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Propagation of States in Dilation Analytic
Potentials and Asymptotic Completeness

Peter A. Perry*

Department of Physics, Princeton University, Princeton, NJ 08544, USA

Abstract. We estimate the space-time behavior of scattering states for two-body
Schrόdinger operators with smooth, dilation analytic potentials. We use our
estimates to give a simple proof of asymptotic completeness for a class of long-
range potentials, including the Coulomb potential plus a fairly general short-
range perturbation.

Introduction

The goal of this paper is to present a simple proof of asymptotic completeness for
the modified wave operators that describe two-body quantum scattering with
certain long-range potentials. Modified wave operators were introduced by
Bollard [6] to study scattering for the Coulomb potential. Spectral and scattering
theory for general long-range potentials has since been studied by many authors.
Spectral representations for such long-range Schrόdinger operators have been
studied by Ikebe [14,15] and Saitδ [31, 32]. Their results imply completeness of the
stationary wave operators defined via the spectral representation. Isozaki [18]
proved completeness of the stationary wave operator and Kitada [22-24] proved
completeness of time-dependent modified wave operators by a stationary method.
More recently Ikebe and Isozaki [16,17] have also given a proof of completeness for
the modified wave operators. Agmon [1] has also proved completeness results for
Schrodinger operators with long-range potentials and Enss [8] has given a
"geometric" proof of completeness for certain long-range potentials.

Here we would like to give a simple, "geometric" proof of completeness for
Schrodinger operators H1 = H0 + V+ Fon L2(1R"), where H0 = -^A,Visa long-
range, dilation analytic potential, and Fis a fairly general short range perturbation
(we formulate precise hypotheses below). Our class of potentials thus includes the
Coulomb potential plus a fairly general short-range perturbation. Our assumptions
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are more restrictive than those of the authors mentioned above in that we require
the long-range potential to be dilation analytic, but on the other hand we can allow
a more general short range part.

The modified wave operators we will study are given by:

Ω± (H19H0) = s-lime' *ι'Φo(f,0), (1)
f-» +00

where the "modified free evolution" tf/0(t,s) is defined by

#o(M) = exp ~ i{H0(t -s)+] PF'(pτ)dτ) . (2)
s

In (2) W is a smooth function that closely approximates the long-range behavior of
F(we choose W in Proposition 1.2 below), p is the momentum operator and, with
our choice of H0 , p = v, the velocity operator.

The class of dilation analytic potentials was introduced in [2]; see [4] for a
characterization of dilation analytic potentials and [30] for discussion and further
references. We denote by #(θ) the group of dilations: *(θ) acts on L2(IR") by
(W(θ)\l/)(x) = enθi2ψ(ζPx) for vectors ψeL2(ΊRn). A symmetric, #0-compact
operator is a dilation analytic potential if the operator ^(#)Fί^(#)~1(//0+ i)'1

extends to a bounded operator-valued analytic function of θ in some strip Sφ

= {θ:\lmθ I < φ}. We will assume that 0 < φ < π/4. IfH=HQ + Fand Fis dilation
analytic, H(θ) = <9l(θ)H<%(θ) " 1 extends to an analytic family of type (A) in Sφ . In
[2] this analyticity is used to prove, among other results, that H has no singular
spectrum and that eigenvalues of H can accumulate only at 0.

We are now ready to state our result.

Theorem 1. Let HQ = -^Δ and H1=H0+V+V on L2(IRΠ). Suppose that:
(i) V is dilation analytic in some strip Sφ and (1 -f- |x|)1+α(FF)(jc) (distributional

derivative) is uniformly locally L2 for some α > \.

(ii) (H1 4- 0 ~ 1 — (H+ i) ~ 1 e J^ , the ideal of compact operators, where
H=H0 + V.

(iii) For some integers β,y^.l and some ε > 0, the bounded, monotone decreasing
function h(K) = \\(H1 + i)-f*V(H0+ ϊ)~Ύ F(\x\ ^ &-')\\ is integrable on (0, oo).
(Here and elsewhere, F(xeS) denotes multiplication by the characteristic function of
the set S.}

Then the modified wave operators Q^(Hl,HQ) exist and are complete, i.e.,
RanΩ^" = RanΩ^ = J^c .(//j) and H1 has empty singular spectrum. Eigenvalues of
H1 can accumulate only at 0.

Remarks. 1. To treat the Coulomb potential I*)"1, we write it as (1+
+ [ I * |~ 1 — (1+|% I)"1] and group the term in square brackets with the short range
potential F. We can similarly treat power potentials | x |~α for α > \. 2. The existence
theory of modified wave operators with our choice (2) of modified free evolution
[3,5] breaks down at α = |, so our hypothesis (i) is necessary.

Below in Sect. 1, we will prove that the potential Fin Theorem 1 can be written
as V= W+ W where PFis C00 and dilation analytic, | VW(x) \ g C(l + |x|)-(1 + α>, and
Wis short-range (Proposition 1.1). Since WΊs smooth, the operator H=H0+W
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has several domain properties which are technically convenient: we collect them
in Proposition 1.3.

