## Lax Representation for the Systems of S. Kowalevskaya Type

## A.M. Perelomov

Institute of Theoretical and Experimental Physics, 117259 Moscow, USSR

**Abstract.** We describe a number of dynamical systems that are generalizations of the S. Kowalevskaya system and admit the Lax representation.

It is well known (see for example [1, 2]), that the equations of motion of a three-dimensional heavy rigid body rotated about a fixed point is a completely integrable dynamical system only in the cases of Euler [3], Lagrange [4], and S. Kowalevskaya [5]. In the present note we describe a number of systems that are of the Kowalevskaya type and admit the Lax representation 1.

1. Let  $\mathscr{G}$  be the Lie algebra of a group G,  $\mathscr{G}^*$  be the space dual to  $\mathscr{G}$ ,  $\{x_{\alpha}\}$  be the coordinates of a point in the space  $\mathscr{G}^*$ . In the space  $\mathscr{F}(\mathscr{G}^*)$  of smooth functions on  $\mathscr{G}^*$ , let us define the Poisson bracket <sup>2</sup>

$$\{f,g\} = C^{\gamma}_{\alpha\beta} x_{\gamma} \partial^{\alpha} f \partial^{\beta} g, \qquad \partial^{\alpha} = \partial/\partial x_{\alpha}. \tag{1}$$

Here  $C^{\gamma}_{\alpha\beta}$  are the structure constants of the Lie algebra. The space  $\mathscr{F}(\mathscr{G}^*)$  is endowed by the above formula with the structure of the Lie algebra. A dynamical system in  $\mathscr{G}^*$  is determined by a Hamiltonian function  $H(x) \in \mathscr{F}$ , so that the equations of motion have the form

$$\dot{x}_{\alpha} = \{H, x_{\alpha}\}. \tag{2}$$

The coadjoint representation of the group G acts on the space  $\mathscr{G}^*$ . Orbits of this representation are invariant with respect to an arbitrary Hamiltonian H, and are the phase spaces of the considered systems.

2. Let G be a compact simple Lie group, K be its subgroup such that the factor space G/K is a symmetric space [6]. Then  $\mathscr{G} = \mathscr{K} \oplus \mathscr{S}$ ,  $\mathscr{K}$  is the Lie al-

<sup>&</sup>lt;sup>1</sup> Note that the Lax representation for equations of motion of a rigid body was discovered first by S. Manakov [8] for some particular cases

<sup>&</sup>lt;sup>2</sup> In this note we use the tensor notations; in particular, everywhere repeated indices imply summation

240 A.M. Perelomov

gebra of the group K,  $\mathscr S$  is the orthogonal complement to  $\mathscr K$  in  $\mathscr G$  relative to the Killing-Cartan form.

It is well known that a certain irreducible representation  $T^0(k)$  of the group K acts on the space  $\mathscr{S}$ . Let us consider an irreducible representation T(g) of the group G, such that under the restriction of this representation on the subgroup K, the irreducible representation  $T^0(k)$  is contained in T(g) with the unit multiplicity. Let V be a vector space in which the representation T(g) acts. Then it is possible to define the group  $\tilde{G} = G \cdot V$  that is a semidirect product of the group G and the abelian vector group G. Let G be the orthogonal complement to G be the subspace of G which the representation G because G contains G are isomorphic, because G contains G only once. Therefore we have the decomposition

$$\tilde{\mathscr{G}} = \mathscr{K} \oplus \mathscr{S} \oplus \mathscr{V}^0 \oplus \mathscr{V}^1,$$

and the analogous decomposition for the space  $\tilde{\mathscr{G}}^*$ :

$$\tilde{\mathcal{G}}^* = \mathcal{L} \oplus \mathcal{N} \oplus \mathcal{P} \oplus \mathcal{Q}. \tag{3}$$

Here  $\mathcal{L} = \mathcal{K}^*$ ,  $\mathcal{N} = \mathcal{S}^*$ ,  $\mathcal{P} = \mathcal{V}^{(0)*}$ ,  $\mathcal{L} = \mathcal{V}^{(1)*}$ . In addition, dim  $\mathcal{N} = \dim \mathcal{P} = n$ , and  $\mathcal{N}$  and  $\mathcal{P}$  are isomorphic relative to the action of the group K.

Let  $\hat{\ell}$  be the matrix of the representation T of the Lie algebra  $\mathscr{G}$ ,  $\ell = \{\ell_{jk}\}$  corresponds to the matrix of the representation  $T^0$  of the algebra  $\mathscr{K}$ , acting in the space  $\mathscr{P}$ . Let us introduce the matrix, which is important in the sequel,

$$L = A \left[ -\hat{\ell}^2 + (\gamma \otimes p + p \otimes \gamma) \right] A, \tag{4}$$

where  $p \in \mathcal{P} \oplus \mathcal{Q}$  and  $\gamma \in \mathcal{P}$  is the constant vector in  $\mathcal{P}$ . We identify  $\mathcal{P}$  and  $\mathcal{P}^*$  by means of the K-invariant scalar product on  $\mathcal{P}$ .

