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Abstract. We develop a unified approach, based on Araki's relative entropy
concept, to proving absence of spontaneous breaking -of continuous, internal
symmetries and translation invariance in two-dimensional statistical-
mechanical systems. More precisely, we show that, under rather general
assumptions on the interactions, all equilibrium states of a two-dimensional
system have all the symmetries, compact internal and spatial, of the dynamics,
except possibly rotation invariance. (Rotation invariance remains unbroken if
connected correlations decay more rapidly than the inverse square distance.)
We also prove that two-dimensional systems with a non-compact internal
symmetry group, like anharmonic crystals, typically do not have Gibbs states.

1. Introduction and Main Results

It is well known that continuous symmetries of two-dimensional statistical
mechanical systems or two-space-time-dimensional quantum field theories cannot,
in general, be broken spontaneously (except in systems with interactions of very
long range). Mathematical proofs of this fact have been known for quite a long
time: They have appeared in work of Mermin and Wagner [1] concerning quantum
spin systems on a two-dimensional lattice, of Mermin [2] concerning classical lattice
spin systems, and in [3] where classical particle systems have been analyzed. For
related results concerning quantum field theory, see [4], [5]. In [1 ] and [2] it is shown
that the spontaneous magnetization vanishes and in [3] that the density of particles
is constant, thus excluding the existence of crystalline order. Physical background
material as well as the mathematical outline of the proofs are very well explained in
[6]. The basic tool is Bogoliubov's inequality, which was used for the first time in
this context by Hohenberg in his study of the Bose gas [7]. (A rigorous proof was
later published in [8].) Using Bogoliubov's inequality, Fisher and Jasnow [9] proved
clustering properties of the two-point function and, consequently, that the order
parameter vanishes. McBryan and Spencer obtained a better decay for the two-
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point function of classical spin systems, using new techniques [10]1. Shlosman
generalized their work to the case of a compact connected Lie group [11]. (The
extension of [2] to this general situation was given by Vuillermot and Romerio [12].)

In the current context of statistical mechanics, Garrison, Wong and Morisson
[13]2 were the first to prove a result about the invariance of the states of the
system. Their argument employs Bogoliubov's inequality and the algebraic
approach to statistical mechanics. They discussed the internal and the spatial
symmetries of the system. Using a rather different approach, Dobrushin and
Shlosman [14], and later Shlosman [15], proved that all equilibrium states are G-
invariant in the case of classical spin systems, where G is a compact connected Lie
group. In the context of relativistic quantum field theory this result was anticipated
(somewhat implicitly) in [4]. Recently the results in [14] were rederived and
generalized in [16]. Since the new proof appearing in [16] is simpler technically, it
turned out to be possible to obtain optimal results for some class of spin systems. At
the same time, Simon and Sokal [17] proved some related as well as different results.
They proposed a rigorous version of the entropy versus energy argument which
captures one of the basic principles of statistical physics.

In this paper we present another approach to the problem, inspired by [16] and
[18]. The basic physical idea can already be found in [19]. In Sect. 2, we show that
(tempered) Gibbs states of particle systems are translation-invariant for a large class
of potentials. In Sect. 3, we prove that all KMS-states of a quantum spin system are
G-invariant, where G is as above. This is in particular the case for the Heisenberg
model. Our method can be used to extend the results of [16] to lattice systems of
genuinely unbounded spins in two dimensions, when the internal symmetry group is a
compact connected Lie group G. On the other hand, if the internal symmetry group
G is a noncompact connected Lie group, as in the case of the harmonic crystal, it is
impossible to construct Gibbs states. Dobrushin and Shlosman proved such results in
[20], and in Sect. 4, we derive similar results for a larger class of spin systems. Let us
mention the interesting paper [21] of Jona-Lasinio, Pierini and Vulpiani, where this
problem is discussed. We also derive results similar to those obtained by Brascamp,
Lieb and Lebowitz in [22]. They used Bogoliubov's inequality to prove the
divergence of some moments of the spins in the thermodynamic limit.

Throughout this paper, our main method is the same. We therefore do not
repeat all steps for each case in detail. Our proof of Theorem 1 which establishes
translation invariance of the Gibbs state in a class of classical particle systems is the
most complete one.

Our basic strategy is the following: we make use of the fact that two-
dimensional systems support large fluctuations of finite energy. For example, it is
possible to rotate all spins by a fixed amount on an arbitrarily large area without
paying more than a finite (actually arbitrarily small) amount of energy independent
of the area. It suffices to allow for a large transition region on which the spins are
"rotated smoothly", i.e. on which the amount by which the spins are rotated
decreases from a constant to the identity as the outer boundary of the transition

1 Their arguments can be extended to quantum spin systems
2 We thank J. Bricmont for pointing out this reference
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region is approached. It is at this point where the continuous character of the
symmetry group enters. This is the basic physics.

