[8], but only in connection with nonstationary problems.

The main tool in our search for a symplectic structure for Lagrangian equations
will be the following general fact pointed out in [2]. If there is a Lagrangian 5£
which polynomially depends on variables ui and their derivatives u\, u",..., then
the symplectic form corresponding to the Lagrangian set of equations δ ̂ ?/δui = 0

can be found in such a way. The variation b5£ = Y -r-rr.b u{k) should be transformed
tdu? l

by parts:
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where ω is a differential 1-form, i.e. a linear combination of δuf]. Then Ω = δω
δ<£

will be just the symplectic form corresponding to the set of equations —— = 0.
όuί

The Hamiltonian H can be found from an equation dH/dx = — Yju'iδ^/δuv

This article immediately follows the paper under the same title by two authors
[1] (though formally is independent of it). Both authors of [1] realized that such a
study was necessary.

1. We start with the equation
R' + [y + ζA9R]=0.

Here R, U and A are n x n matrices A is a diagonal matrix with elements at =
const φθ9a.φaj{iφj), and U is a matrix with arbitrary elements uij,uii = 0.
Further we consider the differential algebra si of polynomials in uip and u'ij9
M^.,...with complex coefficients. The assertion that an identity holds in si is
equivalent to the assertion that it holds when the letters uip u'ip ... are replaced by
arbitrary functions utj{x) and their derivatives. The equation expresses the fact
that the differential operator of the first order L = d + U + ζA(d = d/dx) commutes
with R. The matrix R is a solution of (1) we are looking for. We seek the solutions
as a formal series

Λ = Σ R k Γ \ Λ k , 0 . e ^ . (2)
fc = 0

(Note that eq.(l) is satisfied by R = (φ^j), where φ = {φ.} and φ are solutions of
Lφ = 0 and of the adjoint equation respectively.)

Solutions (2) form a ring (if two matrix functions Ri and R2 commute with L,
so does their product Rί R2).

2. We shall say that an element of si does not contain a constant if the free
term of the corresponding differential polynomial is equal to zero.

Proposition. If all Rk i} in solution (2) do not contain a constant, this solution is a
trivial zero.
Proof. Suppose that the assertion does not hold. Without loss of generality we may
assume that Ro Φ 0. Equation (1) is equivalent to a recurrent formula

K; + [ U , R j = - [ ^ Λ k + 1 ] , f c = -1,0,1,2,.... (3)

For k = — 1 we have [A, Ro~\ = 0. Hence Ro is a diagonal matrix. For k = 0 the
diagonal terms of the equality yield R'o =0,R0 = const, and under our assumption
all the constants must be equal to zero. •

Corollary. The solutions are uniquely determined by their constants.
3. In the sequel we shall construct special solutions Ra, a = 1,..., n for which
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with unity in the αth place and no other constants.

Proposition. The equations

R«Rβ = δΛβR
a, ΣRa = I (4)

α = 1

hold.
This means that Ra are projection operators forming a spectral decomposition

of unity.

Proof. The proposition is a direct consequence of Sect. 2 since RaRβ is a solution
without constants if α =fc β and with the same constants as in Ra if α = β •

4. From (3) we can find

= - S Z ί ί M

V 2 , j * •

βψJ*aJ-ak\aJ-aβ aβ~ak

V

5. Proposition. The general form of the solution is

R=Σ WaiOR", (6)
α = l

w/zere wα(ζ) are the formal series ]Γ wa rζ ~ "* wa r = const wa(ζ) are ίAg rooίs o/
ίΛe characteristic equation r = ro

det(JR-w/) = O.

Proof. From (3) it really follows that in Rk constants may occur only in diagonal
terms. By properly choosing the series wα(£) we can construct a solution with an
arbitrary combination of constants in diagonal terms, i.e. an arbitrary solution •

6. Now we consider the equation

φ' + (U + ζA)φ = λφ (7)

where φ is a column vector.