Given Proposition 1.1, it is very natural to break up the proof of completeness
of Ω^(//1?//0) into two steps: (1) prove that the ordinary wave operators
Ω± (Hl ,//) exist and are complete, and (2) prove that the modified wave operators
Ω^ (H,HQ) are complete.

The heart of our method is a "geometrical" estimate on the space-time behavior
of scattering states propagating under exp( — iHf). To state it, let D = ̂ (x p + p x)
be the generator of dilations and let P+ (respectively P_) project onto the positive
(respectively negative) spectral subspace for D. Let g be a smooth function with
compact support in (0, oo) away from eigenvalues of H. In Sect. 2 we prove:

\\F(\x\^\t\^G-itHg(H)P±\\^CNt8(ί+\t\rN (3)

for any integer TV, any ε > 0, and ± /e(0, oo). Estimate (3) is proved by extending
Mourre's technique in [26], where he proves a similar estimate for H = H0 = — \ A .
"Local decay" estimates similar to our estimate (3) have been proven for certain
dilation-analytic potentials in [19] and for a larger class of potentials in [20,21].
These authors do not apply their estimates to prove asymptotic completeness.
Together with any formulation of Enss's method [7] for short-range scattering, (3)
immediately implies :

Theorem!. Let H=HQ+W, where:
(i)' W is dilation analytic in Sφ and C00 with bounded derivatives. Suppose H1 is

another self-adjoint operator so that

(iii)' For some integers β, y ̂  1 and some ε > 0, the bounded, monotone decreasing
function h(R) = \\(Hλ + O'̂ i ~ #)(#+ i)~y F(\x ^1~ε)ll is integrate on
(0,αo).

Then Ω± (H^H) exist and are complete, i.e., RanΩ+ (Hl,H) = RanΩ~ (H1 ,//)
= ̂  c (H±) andHί has empty singular spectrum. Eigenvalues ofH1 can accumulate
only at 0.

Remark. To show that (i)-(iii) of Theorem 1 =>(i)'-(iii)' of Theorem 2 when
Hl—H=W+V, one uses Propositions 1 . 1 and 1 . 3 (a). Proposition 1 . 3 (a) enters in
showing that (iii)' holds given (iii).

The next step:

Theorem3. Let H=HQ+W, where:
(/)" W is C00 with bounded derivatives and dilation analytic in Sφ and \VW(x)\

gC(l+ \x\)-« + *> for some a>%.
Then the modified wave operators Ω|(//,//0) are complete, i.e., Ran ΩD

To prove Theorem 3, we will prove directly that the inverse modified wave
operators Ω^ (//,//0)* exist as strong limits. Just as the usual "Cook's method"
proof for the existence of Ω^ depends on the asymptotic equality of x and pi under
the free evolution exp(— ίtHo), so our proof depends on the same fact with //0



246 P. A. Perry

replaced by H. In Sect. 3 we combine the estimate (3) with ideas of Enss [9] to prove
that x and pt are asymptotically equal under exp( — itH). We use this result, a result
of Enss on the operator D(f) = QlHtDe~iHt [9], and Mellin transform estimates [27]
to prove Theorem 3 in Sect. 4.

In an Appendix, we prove a result on the invariance of operator domains used in
Sect. 2.

1. Regularization of the Potential V

Proposition 1.1. Let V satisfy hypothesis (i) of Theorem 1. Then V= W+ W, where:
(a) W is dilation analytic in Sφ and C00 with bounded derivatives,
(b) \VW(x) ^ C(l + |x|)-(1+α), and
(c) (1 + |x|)<1+α-β> W(x) is uniformly locally L2 for any ε > 0.

Remarks. 1. Conclusion (c) implies that ||JP(H0+ i)~Ύ F(\x\ <Rί~*)\\ is an
integrable function of R on (0, oo) for some η > 0 and y large enough [33, Ex. 2. 1 ]. 2.
Wis obviously //0-compact since it is the difference of two //0-compact operators.

Proof. We set

W(x) = (4π)-«/2 $dnye-(χ-yW4V(y) (1.1)

(PFis the Weierstrass transform of V\ see [11, 25]). The integral in (1.1) converges
absolutely since, by a result of Strichartz [34], any //0-bounded multiplication
operator is uniformly locally L2. Wis obviously C00 with bounded derivatives by the
smoothness and decay of exp (— (x—y)2/4). To see that Wis dilation analytic, first
note that Wis //0-compact. For, letting C = V(H0 + /') ~ 1 and T(y) = translation by
y, we can write:

W(H0 +iΓ' = (4π)-«/2 J dny T(y} ~lCT(y) exp ( - //4).

The integrand is compact and norm-continuous since C is compact and T(y) is
strongly continuous : since the integral converges in operator norm, we conclude
that W(HQ+ ί}~1 is compact. Next note that, for real θ,

W(θ)(x) = W(eθx) = (4π)-»/2e-»θ/2$

so that as an operator (again T(y) denotes translation by y):

W(θ) = (4π)-"/2e-"θ/2 J dnyT(y)~l V(θ)T(y) exp{ - e~2θy2/4} .

