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A Mass Zero Cluster Expansion

Part 1. The Expansion*

Paul G. Federbush
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Abstract. A cluster expansion is developed and applied to study the perturba-
tion λ(Aφ)4 of the massless lattice field φ in dimension 3. The method is
loosely inspired by the work of Gawedzki and Kupiainen on block spin
techniques for the λ(Vφ)4 system. The cluster expansion is given in terms of
expansion coefficients for the field as a sum of certain special block spin
functions. These functions are chosen with a large number of moments zero,
so that the interaction couples spatially separated functions with an interaction
falling off as a high inverse power of the separation distance. The present
techniques, with some technical development, should work for broad classes
of other models, including the lattice dipole gas and the λ(Vφ)4 model. Models
λ(\A |αφ)2s,α > |, are essentially included in the present work.

1. Introduction

Cluster expansions have had a wide variety of applications in field theory and
statistical mechanics. They have been used to prove the existence of correlation
functions in the thermodynamic limit, properties of the spectrum, clustering of
correlation functions, the existence of phase transitions, Debye screening, and
many other detailed properties of very diverse systems. Typically they may be
applied to systems where such special techniques as correlation inequalities,
reflection positivity, and Markov properties may not apply. It is of obvious
interest to extend the applicability of cluster techniques to systems with zero
masses—systems with long range interactions.

In this paper we develop a new cluster expansion and apply it to the lattice
model with Hamiltonian density |(Vφ)2 + λ(Δ φ)4 in 3 dimensions. Other models,
such as the lattice dipole gas (or continuum dipole gas) or the λ(Vφ)4 model,
should be accessible to similar treatment with increased technical difficulties.
We intend to come back to study the dipole gas in a later paper. We do not know
if the present techniques will be useful in studying models such as the rotator
model or the Heisenberg model. Part 1 of this paper introduces the general
concepts, defines the cluster expansion, and contains basic estimates, all of which
should be useful in further applications. Part 2 contains the combinatoric details
involved in proving the convergence of the cluster expansion.

*This work was supported in part by the National Science Foundation under Grant No.
PHY 79-05688
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Our expansion was inspired in a general way by the work of Gawedzki and
Kupiainen [3] and Gallavotti et al. [1], who rigor ized earlier ideas of physicists,
particularly Wilson and Kadanoff (see [3] for further references), all using the
idea of block spins. We introduce (in Sect. 4) an orthonormal set of functions,
\l/k (x\ on the lattice, and define our block spin variables as

The ψk(x) live on cubes of various sizes. The basic trick we employ is constructing
the ψk(x) with a certain large number of their moments equal zero (see Sect. 3).
This easily results in the fact that the interaction couples αfe and α^ with a strength
that falls off as a high inverse power of the distance between the cubes to which
αkι and αfe2 are associated (Sect. 7), via the interaction term λ(Δφ)4.

Successive terms in the cluster expansion defined in Sect. 8, involve coupling
more and more αfc, rather than larger and larger regions of space as is the usual
situation. The basic physical idea that leads to convergence is that modes that
couple over large distances are favored to have large scale structure; the small
scale modes have weak coupling at large distance (with the conditions on moments
we have enforced defining the modes). The usual cluster expansions do not take
advantage of this distinction between small scale and large scale modes.

In the development of the cluster expansion a device involving "tadpoles"
is introduced. This requires any subset of small scale variables to couple at least
twice with large scale variables with which it interacts. A detailed explanation of
this process is given in Sect. 8. It is the reflection of the renormalization group
philosophy — integrating out first the smallest scale (highest momentum) vari-
ables and then proceeding to the next scale iteratively — as it appears in the
present procedure.

We point out that the details of the present paper would remain virtually
unchanged in treating a model with interaction λ ( \ Δ |α</>)4 for α > \. (Although
such models have an effective interaction that is integrable, the usual cluster
expansion will not work unless α is quite large because of the number divergence.)
In Sect. 8.F we discuss the two point correlation function for these models.