Proposition. There exists a solution of (7) of the form
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normalized by the condition φ0 k = δa k, α being an arbitrary integer, α = 1, . . . , n\
λ-l=aa

Proof. Let us put φr α = 0 for r > 0. Equation (7) is equivalent to

00

φ'r* + (U(Pλ= -"&+!* + Σ V,-.,*» fc = l, ,n (8)
s= - 1

For fc = α, (8) degenerates into

= λr, (r£0). (9)

For r — — 1, fc = α, relation (8) means that 1_1 = aΛ. For any r r̂ 0, we obtain
Ar from (9) and then φr+ 1 k(k =£ α) from (8)

We denote this solution as φα, λa. Let Φ be the matrix (φ£) where α is the number
of a column and fc is that of a row. Then

/ n
Φ' 4- (17 4- C4)Φ - ΦΛ Λ = ' . . π I. (10)

"

The matrix Φ = X Φ rC~ r has the inverse Ψ = Φ~ 1, in the class of a formal series,
r = 0

because Φ0 = /. It can easily be verified that

(11)

If Ψ = (ψ§ where j is the number of a column and α is that of a row, then the row
vector \l/a satisfies the equation

- f + ψ(U + ζA) = λψ, (12)

the adjoint equation of (7).
Remark. The introduction of λ in (7) and (11) made it possible to obtain a solution
such that φr jf^l otherwise it would be necessary to extent the algebra by adding
the operation of integration.

7. Proposition. The matrix

R« = ΦVβ = (φ^) (13)

is the projection operator from 3.

Proof. The matrix Ra satisfies (1). This follows from (7) and (12). Moreover, it
can be easily seen that R^ is of the required form (see Sect. 3) and that there are
no other constants in R^

8. Proposition, tr R α = 1.

Proof. Taking the traces of both sides of (1) we see that tr R = const for all solu-
tions. As for .Rα, it contains constants only in the term Ra

0, and trR£ = 1

9. Now the variations of the variables u^ will be introduced. Let us denote
them as δu^. We consider the differential forms Σaδu(^ Λ δu®q Λ ... The operator
(5, the co variant derivative acts in the usual way, e.g. δf=
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Proposition. The relation

δtvAR* = tτ(R"ζδU) + dtτ(δφ*ψatζ - φa

ζδφal (d = d/dx) (14)

holds.

(The subscript ( denotes the derivative with respect to ζ.)

Proof. We start with Eqs. (7) and (12) and apply δ to them.

δφ' + {U + ζA)δφ + δUφ = λδφ + δλ-φ (15a)

- δφ' + δφ(U + ζA) + φδU = λδφ + δλ-φ. (15b)

Next we differentiate (7) and (12) with respect to ζ:

φζ + (U + ζA)φζ + Aφ = λφζ + λζφ, (16a)

- φ[ + φζ(U + ζA) + φA = λφζ + \φ. (16b)

Now we multiply (15a) by φζ on the right and (15b) by φζ on the left, add them
together and take the trace. We transform some terms:

trδφ'φζ — tτψζδφ' = d(trδφ-φζ) — tr(δφ φ'ζ) — dtrφζδφ

+ tvφζδφ = dtΐ(δφ'φζ - (pζδφ) - tv{δφ[φζ(U + ζA) + φA

- λφζ - λζφ] + [([/ + ζA)φζ + Aφ- λφζ - λζφ]δφ}

(from (16)). Altogether we have

dtr(δφ'φζ — φζδφ) — tr (δφ φ + φδφ)A + tr δ U(φφζ + Φζ<A)

+ λζtΐ(δφ-φ + φδ^) — ̂ Atr(φ^ζ + φζφ) = 0.