In more mathematical terms, starting from a Gibbs state P, of some system with
a continuous symmetry group, e.g. some spin system, we are able to construct
perturbed states, Pn, n = 1,2, 3, . . . , which are obtained from P by rotating spins in a
region of diameter ccn and satisfy the following two requirements:

i) The relative entropy, S(Pn\P) of Pn with respect to P is defined by

i.e. it is proportional to the expected value in the state P of the difference between
the perturbed and the original Hamilton function. The requirement is that S(PJP)
be bounded uniformly in n. A simple application of Jensen's inequality (in the case
of classical systems) then shows that P and any limit of (Pn) cannot be mutually
singular ("orthogonal").

ii) All spins in a region, Λn , say a disk of radius n centered at the origin, have been
turned upside down. Restricted to Λn, Pn coincides with P, the Gibbs state obtained
by turning all spins upside down.

The conclusion is that, because of i), the relative entropy of P with respect to P is
finite, and this implies, as remarked, that P = P, (provided P is an extremal state, i.e.
a pure phase).

The use of relative entropy as a means of comparing different Gibbs states of
some system was pioneered by Araki who applied it to prove uniqueness of KMS
states in one-dimensional quantum spin systems [18]. Our use of that concept
provides a unified treatment of problems related to uniqueness of equilibrium states
and absence of symmetry breaking. The method is not restricted to systems with a
continuous symmetry group, contrary to the approach based on Bogoliubov's
inequality.

2. Two-Dimensional Systems of Classical Particles.

2.1. Notations, Basic Concepts. We consider two-dimensional systems of classical
particles in X= 1R2. The configuration space is defined as the set Ω of all finite or
countable subsets, ω, of X such that ω n V is finite, for any bounded subset V of X.
Alternatively, we may define Ω as the set of all Radon measures of the form

where ω is as above and ε^ is the Dirac measure at x. We shall use both
interpretations of Ω. We thus have the two equivalent notations

Σ/(x) and \ω(dx)f(x)
ceω

We use the shorthand ωΛ for ω n A, A a subset of X and write ωμ instead of ω uμ,
ω and μeΩ. The Lebesgue measure on X is denoted by λ and A = X\Λ.
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For any bounded subset, A, we introduce the counting variable

N(A) (ω)Ξ=ω(Λ)=\ωnΛ\.

For any Borel subset V, let

= σ{N(Λ) : Ac V, A bounded}

be the σ-algebra of all events in V generated by the random variables N(A). Let F
= F(X). There is exactly one probability measure on (Ω,F), namely the Poisson
point process π with intensity measure z-λ, such that, for arbitrary, pairwise
disjoint, bounded sets Aly...,An9 the random variables N(Aί),...,N(An) are
independent and have expected values zλ(A1)9 . . . , zλ(Λn). Here z is the activity of
the particles. Thus π describes an ideal gas of particles or a gas at inverse
temperature β = 0. If Fis a bounded subset ana fa nonnegative, F( Immeasurable
function we have the explicit formula

l) ...λ(dXn)f({x ,,..., xn}\ (2.1)

We now assume that, at finite temperature, the particles interact via a two-body
translation-invariant potential. The potential energy of a configuration α = {x,y}
consisting of a particle at x and a particle at y is given by

φ(*) = φ(x-y) = φ(y-x). (2.2)

Assumption A. The function φ : 1R2 -> 1R is bounded below and
a) φ is stable: there exists a positive number B such that for any finite configuration ω
(i.e. ω(X) < oo )

b) φ is regular: there exists a positive number d, and a positive monotone decreasing
function, φ, on 1R+ such that

and
00

J tφ(f)dt< oo.
o

Let A be any bounded subset ofX. The energy of a configuration, η, of particles
in A (i.e. η<=:A), given some boundary condition ωeΏ, is formally

HA(η\ώ)= Σ Φ(«). (2.3)
acηωΛ
απ?/Φ0

In particular, for each xeX we put

= Hx(sx\ώ), (2.4)
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which is the energy of a particle at x given the configuration ω. (The particle at x
may or may not belong to ω.) We define the Gibbs distribution of a system confined
to A, given some boundary condition ω, as the probability measure on (
whose Radon-Nikodym density with respect to the restriction of π to F(Λ) is

(2.5)

where Z(Λ\ώ) is a normalization factor (partition function):

Formula (2.5) is meaningful whenever, for a given ω, (2.3) is defined for all
and Z(Λ\ώ)< oo. This is in particular the case for the class of configurations
corresponding to the following subset Ω^ c Ω : Let Λn be the family of disks
centered at the origin with radius «, welN,

Let

ΩN={ωεΩ:ω(Λn)^Nλ(Λn\

Then

Ω o o - U ^ N . (2.6)
N*l

Definition [23]. A Gibbs state P is a probability measure on (Ω,F) such that, for all
bounded sets A, (2.5) is well-defined for P-almost all ω, and the conditional
probability of P with respect to F(Λ) is given by the Gibbs distribution in A.