There is a growing body of interesting papers on subjects related to the problem
of the present paper. We do not attempt a complete catalogue of papers and
principal results. The work of Gawedzki and Kupiainen in [3] derives asymptotic
expansions for thermodynamic functions in the λ(Vφ)4 model. The work of
Bricmont, Fontaine, Lebowitz, and Spencer in [7] derives, in addition, asymptotic
expansions for correlation functions in the same model. The work of Frohlich
and Spencer in [5] derives some estimates for two point clustering in a hard core
dipole gas. Malyshev and Tirozzi in [8] prove a cluster expansion for the models
considered in this paper.

We could have tried to use expansion functions developed in [3] instead of the
ψk given in Sect. 4. We feel our functions have some advantages; in particular we
can handle in the present paper models λ f] ( | A |αί φ)2s\ α. > 1/2, with no essential

i

changes, but I believe this would not be possible using the functions in [3]. We
are not sure whether the technique in [8] applies to this same set of models.
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The principal advantage of our cluster expansion over that in [8], however, is
that our technique should extend to λ(Vφ)4 and the dipole gas. In [6] Gawedzki
has tested, successfully, some of the critical ideas that will be involved in extending
the present work to the λ(Vφ)4 and dipole gas situation. The study of clustering
properties in mass zero situations is a field of great importance and growing
interest; it will assume form by the cumulative efforts of many researchers.

2. The System

We consider a lattice model with Hamiltonian density ^(V</>)2 + λ(Aφ)4. The
lattice is a cubical lattice, with unit spacing, pN sites along each edge; thus (pN)3

sites in total. We may consider this a subset, Λ9 of the lattice Z3 in R3 of points
with integral coordinates, p is a fixed integral parameter; the lattice size becomes
arbitrarily large as N increases, N an integer determining the volume of the lattice.
(The infinite volume limit, A -> oo, becomes the limit N -> oo.)

The partition function may be written

χ)e £ <HΣΦχ) (2.1)
xeΛ xeΛ

φ at the site x is written as φx or φ(x\ similarly with other functions on the lattice.
The φx are determined for all x in Z3 by periodicity, a change in any coordinate
by pN leaving φ invariant. This leads to periodic boundary conditions on the
Laplacian. (We have handled the zero frequency mode of the periodic Laplacian
with the δ function.) We let [j/(φ)], for s/(φ) a function of the φχ9 be the same
integral as in (2.1), but with <stf(φ) added to the integrand. We also set

= -i[XWO] (2-2)Z

3. Moments

We work with the unit lattice, Z", in Rn(n = 3 plays no special role in this section)
of points with integral coordinates. Δ.9 i= 1, ...,n are the difference operators,
obvious generalizations of A in one dimension, that satisfies (Δf\ =f(ί + 1) —f(i\
We have higher difference operators

Aa = (Aίr...(AJ^ =Σ*i9 (3.1)

and similarly monomials

x^(x1Γ...(xn)^. (3.2)

The basic relation

(A.(fg))x = ((Aίf)g)x + ((Δ.g)f)x + ((zlί/)(zl^))jc (3.3)

holds, here x is a lattice site. We write
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the sum over lattice sites. We let 2 be a finite connected subset of the lattice (one
may go from any point in 2 to any other via a sequence of points in 2, nearest
neighbors in the original lattice). / is supported in 9 if / = 0 on all points not in 2.
We collect some simple results on moments, with a sketch of proofs.

Theorem 3.1. Iff = ΣΔ.g(l} where each g(l} has finite support, then j/ = 0.
i

Theorem 3.2. ///= £ Δag
(*\ where each g(a) has finite support, then J/xα = 0

for\oί\^s. ι « ι = s + ι

Theorem 3.3. If f has support in 2), and J/ = 0, then there are g(l) (i = 1,2, ... ,n)
supported in 2 with f = £X#(0.

i

Theorem 3.4. /// has support in 2, and j/xα = 0, |α| ̂  s, then there are g(a\ |α| =
5+1, supported in 2 with f = £ ^α#

(α)

|α |=s+l

Theorem 3.5. // 2 is a cube of side L (L vertices on an edge) there are constants cs

(independent ofL) such that the #(α) of Theorem 3.4 may be picked satisfying

IΛ^L'+'l/L (3.4)

