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Lax Representation for the Systems
of S. Kowalevskaya Type

A.M. Perelomov

Institute of Theoretical and Experimental Physics, 117259 Moscow, USSR

Abstract. We describe a number of dynamical systems that are general-
izations of the S. Kowalevskaya system and admit the Lax representation.

It is well known (see for example [1,2]), that the equations of motion of a
three-dimensional heavy rigid body rotated about a fixed point is a com-
pletely integrable dynamical system only in the cases of Euler [3], Lagrange
[4], and S. Kowalevskaya [5]. In the present note we describe a number
of systems that are of the Kowalevskaya type and admit the Lax representa-
tion'.

1. Let ¢ be the Lie algebra of a group G, 4* be the space dual to %, {x,}
be the coordinates of a point in the space ¢*. In the space % (9*) of smooth
functions on %*, let us define the Poisson bracket?

{f8}=Clyx,0°fd'g, 0*=0/0x,. (1)

Here C}, are the structure constants of the Lie algebra. The space #(%¥) is
endowed by the above formula with the structure of the Lie algebra. A
dynamical system in %* is determined by a Hamiltonian function H(x)eZ, so
that the equations of motion have the form

x,={H, x,}. (2)

The coadjoint representation of the group G acts on the space %*. Orbits of
this representation are invariant with respect to an arbitrary Hamiltonian H,
and are the phase spaces of the considered systems.

2. Let G be a compact simple Lie group, K be its subgroup such that the
factor space G/K is a symmetric space [6]. Then ¥=4"®F, A is the Lie al-

! Note that the Lax representation for equations of motion of a rigid body was discovered first
by S. Manakov [8] for some particular cases

2 In this note we use the tensor notations; in particular, everywhere repeated indices imply sum-
mation
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gebra of the group K, & is the orthogonal complement to ¢ in ¥ relative to
the Killing-Cartan form.

It is well known that a certain irreducible representation T°(k) of the group
K acts on the space . Let us consider an irreducible representation T'(g) of the
group G, such that under the restriction of this representation on the subgroup
K, the irreducible representation T°(k) is contained in T(g) with the unit mul-
tiplicity. Let V be a vector space in which the representation T'(g) acts. Then it
is possible to define the group G=G-V that is a semidirect product of the
group G and the abelian vector group V. Let us denote by V° the subspace of
V on which the representation T°(k) acts, and by A4 the projection operator on
the subspace V°. Let V' be the orthogonal complement to V°: V=V°@V"
Note that the spaces V° and & are isomorphic, because T(g) contains T°(k)
only once. Therefore we have the decomposition

G=AH DIV DV,
and the analogous decomposition for the space %*:
G =LONDPDI. ©)

Here =% N =% P=+"O% 9=y U* In addition, dim & =dim P =n,
and A" and £ are isomorphic relative to the action of the group K.

Let 7 be the matrix of the representation T of the Lie algebra &, /={/;,}
corresponds to the matrix of the representation T° of the algebra 4, acting in
the space 2. Let us introduce the matrix, which is important in the sequel,

L=A[-*+(y®p+p®7)] A, (4)

where pe 2@ 2 and ye is the constant vector in Z. We identify # and 2* by
means of the K-invariant scalar product on Z.
The system of S. Kowalevskaya type is defined by the Hamiltonian

H=jtrL=aL,(/)+BAm+(p). )

Here I,(/) and #,(n) are the quadratic functions on % and 4" respectively that
are invariant relative to the coadjoint representation of the group K and peZ.

3. Let us consider in detail the case: G=SO(n+1), K=S0(n), G=G-V=E(n
+1) is the motion group of the (n+ 1)-dimensional Euclidean space V=IR"*!,
VO=R" V'=R"' Let /;,=—7,;and p, (j,k=1,...,(n+1)) be the standard ba-
sis in the space of linear functions on ¢* and ¥"* respectively with the stan-
dard Poisson brackets.

The Hamiltonian (5) takes now the form

2H=2) {5+ ni+2 ) y;p; (©)
j<k =1 j=1

~

where n;=¢, ;.
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Theorem. The equations of motion (2) of the system with Hamiltonian (6) are
equivalent to the Lax equation

L=[L, M], (7
where L is given by the formula (4), and M=c/=cA7ZA, c is a constant.

The theorem is verified by a direct calculation.

From the Lax representation (7) it follows immediately that the eigenvalues
of the matrix L or the quantities I,, =k~ ' tr(I¥), k=1, ..., n are integrals of mo-
tion for Egs. (2). Notice I,=2H.

There are also (n—1) (n—2)/2 linear integrals related to the invariance of H
with respect to the group G,=S0(n—1) that leaves the vector y invariant, and
also ([n/2]+1) independent polynomials that are invariant with respect to the
coadjoint representation of the group G. Using the theory of reduction of hamil-
tonian systems with symmetries [2, 7] we may show, that the above system is
reduced to a system with a 2n-dimensional phase space. It can be verified that
integrals I,, I,,...,1,, are functionally independent and in involution. There-
fore, the systems under consideration are completely integrable.

Finally, we wish to note the following facts.

1. The system considered by S. Kowalevskaya corresponds to n=2.

2. Similar results are valid for other symmetric spaces. The simplest ones
are the cases of the spaces of rank one: SU(n+1)/SU(n) x U(1), Sp(n+1)/Sp(n)
x Sp(1) and F,/SO(9).

3. If pe2 in formula (5), then we deal with the generalization of the La-
grange case. In this case the constants o« and § may be arbitrary.

4. The results of this sections are valid also for similar systems, related to
group G =S0(n+2).

The detailed presentation of results will be published elsewhere.
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