This section is largely inspired by Chapter 1 of [24] to which we refer the reader
for additional information. See also [25].

2.2 The Main Result on Particle Systems. In order to state and prove our main result
we need some additional assumptions on the potential φ.

Assumption B. φ is a twice continuously differ entiable function (except at OelR2).

Let aeE2 be a unit vector, |α| = l. Let 0 < ε < l be given and teJR. We
define on IR2

ψε(x) = sup sup —τ
a: t: dt

|β| = l | f |£ε |x |

We may regard ι//ε as a potential and define

\ x \ 2 .

for any configuration α = [x,y}\ see (2.2). Moreover we introduce, for ωe£2 [see
(2-4)],

ΣΨ,(x-y) (2-7)
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Assumption C. There exists 0 < ε < 1 such that ψε, interpreted as a potential, is

stable: £ φ,(a)^ -Sω(X),
αcω

withQ<S<co, ωeΩ and ω(X)<oo.
Let #eIR2. The translation Ta on X is defined as

x-*Tax = x+ a.

This transformation induces a transformation on Ω, also denoted by Ta :

ω^Γ f lω,
with

Taω(K) = $ω(dx)h(x + a), (2.8)

h being a measurable function on X. Let P be a Gibbs state. TaP is defined by
d(TaP)(ω) = dP(Taω). We say that P is translation invariant if P = TaP, for all

Theorem 1. Let P be an extremal Gibbs state for a par tide system on IR2 with activity
z, inverse temperature β and with two-body potential satisfying assumptions A,B and
C.If

a) there exists a constant K< oo such that for any bounded subset A of IR2

J P(dω) N(A) (ω) g jα (A) ,

b) //zere exists a constant C < cosuch that for all xeX,

then P is translation-invariant.

Remarks.

1) The assumption that P be extremal is no loss of generality, because a Gibbs state
satisfying a) and b) has a decomposition into extremal Gibbs states having the same
properties almost surely.

2) This result can be extended to some systems consisting of several species of
particles, e.g. ones with charge interacting via a smooth two-body potential.

In the corollary below we discuss a specific class of two-body potentials for
which hypotheses a) and b) of Theorem 1 can be verified. Our result involves the
notions of superstability and tempered Gibbs state for which we refer the reader to
Ruelle's paper [25]. Let φ be some potential and let φ + , φ ~ denote the positive part,
the negative part of φ, respectively, so that φ = φ+ — φ~ and \φ \ — φ+ -f φ".
We define Hlφl(x\ω) and Hφ-(x\ώ) as in (2.4).

Corollary. Let φ be a sup erst able potential satisfying hypotheses A, B and C above.
Assume, moreover, that

for some finite constant C independent ofx andω. Then all tempered Gibbs states are
translation-invariant.
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Proof. Our proof is based on the work of Ruelle, [25]. Since one can always
decompose a tempered Gibbs state into tempered extremal Gibbs states, it suffices
to consider an extremal Gibbs state and to verify for it the hypotheses a) and b) of
Theorem 1. Hypothesis a) follows from the temperedness of P, and hypothesis b) is
verified as follows:

Thus we must prove that

JP(rfω)exp(2)8H^-(Λ: ω))<oo.

This, however, is done in the proof of a), Proposition 5.2 of [25].

Remarks

1) The condition

is mild. It is satisfied by "most" potentials for which A, B and Chold. In particular,
this is true for all potentials of Lennard-Jones type; see Proposition 1.4 in [25].

2) Our results can be extended to systems of several species of particles with
interactions including many body potentials.

2.3 Proof of Theorem L It is sufficient to prove the theorem for \a\ ̂  1. Let a be
fixed and let Pa = T~ 1 P. We want to prove that Pa and P are equivalent by showing
that for any F(/l)-measurable subsets AaQ and Ac = Ω\A, A bounded,

(2.9)

and

/ P( A\ P(ΛC} \
(2.10)

where 0 < K< oo is independent of A, Ac and A. We obtain these inequalities by
constructing a sequence of transformations (Tn) on X such that

Tnx = x+ a = Tax,

Tnx = x , xφApn9

where An = {x eX: \ x \ ̂  n} , n eIN, and 0 < p is suitably large. As in (2.8) we define a
transformation Tn on Ω inducing a transformation of measures on (Ω,F). We set

p = T~1P*• n * n L '

We then show that the relative entropy

\ogd(ω}^K (2.11)
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is bounded by a constant ^independent of n. If n is large enough so that AnnΛ,
then (2.9) is bounded by (2.11). This follows by using Jensen's inequality. The other
inequality, (2.10), is proved in the same way.