We have tτ{δφ-ψ + φδφ) = irδ{φφ) = trδRa = 0 since trRa = 1. The term contain-
ing δλ vanishes for the same reason. The remaining terms imply the required
statement I

10. Further we deal with equations of Lagrangian type

^ 0 , i = l , . . . , N , (17)
δvt

where if is a differential polynomial in some variables υυ i= 1,..., N;δ/δvί are
variational derivatives

ί{df

We shall consider the case when the Eqs. (17) are the same order, say p, with respect
to each variable vv More precisely, the highest derivatives v\p) will enter linearly
with constant coefficients:

^- = aNlv\p)+...+amv^+.... (18)
δvN
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Moreover, for the case under consideration the condition det(α o .)^0 will hold,
which will enable us to express the highest derivatives in terms of lower ones. The
phase space is Np-dimensional, with independent variables υ\J\j < p. The vector
field ξ connected with equation (17) acts on functions defined in the phase space as
the operator δ with subsequent elimination of v\p) appearing in differentiation,
with the help of (17).

11. It is known that for every i f ejrf the variation bS£ can be decomposed
uniquely into a sum

where ω is a 1-form; d acts on forms in the following way: it differentiates both
the coefficients and the variations δυf\ δδuf* = δuf+1). The coefficients At turn
out to be equal to δ^?/δvi (see [2]).

Another well-known fact we use here (see[2]) is as follows: there exists a
differential polynomial H(v^X k<p such that

aι~Σχf. CO)
Proposition (2). If we put ω{2) = dω then the relation

δH=- ί(d)ω{2) - Σ ^ δ v i ( 2 1)

holds.
Here i(δ) symbolizes the usual substitution of a vector field in a 2-form.

Proof. The formula can be checked by applying d to both sides of the equation
and using (19), (20) (δ and δ commute) •

From this proposition it follows that δH = - ί{ξ)ω{2) where ξ is a vector field
connected with Eq. (17) (see Sect. 10). This means that the equation has the Hamil-
tonian form with respect to the symplectic form ω ( 2 ) and the Hamiltonian H. This
method of obtaining the Hamiltonian structure was suggested in [2] and used in
[1] for the KdV equation.

Further the elements u{] of the matrix U will play the role of υr Let δ^/δU be
the matrix with elements δ5£lδuiy The diagonal elements of this matrix remain
indefinite.

12. Proposition 1.

^-'{%h" 'SJ^^
where the left superscript t denotes the transposition of the matrix the equality
makes sense only for the nondiagonal terms.

Proof. The assertion immediately follows from (14) H

Remark. "Variational theorem" (22) plays the main role in all works by Gelfand
and the author. This theorem uses only the first term in (14). Reference [1] allows
us also to make use of the second term.
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Let us take the Lagrangian

JS? = Σ& α tr,4Λ» + 2 , K = const φθ,baφbβ(*φβ). (23)
α

From (22) we find that Eq. (17) has the form YJbaLR^n+1

 = ® ^ o r t ' i e nondiagonal
α

terms), that is

l A R m + 1 ] = 0 , R = £feaR«. (24)

From (3) it is easily seen that the highest derivatives contained in I ΣbaRlι+ x ] are
\ a / ij

This means that the matrix αfj. of (18) is a diagonal one and det(α.j) Φ 0. The set
of Eqs. (24) has the order mn(n — 1).

Proposition 2. The form ω for the Hamiltonίan system represented by the set

of equations (24) is

ω = (m+l) £ &«tr(<P"<ty«)L+i (2 5)
α = l

The subscript m + 1 indicates that the coefficient in ζ~m~x should be taken.

Proof According to (14) and Sect. 10 we have ω = Σba tr(δφaψQίJ. - φa

ζδφa)\m + 2 =

^ α ) | w + 2 . The first term may be omitted since it is an exact differential and
cannot play any role because the form ω ( 2 ) = dω does not depend on it. Thus

13. We transform (25) in such a way that ω is expressed in terms of Ra instead of
φα, ψa. If we add the exact differential (which can always be done) Σb^δφ*/φ"
where j is an arbitrary integer ^ n we obtain

ω = tr(m+l) Σ ^ $ < % W L + 1 = tr(m + 1) Σ Kζ^

α = 1

where j , / are chosen arbitrarily.

