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Adiabatic Theorem and Spectral Concentration

I. Arbitrary Order Spectral Concentration for the Stark Effect in Atomic Physics

G. Nenciu*

Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, SU-141980, Dubna, USSR

Abstract. The spectral concentration of arbitrary order for the Stark effect is
proved to exist for a large class of Hamiltonians appearing in nonrelativistic
and relativistic quantum mechanics. The results are consequences of an
abstract result about the spectral concentration for self-adjoint operators. A
general form of the adiabatic theorem of quantum mechanics, generalizing an
earlier result of the author as well as some results by Lenard, is also proved.

1. Introduction

This is the first in a series of papers devoted to the study of some asymptotic
phenomena appearing in the spectral theory of linear operators and in the theory
of evolution equations in Hubert (or, more generally, Banach) spaces. Common to
all the papers in the series will be the method employed which is, we believe, a new
and rather general way of performing the asymptotic expansions. In a less abstract
form, the basic ideas of our method have already appeared in [1-3].

In this paper we shall prove two results. The first one (Theorem 1) gives the
existence of asymptotically invariant subspaces (see Sect. 2 for precise definitions)
for a class of families, Hε, ε^O, of self-adjoint operators in Hubert spaces. For
finite dimensional asymptotically invariant subspaces our result has a close
relation to the abstract theory of spectral concentration as developed in [4, 5] (see
also [6, Chap. VIII, Sect. 5] and [7, Chap. XII]). The second result (Theorem 2) is
an adiabatic theorem "to an arbitrary order" generalizing a recent result of the
author [1] as well as some results of Lenard [8].

As an application of Theorem 1 we shall prove the existence of spectral
concentration of arbitrary order for the Stark Hamiltonians of atomic physics:
atoms and molecules, impurity states in solids, relativistic hydrogen atom etc., as
well as for Hamiltonians describing barrier penetration phenomena.

Concerning the Stark effect in atomic physics, some remarks are in order. In
the framework of the abstract theory of spectral concentration, Riddell [4] and (in
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a less explicit form) Conley and Rejto [5] gave criteria for the existence of the
spectral concentration of order p, p = 1,2,.... For p=\ the hypotheses of the
Riddell-Conley-Rejto criterion are easily verified for the Stark Hamiltonian of
general atoms and molecules (see [7, notes to Chap. XII.5]). For p > 1 the situation
seems to be less clear. The hypotheses of Riddell-Conley-Rejto criteria implying
the spectral concentration of arbitrary order, have been verified by Riddell [4] and
Conley-Rejto [5] for the hydrogen atom and by Rejto [9] for the helium atom.
Their verification is not very simple even for the hydrogen atom, and it is really
complicated for the helium atom. Moreover, we are not aware of a published
verification for more general situations. However, it is a simple matter to verify the
hypotheses of Riddell-Conley-Rejto criteria, implying the spectral concentration
of arbitrary order for general Stark Hamiltonians appearing in atomic physics.
More exactly, the assumptions of Theorem 1, which are readily verified (see
Sect. 3) are easily seen to imply the Riddell-Conley-Rejto hypotheses (see Sect. 2).
Of course, we cannot exclude that the existence of the arbitrary order spectral
concentration for general Stark Hamiltonians was known as folklore, prior to our
proof and to the other recent results we are now going to quote. Namely, recently
the complex and powerful machineries of dilatation analyticity, translation
analyticity and complex scaling have been used to obtain a remarkably detailed
description of the Stark effect in hydrogen [10-13]. Moreover, similar results for
arbitrary atoms are announced [13]1. The price one has to pay is that the proofs
are far from being simple and depend on some peculiar (and remarkable)

properties of the concrete hamiltonians involved (e.g. the fact that — -j-^ +εx has

empty spectrum for ImεΦO [11]

Section 2 contains the main results. Section 3 contains applications to the
Stark effect and to the barrier penetration phenomena. For the sake of simplicity,
we shall not state and prove the results in the most general form. Some simple
extensions are pointed out in Remarks.

2. The General Theory

We shall start with the following definition.

Definition i. Let Hε, Pε, ε^O be families of self-adjoint operators and orthogonal
projections, respectively, in a Hubert space, JF, satisfying the conditions:

i) H m | | P β - P o | | = 0 . (2.1)

ii) Let p be a positive integer. There exist c p <oo, ε p > 0 and bounded self-
adjoint operators Bε defined for εe[0,εp] such that

\\BE\\^cpε"+ί (2-2)

and PεJ^ are invariant subspaces of Hε + Bε. Then the family PεJf of subspaces is
said to be an asymptotically invariant family of subspaces of order p for Hε.