Let u be a non-negative, smooth, monotone decreasing function on IR+ with the
properties

u(x) = l, *rgl, and u(x) = Q, x^p,

^ ε, 0 < ε < 1.

for some />, moreover

du

dx~

We define

T χ->x+a u(1-^

Tn is a smooth function from X into JΓ. It is one-to-one because

\u(\χ\)-u(\y\)\^*\\χ\-\y\\^*\χ-y\
LetPn = Γ~1P, as above.

Lemma2.1. Pn w absolutely continuous with respect to P. Let A = Apn and T=Tn.
Then

where Jτ(x) is the Jacobian of the transformation T.

Proof. Let Fbe a bounded subset, V^A. Let h be F(P/)"measlirat)le.

because P is a Gibbs state.

' (V)n

({*ι,.. ,*n}|ω)). (2.12)

Changing variables, xt^Txi9 in (2.12) yields the following integrand on the right
hand side of (2.12):

n

h(xί,...,xn)YlJτ(Xί)^p(-βHv({Tx1,...,Txn}\ω )).
ί=l

We multiply and divide this last expression by

exp(-βHv({xl9...,xn}\ωy).
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To complete the proof we notice that

and

ω). D

Lemma 2.2. Let T=Tn, and let fbe the transformation defined by replacing a by — a
in the definition ofTn. Let Pn = f~lP.

There exists a constant 0 < K< oo independent of n such that

Proof. We introduce a duplication of the system and consider the probability
measures P® P and Pn®Pn on Ω x Ω. We compute

S(PΛ®Pn\P®P) = -

= S(P.\P) + S(P,\P). (2.13)

We first bound in (2.13) the terms

β(HΛ(tωΛ\ώ) - HΛ(ωΛ\ω) + HΛ(TωΛ\ω) - HΛ(ωΛ\ω)). (2.14)

Let Λ = Λpn\Λn, (Λfn = A). We have

HΛ(TωΛ\ω)-HΛ(ωΛ\ω)= £ (φ (To) - φ (α)) ,
αcrcu:α(yΐ)>0

with α(yϊ) > 0 indicating that απ/ί φ 0.
Let α = {x, 7} and let

Using Taylor's formula for \t\ ̂  1, we get

φ (Γα) =/(!) =/(0) +/'(0) + ίr (fl),

and

=/(-!) =/(0) -/'(

with 0^|0|, |0 |^1. Since /(O) = φ(α), we see that only the terms /"(θ) and/" (
contribute to (2.13). Since

we have
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Let ψ = ψε. Then

Σ V(«) = Σ Hψ(x]ω)- Σ <K°0

a(λ)>Q

Therefore we obtain the following bound for the contribution of (2.14) to (2.13):

β(-\ \P(dω) Σ Hψ(x\ώ). (2.15)

The first term in (2.15) is bounded by

β*2"

for λ(A) = 0(π2), and ψ is stable. The second term of (2.15) can be written as

β^ϊP(dω)lχλ(x)Hψ(x\ώ)ω(dx)9 (2.16)
n Ω X

with χ^( ) the characteristic function of the set A. The proof is completed by using

Lemma 2.3 [26]. If P is a Gίbbs state, A a bounded subset, z the activity, then

Using this lemma we see that (2.16) is bounded above by a constant The
contribution of the Jacobians is estimated in the same way as the first term in (2.15).
Thus Lemma 2.2 is proved, and this implies the bounds (2.9), (2.10). Therefore P
and Pa are equivalent. The proof of Theorem 1 is now completed by appealing to the
following:

Lemma 2.4 [27]. If P and Pa are equivalent, and P is extremal, then

P = Pa. D

It remains to prove Lemma 2.3, which is a special case of Theorem 2 in [26].

Proof of Lemma 2.3.

z J λ(dx0) χΛ(xo)$P(dώ)Hψ(x0\ώ) e-Wχ°w = f λ(dx0) e~zλ^ \P(dω) * -
X Ω •**• Ω ^

* / —i— I λ(uXι)••'A\axn)tι.ίf\Xc)\Xιj. . j x n y c o / i ) ^ i ' » «' Λ\ βff (x x\ω-!\^ ^ • j v i x v . v / v υ i / ^ / i .

n^O n' (Λ)n

Since x0εA,

H(xQ I*!,..., xn, ωλ) + HA(XI , . . . ,*„I ω O = ^1(^0^1 > - > xn\^Λ)- (2.17)

Moreover,

(2.18)