14. Proposition. Tfte Hamiltonian of the system under consideration is

H = (m+ l)tr(ARm + 2+ URm+ί) = (m+ l)tτ(ζA + U)R\m+1 (27)
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Proof It is sufficient to show (Sect. 11) that

= - t r t / ' ( — ) = ( m + l ) t r I 7 ' R m + 1 .
δu

We check this by using (3) directly:

dH = (m+l)tτU'Rm+1+(m+l)tτ(ζA

Note that H contains the phase variables only uf), k<m only; the higher deriva-
tives can be cancelled out from both terms.

We shall omit the factor (m + 1) both in H and ω.
15. Now we denote

m

k = 0

Using (3) it can be shown that

£' + [1/ + U, £] = - [A # m + J . (29)

Proposition, //in # f e we substitute the derivatives of some function u^ipήfor the letters
ufff then R satisfies (1) if and only ifU(x) satisfies (24).

Proof. Obvious from (29) •

16. Proposition. The coefficients of the polynomials in ζ:

ίrR\ fc=l, . . . , n (30)

are first integrals of (24). In this way we obtain mn{n — l)/2 nontrivial first integrals.

Proof. If R satisfies (1) so does Rk. The trace of any solution is a constant, and
hence tr Rk = const, dtrRk = 0.

Let us calculate how many nontrivial (i.e. nonconstant in the whole phase
space) first integrals we have. Note that t r ^ gives only trivial first integrals since
all its coefficients coincide with those of tr R which are identically constants.
Among the mk + 1 coefficients of trRk the highest m+l coefficients coincide with
those of tτRk and are therefore trivial. So we have m + 2m+ ... + ( n — l)m =

m nontrivial first integrals which can be shown to be generically indipend-

ent. The independence of the constructed first integrals has not been proved here
(nor did Dubrovin, who introduced those integrals first). It is almost obvious that
every next first integral contains a new variable which proves the independency.

•
Remark. Instead of (30) we can take as the first integrals the coefficients of the
characteristic polynomial

/(w, 0 = det (R -wl)=t Jι (CV = t H Σ " hi ίW. (31)
1=0 1=0 k=0

17. For any point U,U',..., U{m~1} of the phase space the equation/(w, ζ) = 0
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specifies an algebraic function. The main properties of this function were studied
by Dubrovin. For the presentation to be self-contained we repeat here all the facts
we need further.

The asymptotics of w(ζ) for ζ -> oo can be obtained by comparing R with R.
The m + 1 highest terms of R coincide with those of ζmR. Hence m + 1 terms of the
asymptotics of w(ζ) for ζ ̂  oo coincide with those of the asymptotics of an eigen-
value of ζmR. The eigenvalues of ζmR are ζmba, hence we have

Proposition 1.
w(ζ) = ζmba + 0(ζ-1). (32)

The number α depends on the sheet of the Riemann surface. We denote by {α} the
point ζ = oo on the sheet where the asymptotics is ζmba.

Proposition 2. The number of branch points (generally, they are of second order)
is mn(n — 1).

Proof. The calculation may be carried out with the help of the discriminant

A = γ[ (w. — w.). It is symmetrical with respect to {w{} and hence it can be expressed

in terms of ζ. Its asymptotics is £mM("~ 1> for ζ -• oo. Hence it has mn(n — 1) roots.
These roots are the branch points of the Riemann surface •

MΛ1ΛJ |Λ 1 I

Proposition 3. The genus of the Riemann surface is p = n + 1.

Proof. This follows from the usual formula for the genus: 2p = Σ(jk — 1) — 2n + 2
where j k is the degree of the branch point •

In what follows P will denote the point of the Riemann surface.

18. The spectral projection operator of R corresponding to an eigenvalue w
is given by the formula

0(P) = (fX' Σ UQ Σ w*#~'"fe (33)
1=1 k=0

Thus g(P) is a polynomial in R. Therefore if R satisfies (1) then so does g(P).