1 After the first version of this paper was finished, Graffi and Grecchi published [14] results similar

to those announced in [13]
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Remarks. 1. The definition requires that P0J^ is an invariant subspace of Ho.
2. For ε sufficiently small, dimP ε = dimP 0 . The case dimP 0 = oo appears

naturally in some problems of solid state physics [3]. For d imP 0 <oo there is a
close connection between the above definition and the spectral concentration.

Definition 2 [4, 5], Let λ0 be an isolated eigenvalue of Ho with finite multiplicity m
j = [α, β] an interval containing λ0 but no other points of the spectrum of Ho

Eε(λ) the spectral measure of Hε; Po the spectral projector of Ho corresponding to
λΌ and p a positive number. Then

i) The spectrum of Hε contained in J is said to be concentrated to order p

provided there are sets Cε C J such that s-lim (JE8(Cε) — Po) = 0 and lim ε ~ pμ(Cε) = 0

(μ denotes the Lebesque measure).
ii) The set of unit vectors {φι.(ε)}fίm

1

Po, φ (ε)e^(# ε ) is said to be an asymptotic
basis of order p for Eε(J) if:

a) lim | | (1-P 0 ) 9 i (f i) | |=0, lim{Ψi{ε\ φ.(ε)) = δij9

b) there are real numbers λ^ε) such that

The vectors φ (ε) and the numbers λ^ε) are called pseudo-eigenvectors and pseudo-
eigenvalues, respectively.

The main result of Riddell [4] (see also [5] for the proof of the "if part of the
theorem) reads

Theorem Rl [4]. Under the conditions described in Definition 2, the spectrum of Hε

contained in J is concentrated to order p if and only if there is an asymptotic basis of
order p for Eε(J).

As one expects, the existence of asymptotically invariant subspaces implies the
spectral concentration.

Proposition 1. Suppose that:
i) Hε has an asymptotically invariant family of subspaces of order p, with P o

corresponding to an isolated finitely degenerated eigenvalue λ0.
ii) Hε-+H0 in the strong resolvent sense [6] as ε->0. Then in every interval J

containing λ0 but no other points of the spectrum of Ho, the spectrum is concentrated
to order p.

Proof For ε small enough dimP ε = dimP 0 < oo and then

exp( - i(Hε

implies that there exist λ/ε), φfc),j = 1 , 2 , . . . , d i m P 0 , (<p.(ε), φ/ε)) = δij9 φ/ε)e @(Hε),

{φi(ε)}4Lm

1

Po is a basis in PεJ^, and

(Hε + Bε)φj(ε) = λj(ε)φj(ε). (2.3)

Then (2.1), (2.2) imply that {<p/(ε)}̂ =

m

1

p° is an asymptotic basis of order p and the
spectral concentration is implied by the "if part of RiddelΓs theorem.
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Remarks. 3. The condition dimP 0 < oo in Proposition 1 is crucial. For an example
of what can happen when dimP 0 = oo see [3].

As expected, PεJtf are almost invariant under the evolution given by Hε.

Proposition 2. Suppose Hε has an asymptotically invariant family of subspaces,
P ε ^ , of order p. Then

||(1 -Pε)exp(-iHεt)Pε\\ ^cpε?+1\t\. (2.4)

Proof. The inequality (2.4) follows from Definition 1 and

exp( - iHjt) = exp( - i(Hε + Bε)t)
t

+ i J exp( - i{Hε + Bε)(t - t'))Bε exp( - iHεt')dt'.
o

In particular if Pε = (φε, -)φε is one-dimensional, then due to (2.4), φε has, for small ε
a rather long lifetime. This, together with the fact that lim \\Pε — Po\\ =0 says, in

the language of physicists, that φε describes a metastable state.
Suppose now that Hε is of the form H0 + εX0 where Ho, Xo are self-adjoint

operators in Jf. The problem is to find conditions on pair H0, Xo under which one
can prove the existence of asymptotically invariant subspaces for Hε. The
following heuristic discussion gives a hint. Let τt(X0;-) be the automorphism of
J*( J f) (the Banach algebra of bounded operators in Jf) given by