Hence if C(θ) - V(θ) (H0 +iΓ\

-

Now C(θ) is an analytic bounded operator valued function in Sφ and the kernel
exp{ — e~2θy2/4} is analytic in θ and rapidly decaying for |Imθ|<π/4, so the
integral converges absolutely. The integrand is norm continuous and analytic in
θ: hence W(θ) (H0+ i)'1 extends to an analytic bounded operator valued func-
tion in Sφ . This proves (a).
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To prove (b), we estimate:

The first term is bounded since (1 + |x|)(1+α) W is uniformly locally L2 and the
second is bounded owing to the rapid decay of exp(—y 2 /4) . This gives (b).

Finally, (c) is proved as follows. Pick ε > 0. Let χc be the characteristic function
of the unit cube centered at ce TLn\ we want to show that sup||(l + |x|) ( 1 + α~e )W^7c | |2
< oo. Write c

(1 +*\x\)V+Ci-^W= (4π)~"/2(l + |.x|)(1+α-ε) $dny[V(x—y) — V(x)]e~y2/4,

and split the region of jμ-integration into \y\ < \x δ and \y > \x\δ for some δ < ε.
The integral over \y\ > \x\δ decays rapidly in |Λ; |. The L2 norm of the other term is
given by

\ 2-H/2

y) - V(χ)]e-y2/4dny . (1.2)
\y\<\χ\δ ' / J

Write
i

V(x-y) - V(x) = \y VV(x-ty)dt
o

true in distributional sense. Putting this in (1.2), we can dominate (1.2) by

\2c\* sup sup (f |χc(l+ \x\yi+*-OFV(x-ty)\2dnx)V2.
re(0,l) L H < | 2 c | δ

Since we have chosen δ < ε, this is bounded uniformly in c. D
We note for later use (cf. Sect. 4, especially Lemma 4.2) that, by Hormander's

construction ([12], Lemma 3.3), we can further regularize the C°° potential W:

Proposition 1.2. Let W be a C°° function with bounded derivatives and suppose that
VW(x) I ̂  C(l + \x |)-(1+α) for some oί>^. Then for any δ with 0 < δ < α, we can

write W= W'+W", where

(a) W is C00 and \(DPW)(x)\^Cm(\+ x\)~m^\ where m(j) = l+jδ,
7=1,2,....

(b) \W"(x)\ ^ C(l + \x\)-v+ε) for some ε > 0, i.e., W" is a short-range potential.

For the proof see ([12], Lemma 3.3).
The operator H = H0 + PFhas several nice domain properties that follow from

the smoothness of W. We collect them in:

Proposition 1.3. Let H=HQ+W, where W is C°° with bounded derivatives. Then
(a) D(H*)=D(Hfyfor all positive integers α,
(b) Qxp(isH) and (H+ ί)~λ preserve
(c) For any g e Q? (1R), g(H) preserves

Proof. Part (a) follows by calculating the difference H* — HI in the operator sense
on vectors in <?(Rn). The difference consists of a sum of lower powers of H0 times
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derivatives of W\ such terms are //0-bounded and since ^(IRn) is a core for HI, it
follows that D(H«)=D(H$, proving (a). To see that exp(isH) preserves ^(IR"),
introduce the seminorms | |w| | k = sup \\xjH™u\\ for multi-indices k (these

Jgk
m £\k\-\j\

seminorms generate the usual topology on ίf). By a result of Hunziker [13], for
any uε ^(IR"),

\\k. (1.3)

Hence exp(isH) preserves ^(IRΠ). (H+ ί)~l preserves ^(IR") since

so by (1.3),

This proves (b). (c) follows similarly by writing

+ 00

g(H) = (2πΓ112 J dsg(s)exp(isH)
— oo

and using the bound (1.3). D

2. The Basic Estimate

In what follows, we will denote by σpp (H) the pure point spectrum of the operator
//, i.e., the set of eigenvalues of//. We will prove:

Theorem 2.1. Let H = H0+W, where W is C°° with bounded derivatives and dilation
analytic in Sφ . Let geC^ ((0, oo) \ σp.p. (//)). Then for any positive integer N, any s>0,
and any t with ± ίe(05 oo),

\\F(\x\ ^ \t\*-*)e-™g(H)P± || ̂  Q,ε(l + \t\Y». (2.1)

Remarks. 1. Since eigenvalues of H accumulate only at 0, the set of vectors g(H)φ
with φ EL2 and g as above is dense in Jf& c (H). 2. Remark 1 and estimate (2.1) imply
that P+e-itHPa.c.(H)^Q as t-* ± oo. 3. The proof of Theorem 2.1 depends on the
analyticity of U(Θ)P+ = eiθDP+ for ± Imθ > 0. Given an analytic vector ψ for /),
eWDψ is a vector-valued analytic function of θ for ± Imθ < δ for some (3 > 0. By
mimicking the proof of Theorem 2.1 below, we can show that the estimate

\\F(\x\ ^ \t\i-')e-»»g(H)ψ\\ ^ CNΛΨ(ί + \t\)-»

holds for analytic vectors ψ for D. The constant CN^ψ depends on ψ through
sup |k~θjDι//|| for some δ' <δ.