When P->{α} we have g(P) = ( ' " 1 ... I + 0(ζ~x) (where unity stands in

the α th place). Moreover, the first m H- 1 terms of the asymptotics of g(P) coincide
with those of R%ζ) (which is a projection operator of R),

R«(ζ) + O(ζ-m-1). (34)

We can even show that the remainder in (34) is 0(ζ~ °°), that is the whole asymptotics
coincide this however should be understood in the sense that the higher derivatives
in Ra must be expressed in terms of the phase variables [7, U\..., ( 7 ( m - 1 ) with
the help of (24). This is true since both g(P) and Ra satisfy (1) and g2 = g, (Ra)2 = Ra

and these conditions uniquely define a formal series in ζ.
Note that the elements oϊg(P) are rational in w, i.e. they are rational functions
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on an algebraic curve. They have poles where /w = 0, i.e. at the branch points.

19. Proposition 1. The divisor of zeros of the function gjt in the finite part of the

Riemann surface consists of ίwo parts d. + dl depending on the numbers j and I

respectively.

Proof. The matrix g is a one-dimensional projection operator and in a neighbour-
hood of a point different from branch points it can be written as {φfflφ^P) } where
φ., \jjfj are regular. The rest is obvious

From (5) we can see that at the point ζ = {i} the function gβ(j ^ I) has a double
zero if i ̂  j, I and simple zeros if / = j, /. Thus we have 2(n — 2) + 2 = 2n — 2
zeros at infinity. If j = / then g.. in {i} does not vanish when i =j and has a double
zero when ί ^=j, altogether 2(n — 1) zeros. We have shown that gβ has always
2(n — 1) zeros at infinity.

Proposition 2. gβ has mn(n — 1) — 2(n — 1) zeros in the finite part of the Riemann

surface.

Proof. The numbers of poles and of zeros of an algebraic function are equal. The
function gβ has mn(n — 1) poles and 2(n — 1) zeros at infinity

Proposition 3. // \d.\ is the degree of the divisor d.| then

Proof. First of all \d.\ does not depend on j. Indeed, gβ/gkl has d. — dk as its divisor
of zeros and poles in the finite part of the Riemann surface. At infinity it has equal
numbers of zeros and poles. Hence \dj\ = \dk\ \dl\ does not depend on / either.
Now let us take into account that the Riemann surface and all the functions gβ

depend on the point U, U'9 ... , U(m~ 1} of the phase space, and the dependence is
analytical. This implies that \dj must be constant throughout the whole phase
space except, possibly, a submanifold of a complex codimension 1 (or a real codi-
mension 2) where \d.\ may be less. On the other hand, Rk at a point '17, —'[/,'[/,
-'I/,... coincides with *Rk at the point '17, -'17, '17, - '17, ... (since if R(U(x))
is a solution of (1) then so is tR(tU( - x))). Hence g at a point 17, 17', U", ... is equal
to *g at 117, - '17', rl7", ... The divisor dj of the former is dj of the latter. Thus | d. \ =
I dj I as was stated

20. Besides the involution [7, [7', £7", ...H»'l7, - '[7', V, ...the phase space
admits an n — 1 parameter transformation group preserving Eq. (24), the first
integrals and the Hamiltonian structure. These are the transformations μllμ~l

where μ is an arbitrary constant diagonal matrix. Let us factorize the phase space
with respect to this transformation group. The dimension of the factorized space
is mn(n — 1) — (n — 1). We shall diminish the dimension still more by restricting
our space to invariant submanifolds Jkl = const, / = 1, . . . , n — 1 fc is the greatest
number of a nontrivial first integral with given l:k = (n — l)m — (m + 1) =
(n — I— l)m — 1. The whole space is now stratified into these mn(n— 1) —
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2(n — 1) = 2p dimensional invariant phase subspaces. We shall integrate the

equation in each of them. Now there remain (n — 1) = p first integrals.

Note that the number of integrals is equal to half the dimension.

21. Now we rewrite expression (26) for the 1 -form using asymptotics (32), (34).
We see that

Aδg(P) g{P))n
,(P-{«})•

The subscript 1 denotes the coefficient in ζ'1. We have obtained the sum of the
residues of the differential

at infinity. It may be replaced by the sum of the residues in the finite part of the
Riemann surface:

„ . Σ
(poles)

Theorem, l-form connected with Hamiltonίan equation (24) may be written as

ω=-Σ">(P)δζP, (36)
Pedj

where ζp is the ζ-projection of P.