If g has finite support $A.g = 0. This is all Theorem 3.1 says.
Theorem 3.2 is proved combining Theorem 3.1 with the integration by parts

formula (3.3). The last term in (3.3) does not cause difficulty.
Preparatory to proving Theorem 3.3 and 3.4 we note that in R1 if f(k) = 1,

f ( k + 1) = - 1, and /(i) = 0, i £ k or k + 1 then f=Δg with g(k 4- 1) = 1 and
g(i) = 0, i ̂  k -f 1. Similarly in JRΠ, a function / zero except for equal and opposite
values at two nearest neighbor lattice sites — we call this an "elementary" function —
can be written as Δ.g with j the direction parallel to the bond joining the two
points, and 0 = 0 except at one of the two points in which / =£ 0. But any /, as
in Theorem 3.3, is a finite sum of such "elementary" functions, and this proves
Theorem 3.3. Theorem 3.4 is proven from Theorem 3.3 inductively using integra-
tion by parts ((3.3) and Theorem 3.1). We illustrate the first few steps.

(3.5)

Viewing the inductive procedure to prove Theorem 3.4, we may observe it is
sufficient to prove Theorem 3.5 for s = 0. We prove this s = 0 case inductively on
the dimension n. With
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we define

Σ f(x19...9xn,19xn) (3.6)j vv p...,^, — j^n-i

Xl,..,Xn- 1

inside the cube and zero outside the cube. We write

/ = /+(/-/)- (3.7)

It is trivial that

f=ΔngW (3.8)

with

and g(n} living in the cube. This is a one-dimensional problem. (/ - /) may be
written as

This involves solving (n — 1) dimensional problems only. We have used

SdxJ(x19...9xn) = Q (3.11)

and
Idxl9...9dxn_l(f-f)(xι9...9xn_l9xn) = 0. (3.12)

The estimate (3.4) may be chosen to hold for the g(i) (with s = 0) by the inductive
hypothesis. Note that

4. Expansion Functions^

In this section we construct the expansion functions {ψk}l these will form a
complete orthonormal set of functions supported on the lattice Λ. Thus there are
(pN)3 such functions. M and 5, integers (each determining the other) are fixed
parameters of our whole procedure, where there are M linearly independent
polynomials of degree less than or equal to s. All but M of the functions ψk will
satisfy

J^xα = 0 |α|^s. (4.1)

Those \l/k satisfying (4.1) will be said to have zero "first M moments."
The index k on ψk is viewed as a triple label, k = (r, y, ί) = (rfc, yk, tk). r is an

integer, 1 ̂  r rg N. The support of ψk is a cube of size (//)3. (There are pr sites on
its edge.) y labels which one of the (pN)3/(pr)3 locations for the support of ψk,
that \l/k lives on. (The supports of the various \l/k, with fixed r value, form a lattice.)

We will require that the "first M moments" of all the ψk with r values less
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than N are zero. (We assume for convenience that the M monomials xα, with
|α| g s, are linearly independent when restricted to a cube of size p3, i.e. p vertices
on an edge. This requires for fixed M that p be sufficiently large.) This requirement
guides the construction of the ψk. For fixed r and y, the number of possible t
values are

fMp 3-M r = 2,...,N- 1

#{ί}=< P 3 -M r=l (4.2)

(Mp3 r = N.

It is easy to count that the total number of ψk is (pN)3. One may construct the ψk

inductively on the value of r. ι/^, for a given r value, rk, must be orthogonal to all
the \l/k with r value less than rk. If the r value is less than N, ψk must also have zero
"first M moments." We will proceed to find a more explicit description of the ψk.

We first consider the r = 1 case. ψk for fixed y lives on a cube of size p3. We
require the M conditions (4.1) to hold for the functions we keep. Clearly a complete
orthonormal set of functions satisfying (4.1) living on this cube has dimension
(p3 — M). These p3 — M functions (an arbitrary complete orthonormal set) are
labelled by ί.