τβCo;A) = exp(iXot)Aexp(-ίXot) (2.5)

and adX 0 its generator. Suppose that H oeker(adX o) in the sense that
(Ho — z)" 1eker(adX 0) for all zeρ(H0). Then all the invariant subspaces of Ho are
invariant subspaces of Hε. On the other hand, ifX0 is bounded, i.e., the domain of
adX0 is the whole ^(Jf), then for an arbitrary Ho the usual perturbation theory
provides convergent sequences of asymptotically invariant subspaces of Hε. By
some rearrangements of the perturbation series one can see that objects like
(adX0)

p(iί0 —z)" 1 appear. The above extreme situations suggest that, whenX 0 is
unbounded, one may still hope that some sort of perturbation theory can be
performed if (Ho — z)~x e^((adX0)

p), p = 1,2,.... That this is indeed the case says
Theorem 1 below. Before stating the theorem, let us remark that
{Ho -z)~xe^((adX0)

p) is equivalent with the fact that τβC0 (Ho - z)~ *) is p times
norm differentiable with respect to t.

Theorem 1. Suppose that:
i) Hε = H0 + εX0 is essentially self-adjoint on @{H0)n@(X0).

ii) τt(Xo;(Ho±i)~ί) is p + l times norm differentiable.
iii) There exist, — co<λ1<λ2<oo, such that the spectrum σ0 of Ho has the

properties: σo = σQuσl, σ j c [ λ l 5 λ 2 ] , dist(σQ,σQ) = <i>0.
Let Po be the spectral projection of Ho corresponding to σj. Then Hε has

asymptotically invariant families of subspaces, of order q, P\ffl, q = 0,l, ...,p with

Proof. For simplicity, and having in mind the examples in Sect. 3, we shall consider
the case p=co. The proof is by construction and is divided in a series of steps.

1. We shall start with the following, almost trivial lemma.
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Lemma 1. Let H0(t) be defined by

exp(iεXot)Ho exp(- iεXot) = H0{ή, R0{t z) = τεt{X0 (Ho -z)~ λ )

be its resolvent and P0(t) = τεt(X0; Po) its spectral projection corresponding to σj.
Then R0(t; z), zeρ(H0), P0(t) are infinitely norm differ entiable and there exist finite
constants b0 m(z), cOm; m = l , 2 , . . . such that

Jz)εm, (2.6)

(2.7)

Proof. For z=±i, (2.6) holds by hypothesis. For arbitrary zeρ(H0), one has to use

drn
R

drκ

dm

z)

«>

[dtm

\dm

2 ) Lo
VII

the identity
R0(t z) = R0(t zo)[l + (z- zo)Ro(t z0)]" (2.8)

Finally, (2.7) follows from (2.6) and the usual formula relating the resolvent and
spectral projections.

2. We shall use the following construction, which has been given by Kato

[6,15].

Lemma 2. Let P(t) be a norm dijferentiable family of orthogonal projections, with
norm continuous derivative.

i) // K(t) is defined by

then K(t) is self-adjoint.
ii) The equation

= ί(l-2P(t))~P(t),

-A(t) = K(t)A(t); A{0) =lJt

has a unique solution satisfying A 1(ί) = ̂ 4*(ί) and

P(t) = A(t)P(0)A*(t).

3. Let K0(t), A0(t) be given by Lemma 2 applied to PQ(t) and

B o = fi-1JKo(0).

Note that | |B 0 | | ^ c o , i Consider now the self-adjoint operator

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

By the Stone theorem, for all fe@(X0)

i — (exp(zεXoί) exp( — iεX1t))f=K0

which together with Lemma 2 implies

A0(t) = Qxp(ίεXQt) exp( - is

iεXoί) exp( — i

(2.14)
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From (2.11), (2.14) one has

P o = exp(iεX'1ί)Poexp(-ϊεXr

1ί), (2.15)

which implies that for fe9(X0)n@(H0)

Pof^O. (2.16)

Since H0 + aX1 = Hε + εB0 is essentially self-adjoint on @(X0)n@(H0) it follows
that

ί)]-O, (2.17)

which says that P°ε ΞΞ Po is asymptotically invariant of order zero for Hε.
4. Consider now H^t) given by

Hx(t) = A*(t)lH0(t) - K0(t)]A(t). (2.18)

From the identity

and Lemma 1 it follows that R^t; z) is infinitely norm differentiable. Note that if
H^ε) is defined by

then

H x (t) = exp (ίεX ί t)H x (ε) exp (-iεX11)