Proof. The only poles of the differential in (35) are the points of the divisor d.
since the points of dι can be cancelled out from the numerator and the denominator
and the poles of g (branch points are not the poles of the differential like the pole

of —p is not a pole of -η=dz). Let P* be a point of d . We calculate the residue at

this point. In the neighbourhood of this point it is convenient to write gik as φjφk

where ΣψiΨί = 1 and φ. has zeros in dv φk in dk. Then

22. Now we remind the reader of Liouville's procedure for integrating Hamil-
tonian systems (for greater detail see [1]). Let us consider the submanifolds M
where Jkl = const. Jkl are in involution if and only if M are Lagrangian submani-
folds; this means that l-form ω is an exact differential δV of a function defined on
M and depending on the parameter Jkl. On taking Jkl and some quantities μ. as
coordinates in the phase space we obtain an expression for ω in the form

ω = ΣVV/dμfiμ. + Σ*Jhι = δV + ΣK " dV/dJkl)δJkr
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Now we put θkl = akl - dV/dJkr Then ω = δV + YβkldJkl and ω ( 2 ) = £<50W Λ <5JW.
Thus θkl are coordinates canonically conjugate to Jkl. The Hamiltonian system
can now be written as θkl = 3H/dJkl \J'kl = — dH/δθkl whence it follows that the
solutions are

where θkl,Jkl are arbitrary constants. The quadratures appear in this procedure
when we find V.

Now we turn our attention to our case. The manifold M where all Jkl are
constant is characterized by the property that for all its points, /(w, ζ) is the same
and hence so is the function w(ζ) as well as its Riemann surface. In expression (36)
for 1-form there are differentials δζp* but not the differentials δJkl (i.e. in the above
procedure all akl vanish). The quantities ζp* (where P*edj) will be chosen as the
additional coordinates μ. mentioned above. These coordinates were introduced
by Dubrovin. They appear here when we write 1-form ω.

It is obvious that ω is integrable on the manifold M because it proves to be a
form with separable variables. The function V is

V=~ Σ W W P (38)
P*edj

(here the lower limit of integration is arbitrary). From the integrability of the 1-form
it follows that the first integrals Jkl are in involution. Let us find the "angle" vari-
ables θkl:

p* w(P) p* Ckwι

β y ί v (\γ — V f dC (39)

Here we have Abel integrals of the first kind, i.e. the integrals of differentials
holomorphic on the whole Riemann surface. The regularity at infinity must be
checked. The behaviour of the integrand at infinity is

ί V Ckwι CkCml

Z__ ^ * ^ * * — rk + m(l-n+l)

Since k^(n — 1 + l)m — 2, the exponent is not greater than — 2. On the right-
hand side of (38) we have the Abel mapping of the divisor d. into the Jacobi variety
of the Riemann surface, i.e. the torus obtained by factorization of Cp with respect
to the 2p-dimensional lattice of periods of the Abel integrals of the first kind. Thus
we have

Theorem. The angle variables θkl corresponding to the action variables Jkl can be
obtained by the Abel mapping of the divisor d. (with arbitrary j).

Later we shall derive the expression of H in terms of Jkl and thus solution (37)
of our set of equations. Note that the number j was chosen arbitrarily. We could
choose another number and find another solution. In (37) dH/dJkl does not depend
on this choice but the constants corresponding to the different) must be connected,
otherwise there will be too many constants. The connection between the Abel



358 L. A. Dickey

mappings of two divisors d. with different j (and of divisors dι) was obtained by
Dubrovin with the help of the Abel theorem: the Abel mapping of the divisor of a
meromorphic function on the algebraic surface is zero. Let 2ί(d) be the Abel map-
ping of a divisor d. Let dw be the divisor of the branch points. The application of the
Abel theorem to the function gβ gives

M - {;} - {i}) = 0,

which yields the necessary connection. From this formula we also find

If the lower limit of integration in (37) is chosen as {j} then 5ί( {/}) = 0 and θ^, Jkl

are independent of j .
It remains to return to the old variables. The functions gtj must be recon-

structed from the Abel mapping of the divisors dt and dj. Then w.. will be deter-
mined from the asymptotics (5). Thus, the Jacobi problem of inversion of the Abel
mapping should be solved. Corresponding formulas were obtained by Dubrovin;
we refer the reader to [6].