For r > 1 we divide the (pr)3 size cube into p3 subcubes of size (p*""1)3, by
3(p— 1) division planes ((p — 1) planes perpendicular to each coordinate axis,
equally spaced). On each subcube ψk is of the form

On each subcube this is a vector space of dimension M. For the r = N case no
further condition is enforced. The total dimensionality of the vector space is Mp3.
The ί labels a basis for this space, arbitrarily chosen except that we require one of
the elements in the basis to be the constant function, the zero frequency mode.

For the easel < r < N, on the vector space of dimension Mp3, one is restricted
to functions satisfying (4.1). The t labels an arbitrarily chosen basis for this space,
of dimension Mp3 — M; but at the end of this section we present some natural
conditions on the choice of bases.

The reader should convince himself that the ψk corresponding to different
values of (r, y) are automatically orthogonal by this construction !

We proceed to give some useful estimates on the ψk. We will write pr = prk

— L= Lk, using Lto denote the edge length of the cube on which ψk is supported.
We use the standard notation of c for positive constants, with possibly different
values in different equations.

Estimated!. I^L^ (4 3)

Combining Estimate 4.1 with Theorem 3.5 we get

Estimate 4.2. If rk < N and s g s + 1, then we may write

Ά,= Σ Δ.W\
\a.\=s
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with the ι/^α) supported on the cube (rk, yk) and satisfying

(4.5)

Estimate 4.3. We consider A.\l/k. Away from the (p — 1) division planes perpendicu-
lar to the z-axis and the two boundary planes perpendicular to the i-axis (for a
plane χ.=j + |, the sites with x. = j or j -f 1 are excluded), one has

(4.6)

Along the division and boundary planes (at the above excluded sites) one only
assumes

(4-7)

We observe that the conditions (4.1) are translation invariant. Thus we may
choose the ψk such that for fixed values of rk and ίfe, the ψk (as yk varies) are translates
of one another. Consider the set of real functions on [0, p]3, with the property
that when restricted to the interior of each unit cube with integral vertices in
[0, p]3, they are polynomials of degree ^ s. Impose the additional conditions

f ψx«d3x = Q | α | g s (4.8)
[O.pl3

for all \l/ in this set, where here the integral is with respect to the usual Lebesgue
measure on R*. This set of functions, viewed as elements of L2([0, p]3,μ), is Mp3

— M dimensional, (μ is the restriction of ordinary Lebesgue measure on R3.)
Let (φΛ(x)} be a basis for this subset of L2([0,p]3,μ), α = 1,2,..., Mp3 - M.
The functions {ψk(x)}9 1 < rk < JV, may be chosen, approximately, as scaled,
translated, discretized versions of the φΛ (x)

Here R(yk) is the translation. This indicates an approximate scaling symmetry of
the formalism, useful for applications of renormalization group theory. (4.9)
may be arranged to be a "better approximation" the larger rk becomes. Estimates
4.1 and 4.3 are thus easily understood.

Treating the considerations of the last paragraph more quantitatively, suppose
X — R(y }

ω is any of the p3 unit cubes in [0, p]3, and that — _ 1

 k is within this cube.
Pk

Writing the right side of (4.9) as

p"
and the left side as

' ,410,

(4.11)
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we assert one may choose the ψk(x) so that

\A(a, ω, ίfc) - Jϊ(α, ω, ίk, rk)| γ _^Q Q> 0 (4.12)

for all ίk, ω, α (for all (Mp3 — M)p3M of these quantities). This of course is a stronger
result than we need in Estimates 4.1 and 4.3, or anywhere else in this paper.

We note the following elementary matrix lemma.

Lemma 4.4. InaD dimensional inner product space there are constants c1 (D), c2(D)
such that for any set of D vectors V I } . . . , V D satisfying

<ϋ /,ϋ j> = δy + εy (4.13)

with

βy ύc^(D\ allzj, (4.14)

there are Ltj satisfying

(4.15)

such that the vectors w.

wi = v. + ΣLijv. (4.16)
j

from an orthonormal basis.
This lemma may be applied in our situation, with {i;.} the vectors on the right

side of (4.9), the approximations to the (ψk). The εj 7-̂  0, just as Riemann sum
approximations to J φt^(x)φt2(x)d3x approach the integral.

[Q,p]

Perhaps we should add that Estimates 4.1-4.3 do not depend on choosing
ψk to have scaling and translation properties.