5. For ε<εo = d/2\\Bo\\ the spectrum of H^ε) is still separated and we can
repeat the whole construction. Obviously one can continue this process inde-
finitely. Namely, for n = 0,1,... starting from Hε written in the form

Hε = Hn(ε) + εXn, (2.20)

where σ(Hn(ε)) = σn = σ^uσ^; dist(σ^?σ^)>0 (σ* coincide with σj in the limit ε-•()),
we define

P" = the spectral projection of Hn(ε) corresponding to σ\,

Hn(t) = exp(iεYnί)HB(ε) exp( - iεXnt),

Pn(t) = exp(iεXnt)Pn

ε exp( - iεXnt),

Kn(t) = i(l-2Pn(t))jtPn(t),

(2.21)
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Obviously
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Λ(ί) - Kn(t)]An(t),

and the whole procedure can be carried further as far as

j =

\\Bj\

[which assures that the spectrum of Hn + ί(ε) is still separated]. Since by
construction

)]=O, (2.22)

the only thing we have to do in order to finish the proof of the theorem is to obtain
bounds on \\Bn\\, n = 0,l,....

6. The needed bounds are consequences of the following Lemma which is the
main (and only) technical point of our paper.

Lemma 3. Let Γ bea contour (of finite length) surrounding σj, satisfying dist(Γ, σ0)
= d/2. Then there exist constants bpm, cpm; p = 0,1,... m = l , 2 , . . . such that for
ε<εp_1 (by definition ε_ι = ooj and zeΓ

-,RP(f,z)

dm „ _

) = (HJt)-z) - 1 (2.23)

(2.24)

Proof The proof is by induction over p. The case p = 0 is contained in Lemma 1.
Suppose (2.23), (2.24) be true for p-ί. Then (2.23) for p follows from a formula
similar to (2.19) relating Rp(t;z) and Rp_1{t;z) and the induction hypothesis. For
(2.24) the following observation [1] is crucial. From

it follows that P ^ ^ O ) is the spectral projection of A*_ί(t)Hp_1(t)Ap_1(t) corre-
sponding to σ*_!, for all ίelR. Then one can write

^Hp_1(t)-Kp_1(ή-Z)-iKp^(t)Rp-i(f,z)dzUι(t). (2.25)

Now, (2.25) and the induction hypothesis implies (2.24) for p to be true and the
proof of the Lemma is finished.

7. From the definition of Kp(t) and (2.24) for m = 1 it follows

i, (2.26)

which finishes the proof of the Theorem 1.
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Remarks. 4. One can relax the condition that σj be bounded, but then one needs
dm

to have sufficiently rapid decrease in dist(z,σ0), to assure the

dm

convergence of integrals appearing in —• P0(t).

5. The whole proof works for Hε of the type

Hε

 = Ho +^o( ε )

as long as R0(t; z) = τt(X0(ε) (H0-z)~ι) is infinitely norm differentiable and
satisfies (2.6).

6. The assumption ii) of Theorem 1 already implies that 3)(HQ)c\Θ(XQ) is dense
in 2tf. In fact, we suspect that it implies assumption i). The assumption i) has been
used to obtain (2.17) from (2.16). If Ho + εX0 has several self-adjoint extensions and
dimP 0 <oo, then (2.16) implies (2.17) for any self-adjoint extension of ifo + εXo.

Formally, the recurrent construction in the proof of Theorem 1 is the following

p (Λ 0 P(AΓ ΌQ V 1 p θ — r>
£ > — \ L — Z X g J | _ l g , A q-J ' ε ~ * 0 '

q+l—Λq~τ't>q> Uq+ l\8) ~ nq\S) ~ &ΛJq '

The observation in (2.25) is nothing but

Γ E><Z V ~l Γ T>Q. ΌQ ~~ 1 V ~\ /O O 0^

If X o is unbounded, one expects that the recurrent construction (2.27)
converges.

Proposition 3. Suppose that
i) Xo is Rebounded.

ii) Ho satisfies the spectrum condition Hi) of Theorem ί. Let Γ be the contour in
Lemma 3,

b = (d/2)sup \\X0(H0 -z)-λ \\, k = (l/2π) j" |dz|, α 0 = 4fc/c/rf.
zeΓ Γ

Then for ε g d2/{28ka0) = εc, (2.29)

||jBJ|^(8/2εc)"α0. (2.30)

Proof. The proof is by induction. Note that | | £ 0 | | ^ α 0 .