0<θ<δ'
Theorem 2.1 follows immediately from:

Theorem 2.2. With the hypothesis and notation of Theorem 2.1, for any positive
integer N and ε' > 0,

||(1 + \x\)-»e-'<*g(H)P± || ̂  Qε(l + \t\)-N+' (2-2)
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Our approach to proving Theorem 2.2 follows Mourre's proof of Lemma 1 in [26],
where a similar estimate is proven for H= H0 — — \A. To extent his approach to
our case, we need Proposition 2. 5 below and the results of the Appendix (see
Lemma 2.4). For the reader's convenience, we repeat the arguments of [26]. We
begin with several reductions.

Lemma 2.3. Suppose that //, g obey the hypotheses of Theorem 2. 2, that ± ίe(0, oo),
and that for every positive integer TV,

\\ZCM(l+\t\)-». (2.3)

Then the conclusion of Theorem 2.2 holds.

Proof. By a simple interpolation, (2.3) implies that

|| \D+ ί\-»e-i»<g(H)P± || £ CNt,(ί + |f|)-"+ ' (2.3')

for any ε' > 0. By writing

\x\)~N(H+ iYNe~iHt[(H+ i}Ng(H)]P± ,

we are reduced to showing that the operator (1 + \x\)~N(H+ i)~N\D+ i\N is
bounded. To do this we need only show that terms of the form

(1 + \x\rN(H+ iYN\ph -xίNplN (2.4)

are bounded. By Proposition 1.3 (a), D(H$) =D(HN) for all positive integers TV and
(H+ 0~ 1 preserves £f. By commutation, one can rewrite (2.4) as a sum of bounded
terms plus terms of the form (1+ 1^1)-^^ •• χiN(H+ ί)~NPi1 '"PiN The factor
involving the x is obviously bounded for all N; the factor involving the pik is
bounded for TV even and hence for all TV by interpolation. D

To estimate |||D+ ί\-^N+^e-iHtg(H)P± ||, we reexpress e~im in terms of the
resolvent of H and prove a resolvent bound using the dilation analytic! ty of//. The
first step is

Lemma2.4. (2.3r) holds if for any compact subset Kof(Q, oo)\σp p (//),

sup|||Z)+ i\-w+2>(H-λ+iε)-(N+»P± \\ < oo. (2.5)
λeK
ε > 0

Proof. We first note that for ±

-
e-iί»g(H)= lim ^-.~- j dλ(H-λ + iε)-w+»e-"<g(H). (2.6)

ε l O LTll (lt)N -oo

(2.6) follows from the functional calculus if we apply the Cauchy integral formula
for the Nth derivative to the function^ (χ) = e~εltle~itx. For fε (χ)->e~ itx in sup norm
as ε I 0, and by Cauchy formula
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for x in a fixed compact subset of R Hence to show that (2.3') holds, it suffices by
(2.6) to show that

|| (2.7)

is an integrable function of λ. Since g has compact support, (2.7) decays rapidly
outside any compact subset K of (0, oo) containing suppg. We can find such a
compact K away from eigenvalues of H. Hence we need only show that (2.7) is
bounded uniformly in λeKand ε > 0. Furthermore, we show in Corollary A. 6 of
the Appendix that if geQJ3, then g(H) preserves the domain of DN for all positive
integers N. Hence \D + i\~Ng(H) \D -h i \N is a bounded operator, so (2.7) is bounded
if (2.5) holds. D

To prove (2.5) we consider the operator-valued function

F(θ)=\D+i\-(N+V(H(θ)-λ + /ε)-("+ 1>έ? f W>Λt, (2.8)

which by hypothesis extends to an analytic bounded operator-valued function in
the strip 0 < ± Imθ < φ. We will derive the following differential inequality on its
restriction G(s) = F(is) to the imaginary axis:

||G/(^)||^C^||G(^)||^+1^+2)k|-^+1^+2),0<±^<(3, (2.9)

for some positive δ < φ and CKjδ independent of ε. We can integrate (2.9) directly
and conclude that G(s) is uniformly bounded in (0, ± <5). In fact, G(s) is Holder
continuous in si So it clearly suffices to prove (2.9). We first need an a priori
estimate on the resolvent of H(θ).

Proposition 2.5. Let K be any compact subset o/(0, GO) not containing eigenvalues of
H. Then there is a δ > 0 so that, uniformly in 0 < ± Imθ < δ,

suplK/^-l + ίXTMl^C^IImβΓ 1. (2.10)
λeK
ε > 0

Proof. We will show that for any A0e(0, oo)\σpp (H), there is some interval
and a δ>Q for which (2 10) holds τhe

proposition then follows by a covering argument. Further, we will only estimate
\\(H(Θ) — λ — iε)~1 1|, since the other estimate follows by taking adjoints. Finally,
since (/f(00+ iθ^) — z)"1 and (H^θ^ — z)'1 are unitarily equivalent, we will
suppose that Re$ — 0 without loss.