5. The Change of Field Variables

We now change variables from φ(x),xeA, to the expansion coefficients of φ
in terms of the ψk. That is, we write

1
(5.1)

k

The ψk(x) are numerical functions, defined in the last section, and the αfe are the
new variables. Since the ψk(x) are orthonormal we also have

α/c — Σ (A/— Δ\l/k)(x)φ(x). (5.2)
x

The αk are only approximately localized in space; αk depends on the variables
φ(x) roughly over a cube of size (pp3.

The cluster expansion we will develop will be patterned (with some crucial
differences) on previous cluster expansions, but involving the interaction of larger
and larger subsets of the αfc.
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6. The New Free Covariance

We define as usual the free covariance of the φ(x) as

335

(6.1)

where the subscript 0 indicates the expectation is taken with λ = 0. Similarly we
define

C(fc,/c') = <ocfcαfc,>0 (6.2)

(using the same notation for the covariance in terms of the new variables). From
equation (5.2) we clearly have

C(fe, fc') — Jdx jXy(χ/ — A ψk)(x)(φ(x)φ(y)yo(\/ — Δ\l/k,)(y) (6.3)

= δM (6-4)

The new covariance is simple as could be! (The single mode which is a zero
eigenvector of the Laplacian never causes us difficulties.)

7. Interaction Estimates

To study the interaction λ(Aφ)4, we need estimates for ( A
-A

). We

will state our results, for simplicity, in the case when the Laplacian is the infinite
volume operator. It is not challenging to derive estimates for the periodic case

from these results. The basic ingredients are estimates for the kernels ( ΔΛ- 1 -A
1

1 -A
(7.1)

We also use the translation invariance of these kernels and Estimates 4.2-4.3.
Corresponding to Ψk,k<->(rk9yk9tk)9 there is the cube ( r k 9 y k ) of side length

L= Lk = (pYk. Let d(rk, yk) be defined as the union of the boundary planes of the
cube, with the portions of its division planes interior to it (a union of p3 hollow
boxes). We let d(x) be defined as

dk(x) = d(x) = max {1, dist(x, d(rk, y k ) ) }

for a lattice point x.

Estimate 7.1. If d(x) ^ L and rk < N then

(7.2)

1
W

cLs+5/2 5 + s 1
L5/2

Estimate 7.2. If d(x) ^ L then

1

-A

(7.3)

(7.4)
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If rk = N, and \l/k is not the zero frequency mode, (7.4) also holds with A replaced
by the periodic Laplacian.

Estimate 7.1 arises from Estimate 4.2 and (7.1) upon integrating by parts the
derivatives in Estimate 4.2 onto the kernel. Estimate 7.2 is derived by passing one
difference in the Laplacian onto ψk, and using Estimate 4.3. The first term in the
right side of (7.4) arises from (4.6), and the second term from (4.7).

8. The Cluster Expansion

We will now derive a cluster expansion for [j/j, si a polynomial in a finite number
of the αk, the distinguished variables. We will have

!>/]=£ Mr = Σ*T(^)ZTC. (8.1)
T T

The T's label terms in the cluster expansion. As our starting expression we have

(8.2)

Z is the same expression with si = 1. We have changed the normalization of Z
by a harmless numerical factor. In (8.2) (Aφ)4 is understood expressed in terms of the
α variables. In the definition of the cluster expansion, we will first give a complex
formulation of the labelling of terms and then an iterative construction of each
term.

The classic paper of Glimm, Jaffe and Spencer [4] is the source of the basic
constructs in a cluster expansion, [2] is also a source of some of our ideas.

8. A. Spatial Sequence Interpolation
We select an arbitrary but fixed linear ordering on the (p3)N lattice sites, (ί, x)
is an ordered pair consisting of a strictly positive integer, i, and a lattice site, x.
On such pairs we establish the linear ordering

We let G0 be the set of all possible selections of four α's (non-ordered and allowing
repetitions). G = 7VuG 0 , N a symbol we are now introducing. (In a schematized
step in the interpolation

1 d
ev(D = ev(0) + j JV(s)ds. (8.A.2)

o ds

The element N in G will correspond to the ev(0} term; and the selection of four α's
will correspond to a term in which a monomial specified by these four α's is dif-
ferentiated from the exponent.)