Denoting α w = ||BJ| using Rn = R0

we have from (2.28)

1 — ε ( 2] £*) #o I a n ( ^ t n e fact t n a t b < flo?
= o

" Σ Ω j ) ' " ^ α ; ; n = l,2,... (2.31)
i = 0 I i = 0

as long as

ί = 0
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Then (2.30) follows from (2.29) and (2.31) by induction.
Proposition 3 shows that for regular perturbations the construction in

Theorem 1 is nothing but a different way to perform the perturbation theory.
Moreover, using (2.27) and (2.28) one can give a "time independent" proof of
Theorem 1. Translated in the "time independent" language, Lemma 3 says, in
particular, that {Hn{ε)-z)'\ Pn

ε, Bn, n = 0,1,... are all in ^((adX0)°°). Using this,
the recurrent construction given by (2.27), (2.28) and the identity

one can easily see that for arbitrary integers π, N (and sufficiently small ε)

+ 1n(ε)> (2.32)
j=o

where Fj does not depend on ε, and all Pn

p Pn

N(ε) are in
Due to (2.26)

which together with (2.32) shows that

Σ J +1Pn(ε)> (2.33)

where Pj does not depend on n and ε. Moreover, by construction

limsup ||Pn(ε)|| < oo and
ε-° PjJίTC ®(H0) PΛ(ε) Jf C ®{H0).

Suppose now Xo to be H0-bounded and let Pε be the spectral projection of Hε

corresponding to the part of the spectrum which coincides with σ£ in the limit
ε->0. By the usual theory of perturbation [6, Chap. II, Sect. 2]

j=0 ^πl Γ

ε w + 1By Proposition 3, \\Pε-Pn

E\\ - ε w + 1 , which together with (2.33) implies that P. are
nothing but

( - l)'(l/2πί) j ((Ho - if 1Xo) J(^o -zf'dz,
r

rewritten in a form which still has a definite meaning even if Xo is not bounded
(but of course the hypotheses of Theorem 1 are fulfilled). Let us check this
explicitly for Pv Writing

Xo = PoXoPo + (1 - PO)XO(1 - Po) - Bo,

and taking into account that

0{H0-z)-\ (Ho-zf\l-Po)Xo(l-Po)(Ho-zr'
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are analytic outside, respectively inside Γ, it follows that

which is the desired equality.
Suppose now σj to be an isolated eigenvalue with finite multiplicity. In this

case more detailed results can be obtained. More exactly, we shall briefly outline
the proof of the fact that for an arbitrary integer n, one can construct an
asymptotic basis of order n having the form

j=o

j=o

i=l ,2 , . . . ,d imP 0 .

The proof consists in reducing the problem to a finite dimensional one, in close
analogy with the theory of regular perturbations [7, Chap. XII, Sect. 2].

Consider, for sufficiently small ε, the operator [16, 6, Chap. II, Sect. 4 and
Chap. VIII, 2]

Using (2.33) one can write for A" the expansion

Σ V i ) . (2.34)

From the corresponding properties of Pp Pn(ε) it follows that

Aj9An{ε)e®(adX0); j = l , . . . , n ,

Ajjrc2(H0)9 An(ε)jrc@(H0).

It is easily verified that A" is unitary and

/±εΓ0/iε ~Γε>

which together with (2.22) implies that P 0^f is an invariant subspace of
Aΐ*(HB + εBJAn

ε. Defining the "reduced" hamiltonian, Hn

ΐQd(ε) by

one can write, using (2.34)

HU$= Σ # / + ε«+1H?ed(β). (2-36)

Some care is to be taken at this point to make sure that all the operators appearing
in the right hand side of (2.36) are well defined. All of them have the form
P0Q*YQP0 where Y is either a bounded operator, Ho or Xo and Q is 1, A>3 or An(ε).
Due to (2.35) the terms containing Ho give no difficulties. Concerning terms
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containing Xo one has to observe that X0QP0 = [Xo, β ] P 0 + QXopo a n ( * due to
(2.35) the only thing one has to prove is that X 0 P 0 is bounded. For further use we
shall prove more, namely that X™P0 is bounded for m= 1,2,.... Indeed, from

exp(iίX0)P0 = exp(iίX0)P0 exp( - itX0) exp(ίίX0),

it follows that for φeSι{X^\ Qxρ(itXo)Poφ is m times differentiate so thatX£P 0 is
bounded on ®(XQ) which implies X™P0 to be bounded due to the fact that Po is
finite dimensional (if dimP 0 = oo, in general not even X0P0 is bounded).