By the spectral theorem, for any A0 > 0 there is a neighborhood N of λΌ

contained in (0, oo) so that

\\(e-^H- λ - isΓ1 II ̂  C|0! Γ ' (2.100

for λeN, where C is uniform in ε > 0, λεN and 0<θ1<φ. Furthermore,

zΓ1Γ\ (2.1 la)

where

X(θ) = (1- e-2θ)W+ (W(θ) - W) (2. l ib)

whenever

\\X(θ)(e-™H-z)-l\\<\. (2.1 Ic)
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By the estimate (2.10'), we need only prove that \\X(iθ1)(e-2iθ^H- λ - zε)"1 1| < 1
uniformly in 0 < Θ1 < δ, λ e(λ0 — η, λ0 -f η) and ε > 0 for some numbers δ > 0, η > 0.
Equation (2. lib) and the hypotheses on W show that X(Θ) = ΘΎ(Θ), where
Y(Θ)(H+ ί)~l is an analytic compact operator-valued function of θ. Since there
are no eigenvalues of H in a neighborhood of λθ9 E(λo_ηίλo+η}(H)-^Q as η-+Q so
\\Y(θ)E(λo_ηtλo+η)(H)\\-*Q as j f->0 (by analyticity this holds uniformly for
\Ίmθ\< φ/2). So we insert T[ = E(λo_ηίλΰ+η}(H) + E^(λo^λo+η)(H) in

| 7(0) (H+

Put θ — iθ1. In the first term, | θ \ = \ Θ1 \ cancels the singularity of the resolvent up to
a constant factor that can be made small by choosing η small enough. If we then

restrict λ to the interval ( λQ — -, λ0 + ̂  J, the second term is bounded by a constant

times \θ\ = \Θ11, so it can be made small by restricting Θ1 to 0<Θ1 <δ for some
/ \

δ>0. Hence \\X(θ)(e~2^H- λ - /ε)" 11| < 1, uniformly in λe( λ0 -^A0 + ̂ ),

0 < 0! < δ, and ε > 0, and the proposition is proved. D
To prove the differential inequality (2.9), we note that if θ — Θ0 + iθ1 , then

by (2.8)

F(Θ)=\D+ i\-

Taking the derivative along the real direction, we find

But G'(s) — iF'(s) so we have

*DP± ||. (2.12)

To obtain (2.9) we estimate P(z) || = \\ \D+ i \~z(H(is) - λ Tiε)-^1) e~sDP± \\ by
interpolating between Rez = 0 and Rez = N+2. For Rez^O we have ||./4(z)||
^Cκ,δ\s\-(N+ί) by Proposition 2.5, while for Rez-7V+2, \\A(z)\\ = \\G(s)\\.

Inequality (2.9) follows since N+ 1 - 0 — i— + (N+ 2) -

We have thus proven:

Lemma 2.6. The differential inequality (2.9) holds.

Collecting Lemmas 2. 6, 2.4, and 2.3, Theorem 2.2 is proved.

3. Evolution of Observables Under exp(-itH)

In this section we use ideas of Enss [9] to study the Heisenberg operators x(ί), p(0>
and /)(/), where ^4(0 = eΪHtA e~iHt. We will prove:
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Theorem 3.1. Let H = H0+W where W satisfies (i)" of Theorems. Then

D(t)
(a) 2t

(b) Let 0 < δ < α.

H in strong resolvent sense as t-> ± oo on J^c.(//).

» 0 z'fl strong resolvent sense as t -> ± oo

Remark. Theorem 3.1 (a) and its proof below are due to Enss [9]; Theorem 3.1 (b) is
new.

Theorem 3.1 implies:

Theorem3.2. Let ψe 3t?&c (H) and suppose that ψ = EM(H)ψ, where
(α,έ)c:(0,oo)\σp.p.(/Γ). Let'ψt = e-itHιl/. Then:

where geQf(0, oo) satisfies g = 1 on (a,b).

Remark. For an w-tuple A of commuting self-adjoint operators and a subset S of
IRn, the "smooth" projection F0(AeS) is defined as follows. Let χs denote the
characteristic function of S and let ξ satisfy Sdnyξ(y) = 1 and feQ^IR"). F0(AeS)
is the operator associated to the convolution χ5* ξ by the functional calculus for A.