24. To find 8H/dJkl it remains to express H in terms of Jkl. Something more
will be done. Another set of first integrals, including H, will be written and the
connection between both sets of first integrals will be found. The new set of integrals
is particularly interesting because of its connection with the theory of the nonsta-
tionary equation

U = [A,Rm+J. (40)

It is easy to see that tr §Rkdx are first integrals of this equation. Taking into account
(22) it means that

that is tr R$_A9 Rm+1] = SFa

k, where ¥\estf are some functions which are obviously
first integrals of (24). From the general theory [2-4] it follows that the first integrals
tr \Rkdx are in involution with respect to the Hamiltonian structure for the non-
stationary equation and that this implies the involutiveness of the first integrals
in the stationary theory. (At present this is not of great importance to us: we shall
express these first integrals in terms of Jkl which are known to be in involution.
In another context this might serve as a proof of involutiveness of Jkl without an
explicit calculation of the symplectic structure.)

Let us show that the two sets of the first integrals are linearly connected with
each other. Let us put La

km+1 = trRa

k[A,Rm + 1]. Then

- Rm - [I/, RJ) = - dtrR«kRm - tr( - ΛJX - [I/, RβRJ

The subscript k denotes, as usual, the coefficient in ζ~k. We have Fa

k =
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— tΐ(RaR)\k. We can replace JR by Σwβ(C)Rβ in this expression (since they have one
β

and the same asymptotics). Thus we have

Proposition 1. The first integrals F^ are equal to the nontrivial coefficients of the
asymptotics ofwa, that is of the roots of the characteristic equation with coefficients

The coefficients of the equation, Jkl and the coefficients wα k of the expansion of the
roots into formal series are connected linearly.

Proposition 2. n

Proof. We know that dH = - tr C7'jRm+1. Let us put JR* = £ααjRα. This is another
solution of (1) for which R* = A9R* = Uanά U' 4- [A, R*~\ = 0. We have

It remains to give the expression of H in terms of Jkl. Put

wβ = feαC
w + P α ζ - 1 + β β r 2 + . . . . (43)

The equation /(w, ζ) = 0 can be written as f0 + / m + 1 + / m + 2 + ••• = 0 where

n n
r V JΓ ϊlm\Mn~ ^ { V T ylm-{m+ 1) n-l

Jθ ~~ LA Jlm,n-l^ W » ^ m + l ~ Z J J ί m - ( m + l ) , n - ϊ ̂  W '
1 = 0 1 = 0

n
f — V J rlm-(m+2) n-l

1 = 0
n

/ 0 is none other than the characteristic polynomial of JR, i.e. ^ (w — bβζ
m). Let

β=l

us substitute (43) into /(w, 0 = 0. The coefficient in ζmn~m-2 gives

n - ~~fm+2\K9 ^ _ _ V Γ un-l Γ\ (U U\
^~~Ί) ~ LJ(l-l)m-2,n-lΰa / I 1 ΨΛ ~

 ΰβ>

— f(b I) ι = 2 ' βψa

and

H = - Σ««Σ Λ/-i^-2.a-^"' / Π (ft. - V
α = l Z = 2 / /5^α

For each /, the Hamiltonian depends on Jkl with only one value of k:
k = (w — / — \)m — 2. Thus the following holds:

Theorem. θkl depend on x thus: ifk = {n — l— l)m — 2 then

βψa
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ίfk<(n-l- l)m-2then

θ - θ°
ϋkl ~ ΌkV

θ^ are constant.
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