n

Let ψi(ε)9 μ.(ε), i= 1,...,dimP0 be the eigenvectors and eigenvalues of Σ if .ε 7'
7 = 0

(considered as an operator in P0^f). Due to the Rellich theorem [6, Chap. II,
Sect. 6; 7, Chap. XII. 1] φf(ε) and μf(ε) are analytic in a neighborhood of ε = 0 so

j=o j=o

Clearly λi(ε) = μi(ε), 9 ^ ) = ̂ " * ^ ^ ) have all the desired properties.
At this point we can make the connection with the following result obtained by

Riddell [4] and by Conley and Rejto [5], concerning the existence of asymptotic
bases.

Theorem R2. Suppose Ho is essentially self-adjoint on 3t = @(H0)n@(X0) and let Hε

be a self-adjoint extension of H0 + εX0 defined on Θ. If, under the conditions
described in Definition 2, all the operators XλX2 ."XnP0, where Xt is either the
reduced resolvent of Ho at λ0, S, either SX0 are bounded, then the perturbation
method yields an asymptotic basis of order n.

Since the hypotheses in Theorem R2 are nothing but the conditions needed for
solving the formal Reyleigh-Schrodinger perturbation equations, one can expect
that these hypotheses are implied by the hypotheses of Theorem 1. Indeed, as
already said in the introduction, it is easy to see that this is true. Using the
following formula [6, Chap. II, Sect. 2] for S

it follows that Se@((&dX0)°°). Consider now an operator of the form
X1X2 ...XWPO After commutingXo past all the reduced resolvents, one is left with
^o^o> Q = n which is bounded.

Remarks. 7. As already said, using (2.27) and (2.28) one can give a "time
independent" proof of Theorem 1. We preferred the above proof, since with few
modifications it gives also a rather general form of the adiabatic theorem in
quantum mechanics, which in some sense is the generalization of Theorem 1 to
time-dependent Hamiltonians (see Theorem 2 below). Here we shall state and
prove the adiabatic theorem only for bounded Hamiltonians, in order not to
obscure the simplicity of the proof. In the second paper of this series we shall
consider the general case of unbounded time-dependent Hamiltonians, where
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some technical points related to the possible nondifferentiability of the unitary
propagators arise [7, Chap. X.I2].

8. Under the conditions of Theorem 1, one cannot expect to obtain bounds on
cp 1 in (2.26) as a function of p. In the third paper of this series we shall explore the
consequences of replacing condition ii) of Theorem 1, by the following stronger
one: R0(t z) is, as a funtion of ί, analytic in the strip |Imί| < a for some a > 0, or in
other words (Ho — z ) " 1 is an analytic vector for adX0.

Theorem 2. Let H(s\ s e I = [0,,S] be a norm continuous family of bounded self-
adjoint operators satisfying the conditions

i) σ{H(s)) = σ1(s)vσ2{s),

inf dist (σ^s), σ2(s)) = d>0.
sel

ii) R(s; ±i) = (H(s) + i)~1 are infinitely norm differentiable.
Let Uε(s) be the unique solution of the Schrδdinger equation

iε^-=H(s)Uε(s); UJiO) = ί,

and P0(s) be the spectral projection of H{s) corresponding to σ1(s).
Then, for every positive integer q, there exist sq>0, aq<co and orthogonal

projections Pε

q(s) defined for 0 < ε S £q such that

l im| |^(s)-P 0(s) | |=0,

(2.37)
\ ̂ q^" sel.

Proof. Let H0(ί) be defined by H0(t) = H{εt). The construction in the proof of
Theorem 1 gives Hq{t), Pq{t), Kq(t), Aq{t) and the existence of aq, εq such that

q=0,ί,.... (2.38)

β-i

Denote Zβ(ί)= Π 4W, ί = l,2,....
i = O

B0(ί) = X 0(ί); Bq(t) = Zq(t)Kq(t)Z*{t) (2.39)

and

H\t) = H0(t) + "Σ Bit) q = 1,2,.... (2.40)
i = 0

By construction

Let Pf(ί) be the spectral projection of Hq(t) corresponding to the part of the
spectrum which coincides with σx{t) in the limit ε->0. Obviously