Proof of Theorem 3.2 given Theorem 3.1. It is enough to show that

f -F 0 ( |x-pf |<U| 1 - δ )V' ί -»()as t-+ ± oo

separately, since the result then follows by the uniform boundedness in t of
the projections. By Theorem 3.1 (a) and Theorem VIII. 24 (b) of [28],

as ± oo. Write

D

•0,

where in the last step we have used the unitarity of eitH. A similar argument using
Theorem3.l(b) shows that ||(1 - F0(\x -pt\ < UP-^^H-^O. Finally, sinceg- 1
on (α,6), (1 — g(//o)) Ψt — (g(H) — g(ffo)) ψt> which goes to zero by the compact-
ness of (//"+ O"1 ~ C^o+ O"1 and a standard argument [33, Lemma2.4]. D

To prove Theorem 3.1, we first recall a standard criterion [28, Theorem VIII.
25 (a)] for strong resolvent convergence: An^>Am strong resolvent sense ifAn-+A
on a core for A contained in D(An} for each n. Hence our first step is to find a nice set
of vectors on which to study the Heisenberg operators D(t) and x(i) — tp(t).
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Proposition 3.3. Let N = p2 + x2 + 1 and let 2 be the set of all vectors of the form

g(H) e-°Nφfor φeL2, 6>>0, α/κ/geC?((0,oo)\σp.p.(fl)) Then:
(a) 9) is a core for H Γ^a.c.(//).
(b) ^c= ^(W) and Qxp(-itH) ^c ^(lRn).
(c) \\F(\x\<\t\ί-*)e-iίHψ\\^CN(ί + \t\)-Nforanyε>0, telR,

Proof. Since e~ΘNιl/^n// as θ->0, ^ is dense in (Jrang(//), which is obviously
0

dense in D(H\^C(H)) in graph norm, proving (a), (b) holds since for θ>0,
e-ΘNψeCΰ°(N) = y(W) [28] and by Proposition 1.3, g(H) and exp(-ίtH) both
preserve ^(IRn). Finally (c) holds since, for θ > 0, e-ΘNι// is an analytic vector for TV
and TV analytically dominates D (e.g. by Paris [10, Theorem 16.4]); hence any \μe@
is of the form g(H)χ where χ is an analytic vector for D, and by Remark 3 after
Theorem 2.1, such vectors obey the estimate of (c). D

Proof of TheoremS.L Following the method of [9], we consider the Heisenberg
equations of motion for D(f) and x(ί) — p(ί) t. Weakly on 2 x ,̂

^/)(0 - e™ [2#o - (x ' VW] e-iHt, (3.1)

and by Proposition 3. 3 (b), (3.1) holds in the operator sense on 2. Write the
quantity in brackets as 2//H- /; by Proposition 1.1, /is //-compact. Integrate (3.1)
and divide by 2 / to obtain

*,^*. (3.1').
2<t 2*t .Z t Q

Applied to vectors ψ e ̂ , the first term in (3.Γ) vanishes by the RAGE theorem [29,
Theorem XL 11 5] since /(//+ z)"1 is compact and (//+ z')ι// is bounded, if ψε@.
This proves (a). To prove (b) we compute, weakly on 9) x ,̂

— (x(t)-t'p(t)) = eitH(7W)(x)e-ltH. (3.2)
αί

Again, (3.2) actually holds in the operator sense on ̂ . Integrate (3.2) and divide by
1 1^-5 to obtain

The first term vanishes as t -* ± oo when applied to ψe@. The integrand of the
second term applied to ψe ̂ is estimated using Proposition 3.3(c) and the estimate
on VWm Proposition 1. 1 (b):

^ CN(1 + \s\)-N+ const(1 + M)-(1+α-£) (3.3)

for any ε > 0. On integrating the right hand side of (3.3) and dividing by \ t \ ί ~ ε , we
obtain an estimate for the second term in (3.2') that vanishes as t -» ± oo, since ε > 0

is arbitrary and δ < α. Hence »0 on @, proving (b).
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4. Proof of Theorems

To prove Theorems, we will show that the inverse modified wave operators

Ώ| (H,HQ)* exist as strong limits on a dense subset of J^ac(H). We will only give
the proof for Ω^* since the proof for Ω^* is similar. Ω$* exists if

lim sup || [e-' *«-*) - <%0(t,s)] e~iHsψ \\ = 0, (4.1)
£-+00 t^S

for ψ in a dense subset of <tf?a c (//). Consider the set of vectors ^ with EM (H) ψ = ψ
for some (α,b)^(Q, oo)\σpp'(//). For such ι//, (4.1) holds if

lim sup -0, (4.2)

where geC^(0, oo) satisfies g — 1 on (α,b), by Theorem 3.2. By a "Cook's method"
argument, (4.2) holds if

lim sup J

• F0(|x - p s I < |ί ' = 0. (4.3)

We will prove (4.3). We first collect some estimates on the modified free evolu-
tion ^Q(S',S). The modified free evolution is dominated by the free evolution

e-iHΌ(s'-s)^ faQ f|rs{ Lemma is a simple extension of the estimate on e~lH^ proven
in [27] by Mellin transform methods.