The labelling symbol T in (8.1) is a mapping from the space of pairs (i, x)
into G, that is eventually into N, i.e., for any fixed T, if (i, x) is large enough (in the
ordering (8.A.I)), T: (i, x) -» N. Many of the T's will in fact correspond to terms
identically zero. (By putting further conditions on the mapping T one could
eliminate such zero terms.)
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The interaction λ^(Δφ)x is a sum of contributions from the different lattice
Λ;

sites. As the labelling indicates, and as we will see in the next section, interpolation
occurs in each of these terms separately ! Somehow this seems to yield a more easily
controlled expansion than the more natural interpolation of the sum — if indeed
this latter interpolation can be controlled.

8.B. Construction of
is constructed inductively through the linear ordered expressions Γ (ί x).

Any single of these terms has the form

- (8JB 2)

P and V are functions of the α's and the s's. t is the number of (j, y) with (j, y) < (i, x\
and such that T does not map (j, y) into N. In Section 8.C, we will define, associated
to Vx(s9ί)9 a Vx(s9i). All of the F's and F's are homogeneous fourth degree poly-
nomials in the α's. We write (i9x)+ for the term succeeding (i,χ) in the (8.A.I)
ordering.

If T: (i, x) -» N then [«fi^]Γf(U)+ is derived from [^]Γ)(l x)by replacing the single
term Vx(s,ί) in the exponent in (8.B.2) by Vx(s,i)= Vx(s,i+ 1). The interaction
at a single lattice site is modified!

i
Otherwise, an integral ]dst+l is added to the expression (8.B.2), Vx(s,i) is

o
replaced by

Vx(s, i + 1) = st+, Vχ(s, i) + (1 - st+l)Vx(s, 0 (8.B.3)

(again modification at a single lattice site), and Pτ (. χ) is multiplied by the monomial

term in (- λ Vx(s, i+l)) that is specified by Γ((z, x)).

Given the interpolated interactions defined in the next section, the procedure
of this section is a straightforward site by site interpolation—the notation is
complicated.

8.C. Interpolation of the Interaction
If S is a subset of the fe's, we write

Φ(S,x)=ΣQ

keS

We also write

:))4. (8.C.2)

In the next section we will associate to the term T, at the (i, x) step, a partition of
all the variables into sets {0(i'x),I(j'x)}. Here we have suppressed the T label in
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the notation, and j varies over a fixed range 1 ̂ j ^j0(i,x, T). (In the usual cluster
expansions there is a division into only two sets, interior and exterior variables.)

Vx(s, i) is a linear combination of terms W(S,x) (for various subsets S). Vx(s, i)
is obtained from Vx(s9 i) by the replacement

W(S,x) -* W(Sn0(i>x\x) + ΣW(Sπlf*\x). (8.C.3)
j

This is virtually the same way E's are interpolated in [2].

8.D. Higher Structure
We associate a graph to the term T at the step (i, x). The vertices are

a) the distinguished αfe

b) those y such that for some j
(j9y)<(i9x)wdT((i9y})ίN

c) those ak that are in the image of T for
(/, y) < (i, x).

The vertices are thus the distinguished variables, α's that have been differentiated
down, and the sites at which they have been differentiated down. Each vertex
corresponding to an αk that is not distinguished is given a weight w(αk), the number
of times the αk is differentiated down, counting multiplicity. The weight of αk

is thus the degree of αk in Pτ (. χ). There is a bond connecting an αk and y if for some
Λ (Λ y) < (i> x\ and α

fc i
s in the image of (j, y) under T. Our graph clearly represents

the connectivity properties of the interaction terms differentiated down. It will
consist of a number of connected components each connected component must
contain some distinguished variable (for a term Γsuch that [̂ ]τ ̂  0).

The union of the α's appearing in the graph are the "interior variables". These
will be (J I(j'x\ The complementary set is the set of "exterior variables" 0(l'x).