= Z(t)PJt)Z*(t). (2.41)
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Let U(t), Vq(t)9 Wq(t) be defined by

U(t)=Uε(εt); ί e f l U ^ S ] , (2.42)

ijt Vq(ή = A*(t)Hq(t)Aq(t)Vq(t) Vq(0)=ί, (2.43)

U(t) = Zq(t)Aq(t)Vq(t)Wq(ή. (2.44)

By construction, since Pq

ε(0) = Pq(0\

and hence

TOPf(O)]=O. (2.45)

By construction

ijt Wq(t) = - Vq*(t)A*(t)Kq(t)Aq(t)Vq(t)WqW,

which together with (2.38) gives

\\Wq{t)-l\\^aqW^K (2.46)

On the other hand from (2.41) and (2.45)

Zq(t)Aq(t)Vq(t)P«ε(0) = Pf(ί)Zβ(ί)Aβ(ί)7β(ί),

which together with (2.44) and (2.46) implies

\\P«e(t)U(t)-U(t)Pl(O)\\ £aqti*
+', (2.47)

which is nothing but (2.37) with the identifications (2.42) and Pε

q{s) = Pf(ε"xs).

Remarks. 9. Suppose that H(s) is constant in some neighborhoods of 0 and S. Then
P(0) P^(0) P(5) P^(5) f ll d i thi (237) f S d t_ u v-, - βv-/7 _ u v_, - βv_j for all g and in this case (2.37) for s = S reduces to an
infinite-dimensional generalization of Lenard's results [8].

3. Applications

1. Let M be a positive integer and α = {αfj.}f
f

J.= 1 be a real, strictly positive MxM
matrix. Consider in the Hubert space L2(RM) the operators T, V, Xo defined by

M

Ύ— V α P P * P — — id/fix * Y — (V Y V fr—12 M

(3.1)

(F/)(x) = F(x)/(x), (3.2)

I M \
(Xof)(x)= Σ cjxj)f(x), CjeK (3.3)

on their natural domains. Suppose that V is T-bounded with relative bound less
than one, so that Γ + V is self-adjoint on 3ι{J) [7, Chap. X.2].
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Proposition 4. The operators H0 = T+ V and Xo defined by (3.1)—(3.3) satisfy the
conditions i), ii) of Theorem i.

Proof. For condition i), see [7, Theorem X.38]. For condition ii): remark that

H0(t) = exp{iεXot)Ho exp( - iεXoή

= Σ "iJίPt + εCitXPj + εcjή+V, (3.4)

from which the verification is straightforward. Obviously, this example covers the
Stark effect in arbitrary atoms and molecules (see for example the form of the

Hamiltonian in Zhislin's theorem [7, Theorem XIII.7]). For M = 3 , a y = — δ i p

V{x) = Vi{x)+V2{x\ where Vt is periodic and locally L2 (see [7, Theorem XIII.96])
and V2εL2(WL3) + Lp(lR?), 2 ^ p < o o , the above example describes the Stark effect
for impurity states in solid state physics.

2. (The Dirac Equation.) The Hubert space is (L2(IR3))4,

T= Σ α Λ + iSm Pk= -id/dxk, (3.5)

where αf, β are the Dirac 4 x 4 constant matrices

Vtfcc) = Vβ(x), (3.6)

and

/ 3 \

(XoV>)i(x)= Σ CjXjWiix), x = (xvx2,x3). (3.7)
\j=l /

Again we shall suppose that V is T-bounded with relative bound less then one so
that H0 = T+V is self-adjoint on

Proposition 5. The operators H0,X0 defined by (3.5)—(3.7) satisfy the conditions i),
ii) of Theorem ί.

Proof For i) see [17]. For ii) see the proof of Proposition 4.
3. (Barrier Penetration (for details see [18]).)
Consider in L2(IR3) the operators

Hε= -Δ + V(x)+X0(ε) = H0+X0(ε) (3.8)

with FeL2(IR3) and

(X0(ε)f)(x) = K(exp(-ε\x\) - ί)f(χ) K >0, ε>0. (3.9)

Suppose that Ho has eigenvalues in ( —X,0). For all ε>0, ( — K,0) is contained in
the continuum spectrum of Hε. As ε->0 the spectrum of Hε contained in ( — K,0)
shows arbitrary order spectral concentration. In this case the self-adjointness
problem is trivial. Concerning the condition ii) in Theorem 1 see Remark 5.
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