Lemma 4.l.Let g e C Q (0, oo). Then there isαoQso that, for all sf with sf > s > 0 and
any integer N,

F(\x\

We omit the proof.
The next lemma shows that the corrections to the free evolution introduced by

the factor exp —/JfP(pτ)dτ are small.

and letLemma 4.2 [8]. -i$W'(vτ)dτ \g(H0). Let

Si , S2 be subsets of R" with dist^! , 52) ̂  d > 0. Then for any integer /,
(a) \\F(xeS1)K(s',s)F(xεS2)\\^Dl(l+ |j/ |)(1-5 ')(»+/+i)(i + rf)-/s where δ' is

defined in Proposition 1.2.
(b) The same estimate holds with x replaced by x — ps'.
(c) (a) and(b) hold with F replaced by FQ, where FQ is defined as in the remark

after Theorem 3. 2.

Proof, (b) follows from (a) since exp( — is'H^) commutes with K(s',s) and
exp( — is'Ho)f(x)=f(x — p/)exp( — is'H^) for Borel functions/, (c) follows
from (a) (respectively (b)) by using the rapid decay of F0 (x e 5) [respectively
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F0(x — pseS)] outside of S. To prove (a), we note that in .x-space, K(s',s) is the
operator of convolution with a rapidly decaying kernel, (a) then follows by using
the estimates of Proposition 1.2 on derivatives of W together with Young's
inequality (cf. [8,Eq. (41) ff.]). D

Next, we note some useful properties of the "smooth" projections F0 introduced
in Sect. 3.

Lemma 4.3 [8]. Let F0(x — pseS) be defined as in Sect. 3.
(a) (small momentum transfer) Let geC™(0, oo). Then for supp<f small enough

there is a geQ°(0, oo) with g = l on suppg so that F0(x — psGS)g(Ho)
= g(Ho)F0(x — psES)g(Ho) and similarly for s replaced by s'.

(b) (smallposition transfer) For c> 0 and supp£ small enough,

ί csf\
Fl\x\<Ύ\F0(x-ps'εS)F(\x\>cs>) = 0.

Proof. Let fs = ̂ ξ. Then

F0(x-pseS) = $dnλfs(λ)exp[iλ'(x-ps)].

By the Baker-Campbell-Hausdorff formula, exp [iλ - (x — ps)] = [exp//I x] x [exp
— iλ ps] x exp^iλ2s. Using this fact along with the compact support of fs, it
follows that F0(x — pseS) has a momentum transfer of at most a where
s u p p f c { λ \ \ λ \ < a } . This shows (a), (b) is proved similarly. D

Next we note a formula for the operator difference W(x) — W'(psf) that occurs
in (4.3).

Lemma 4.4.
i

^Xx)-PF(py) = frfθ{(PfF)(θ^^
o

Lemma 4.4 is proved by writing W as the integral of its Fourier transform and
using the formula

i

eiq * - eiq tf = ί\dθeϊθq'* iq' (x - psf)eW-VW
o

together with the Baker-Campbell-Hausdorff formula. We omit details. Finally, we
note:

Lemma 4.5. For any positive integer k and sf > 0,

sup
θe[0,lϊ

\θx+(ί-θ)ps'\<—]F0(\x-ps'\<2s'*-')F[\x\> <ck(i+sfy

The proof is very similar to the proof of Lemma 1 in [8] and is omitted.
We now carry out the

Proof of Theorems. We will show that the integrand of (4.3) is estimated by
C(l + ls')-(1+1/) for some η > 0 and C independent of s,s'. We first note that, by
Lemma4.3, F0(\x -ps\ < \s\^δ)g(H0) = g(H0)F0(\x-ps\ < \s\*-')g(H0) for
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some gεC$(Q,co). Writing B=W(x)+W"(x)-W($s'), we see that the
integrand of (4.3) equals

which, by the identity

equals

BK(s',s)F0(\x-fs'\< (4.4)

Writing Ίl= F(\x\ < cs') + F(\x\ > cs') and using Lemma4.1, we conclude that
(4.4) is estimated by a term decaying rapidly in s' plus

\\BK(s',s)F (|x — p,s'| < |,$|1~ < 5)/'X|x| > cs')\\. (4-5)

By choosing δ' < δ in Proposition 1.2 (so^ < δ' < δ < α), we can use Lemma4.2 to
see that || F0(\x- ps' \ > 2sfi-δ)K(sf,s)F0(\x -ps'\< s1-0) \\ decays rapidly in s' for
sf > s. Hence we can estimate (4.5) by terms that decay rapidly in s' plus

(4.6)

!>"')

By Lemma 4. 3,
cs'

Γ V

for supp<f small enough, and by Lemma 4.2,
\ / \ ~ /

decays rapidly in s'. Hence, finally, we can dominate (4.6) by terms decaying rapidly
in s' plus

cs
BFΌ(\x-ps'\<2s'i-*)F(\x\> —

cs
~4

cs'
T

(4.7)

To estimate the first term on the right hand side of (4.7), we use Lemmas 4.4 and 4.5
and bound it by rapidly decaying terms plus

sup
βe[0,l]

'')F(\θx+(l-
cs'

ΔW(θx + (1 - θ ) f s ' ) F [ \ θ x + (1 -
cs
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The first term in brackets is bounded by a constant times (1 + sf)-^+δ'^(l + s'y~δ