We will have to work harder to define the subsets into which the interior variables
are divided. We will sometimes mean the interior and exterior variables associated
to a term T to be

\im\Jlf x\ (8.D.1)
j

and

limO(U) (8.D.2)

associated to T (the interior and exterior variables associated to sufficiently large

A subset of α's in our graph is a "tadpole subset" if
a) The subgraph containing as vertices these α's and all the vertices correspond-

ing to x's connected by bonds to these α's in the original graph, and whose bonds
are inherited from the original graph, is connected.

b) None of the α's is distinguished.
c) The sum of the weights of all the α's is equal to 3 (mod 4).
d) There is only one αfc not in the tadpole subset, call it αp, that is joined by a
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bond in the original graph to one of the x in the subgraph of a). For all αk in the
tadpole subset one has

rk<rp. (8.D.3)

The partition into I(j'x) of the interior variables is the coarsest partition of the
interior variables such that any tadpole subset is a union of some I(j x\

8.E. Basic Result
At the end of the iterative construction for [̂ ]r one has an expression of the form
KT(si)ZTC for [j/]Γ. Here Kτ(stf] is an expression of the form (8.B.2), where the
sums and products are restricted to αfc in the set of interior variables, and the F's
also depend only on interior variables. Zτ° is the expression for Z ((8.2) with
jtf = 1), with products and sums restricted to exterior variables, and (Δφ)^ con-
taining only contributions from the exterior variables. We define |Γ| as the total
number of interior variables in the term T.

Main Theorem. There is an M0, such that given any M^M0 and any c> 0,
there is a λQ (M, p, c\ such that

8.F. A Few Remarks About Clustering
There are standard techniques used to extract clustering properties of correlation
functions from cluster expansions. These are usually, but not always, estimates for
exponential fall-off with respect to spatial separation of arguments. In our case we
expect power law fall-off. Our main interest is extending the present program to
include more complex models such as the dipole gas, rather than extracting com-
plete results for the present model. In any case, for the model λ(|zl|αφ)2s, α > 1/2,
clustering properties are more easily obtained along the lines in [8]. We restrict
our remarks to the two point correlation function.

As the fields φ(x) are not our basic variables, but rather the quantities αfc,
it is perhaps not clear even what clustering properties it is natural to seek. We will
state our results for the model λ(\A\Λφ)4,u> 1/2, and consider correlations of
\Δ |αφ, probably the most interesting quantities to treat. We thus study

(S.F.I)

We expect, for λ small enough, that this will be bounded ~ -. - rττx; In Part 2>
\x — y\

Appendix B, we will derive the weaker result:

Clustering Theorem. For any y < 3, there is a λy such that for O^λ^λ

|< \Δ \*φ(x)\A \*φ( y)> I ̂ cv-^— . (8.F.2)
x-y

As we stated above we expect that 3 may be replaced by 1 + 4α in the statement of
the theorem.



340 P. G. Federbush

To give some indication of the proof (and our difficulty deriving the correct
power), we substitute (5.1) into (8.F.1).

ΣΣ(4^Wx))(^L^(^))<-Λ> (8-F.3)
k k '\v - Δ J\/-Δ J

The lowest order contribution of the cluster expansion will thus yield

(8.F.4)

with the ck uniformly bounded. Roughly ' ' ψk(x) lives on a region of diameter

prk and therein has a dimensional bound ~ (prk) 1/2 2α (by estimates as in Sect. 7).
The sum in (8.F.4) is dominated by terms with prk ~ x — y|. This suggests a

|1 + 4αlaw. However it is the last term in (7.4)—rather the generalization of
y

this term to the α =f= 1 case—that causes us difficulties. In the convergence proof
in Part 2 some slight juggling is also necessary to handle this term. Here the problem
is that this last term in the generalization of (7.4) will have a uniform bound
~ (prk)~3/2 To improve our bound we would have to deal more effectively with
regions where d is small. If one can use estimates wherein d is effectively ~ Lα,
then one would get the improved clustering theorem, 3 replaced by 1 + 4α. We do
not pursue this in the present work.

As is usual in a cluster expansion one needs estimates for Zτ° /Z (see (8.1)).
These may be derived by the method of [4], now standard.
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