— (1 + y)-(1+ί/) for η>0, since δ,δr >%. The second term in brackets is bounded by
a constant times (1 + s')~2δ ', and since δ' > \, 2δf = 1 + η for some η > 0. The

second term in (4.7) is dominated by W(x)F
cs'

since, by Lemma4.3,

(
C 9

1*1 >-4-

C >

for suitable choice of suppf.
cs

is estimated by a constant

times (l + s')-(1+rΰ for some η>0 by Proposition 1.2(b). This shows that (4.3)
holds, proving Theorem 3. D

Appendix. On the Invariance of Operator Domains

Let A be a self-adjoint operator and let U(a) = Qxp(ίaA}. For any self adjoint
operator B, t/(α) induces a family of self-adjoint operators £(α) = U(ά)BU(ά)~l

unitarily equivalent to B. We wantt to show that if the map α -> U(α) is smooth, nice
functions of B preserve D(Ak),k = !,...,«, where « depends on the smoothness of
the map α->l?(α). The following Proposition is central:

Proposition A.I. φ eD(Ak) if and only if the vector-valued function φ (α) = £/(α) φ w Cfc

atO.

Remark. If φ (α) is differentiable at 0, then by translating with the unitary group, it is
differentiable everywhere. Hence the phrase "Ck at 0" makes sense.

Proof. For k = 1, this is Theorem VIII. 7 of [28]. Suppose the proposition holds for
φeD(Ak~1). If <p(α) is Cfc, certainly φeD(Ak~1) and φ(k)(0) = ^/(0), where ψ
= Ak~1φ. But then ψeD(A), i.e., φ eD(Ak). By a similar argument, any φ eD(Ak) is
C* at zero. D

Suppose g is a smooth function; then g(#)φ eD(Ak) if U(oΐ)g(B)φ is Cfc at 0. But
U(aί)g(B)φ = g(J5(α)) t/(α)φ so U(u)g(B)φ is Ck, if φ eZ)(v4fc) andg(5(α)) is norm C*
as a function of α. Hence:

Corollary A.2. Suppose that B(a) = Ufa^BUfa)'1 as above and that g(B(aJ) isnorm-
C*1 as a function of α. Then g(B(&J) preserves D(Ak) for k = 1,..., n.

We now find sufficient conditions on the map α -> B(oC) and the function g for
g(B(oί)) to be norm-C". We first consider bounded operators B and then make an
easy extension to semibounded self-adjoint operators.

Since the operator B(a) are self-adjoint, we can write

g(B(*» = (2πΓ1/2 f g(Oexp(ίf£(α))Λ. (A.I)

We are then motivated to consider the operator exp/f J9(α):
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Lemma A.3. Let B(cή be a family of bounded, self-adjoint operators and sup-
pose that the map a-*B(a) is norm-Ck in some interval I containing 0. Let
\\B(Λ)\\k=svφ\\(DίB)(ΰL)\\.Then

||exp(fc5(α))||k£Ck(l + \t\)k\\B(a)\\k. (A. 2)

Proof. By the Duhamel formula,

i
expϊfl?(α+ ε) - expzf5(a) = it J dsQxp(istB(a+ ε))

o

- B(a)] x exp/(l - s)fB(α),

so expzY#(α) is norm-continuous in α for fixed ί. Dividing by ε and taking norm
limits, we get

— (expftjB(α)) = ft f ifcexp(wi^(a))5'(a)exp(/(7-j)ijB(a)).
aa o

Repeated application of this formula gives (A.2). D
Combining (A.I.) and Lemma A. 3, and using Corollary A.2, we obviously have:

Proposition A.4. Let α-»#(α) benorm-Cn andlet geC% . Theng(B(a)) isnorm-Cn.
IfB(a) = t/(α)5ϊ7(α)~ * with B and U(a) as above, then g(B(άj) preserves D(Ak)for
k = l,...,n.

Now let B be a semibounded self-adjoint operator and let B(ot) = U(a) B C/(α) ~ 1 .
Suppose that for some suitable c, ^(α) = (^(α)+ c)~i is norm-C". If

= ^ - - c is a Cg* function so g(B(u))=f(R(a)) is norm-C". We

have therefore proved:

Theorem A.5. Let B(a) = U(oί)BU((x)~l, where B is a semibounded self-adjoint
operator and t/(α) is a unitary group generated by the self -adjoint operator A . Suppose
that jR(α) = (/?(α)+ c)"1 is norm-Cn for suitable c. Then for any geC^( — c,co),
g(B(a)) preserves D(Ak}, k=l,...,n.

If H=HQ+W with W dilation analytic and H(θ} = W(θ)H(%(θγ\ R(θ)
= (H(Θ)+ c)-1 is analytic. Clearly:

Theorem A.6. Let H=H0+ Wwith W dilation analytic andH+ c > Qfor some c. Let
^( — c, oo). Then g(H) preserves the domain of Dn for all positive integers n.
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