The system of S. Kowalevskaya type is defined by the Hamiltonian

$$H = \frac{1}{2} \operatorname{tr} L = \alpha I_2(\ell) + \beta \mathcal{J}_2(n) + (\gamma p). \tag{5}$$

Here  $I_2(\ell)$  and  $\mathcal{J}_2(n)$  are the quadratic functions on  $\mathcal{L}$  and  $\mathcal{N}$  respectively that are invariant relative to the coadjoint representation of the group K and  $p \in \mathcal{P}$ .

3. Let us consider in detail the case: G = SO(n+1), K = SO(n),  $\tilde{G} = G \cdot V = E(n+1)$  is the motion group of the (n+1)-dimensional Euclidean space  $V = \mathbb{R}^{n+1}$ ,  $V^0 = \mathbb{R}^n$ ,  $V^1 = \mathbb{R}^1$ . Let  $\hat{\ell}_{jk} = -\hat{\ell}_{kj}$  and  $\hat{p}_m(j, k=1, ..., (n+1))$  be the standard basis in the space of linear functions on  $\mathscr{G}^*$  and  $\mathscr{V}^*$  respectively with the standard Poisson brackets.

The Hamiltonian (5) takes now the form

$$2H = 2\sum_{j \le k}^{n} \ell_{jk}^{2} + \sum_{j=1}^{n} n_{j}^{2} + 2\sum_{j=1}^{n} \gamma_{j} p_{j},$$
 (6)

where  $n_i = \hat{\ell}_{j,n+1}$ .

**Theorem.** The equations of motion (2) of the system with Hamiltonian (6) are equivalent to the Lax equation

$$\dot{L} = [L, M], \tag{7}$$

where L is given by the formula (4), and  $M = c\ell = cA \hat{\ell}A$ , c is a constant.

The theorem is verified by a direct calculation.

From the Lax representation (7) it follows immediately that the eigenvalues of the matrix L or the quantities  $I_{2k} = k^{-1} \operatorname{tr}(L^k)$ , k = 1, ..., n are integrals of motion for Eqs. (2). Notice  $I_2 = 2H$ .

There are also (n-1)(n-2)/2 linear integrals related to the invariance of H with respect to the group  $G_0 = SO(n-1)$  that leaves the vector  $\gamma$  invariant, and also ([n/2]+1) independent polynomials that are invariant with respect to the coadjoint representation of the group  $\tilde{G}$ . Using the theory of reduction of hamiltonian systems with symmetries [2, 7] we may show, that the above system is reduced to a system with a 2n-dimensional phase space. It can be verified that integrals  $I_2, I_4, \ldots, I_{2n}$  are functionally independent and in involution. Therefore, the systems under consideration are completely integrable.

Finally, we wish to note the following facts.

- 1. The system considered by S. Kowalevskaya corresponds to n=2.
- 2. Similar results are valid for other symmetric spaces. The simplest ones are the cases of the spaces of rank one:  $SU(n+1)/SU(n) \times U(1)$ ,  $Sp(n+1)/Sp(n) \times Sp(1)$  and  $F_4/SO(9)$ .
- 3. If  $p \in \mathcal{Q}$  in formula (5), then we deal with the generalization of the Lagrange case. In this case the constants  $\alpha$  and  $\beta$  may be arbitrary.
- 4. The results of this sections are valid also for similar systems, related to group  $\tilde{G} = SO(n+2)$ .

The detailed presentation of results will be published elsewhere.

Acknowledgement. I am grateful to V. Golo for the improvement of the language of this note.

## References

- 1. Motion of a rigid body around a fixed point. A collection of papers, dedicated to the memory of S. Kowalevskaya. Acad. of Sci. USSR, Moscow (1940) (in Russian)
- 2. Arnold, V.I.: Mathematical methods of classical mechanics. New York: Springer 1978
- Euler, L.: Decouverte d'un nouveau principe de Mecanique. Mem. de l'Acad. des Sciences de Berlin 1758
- 4. Lagrange, J.L.: Mecanique analytique. Paris 1788
- 5. Kowalevskaya, S.: Acta Math. 12, H. 2 177-232 (1889)
- 6. Helgason, S.: Differential geometry and symmetric spaces. New York: Acad. Press 1962
- 7. Marsden, J., Weinstein, A.: Rep. Math. Phys. 5, 121-130 (1974)
- 8. Manakov, S.: Funkt. Anal. Priloz. 10, 93-94 (1976)

Communicated by Ya.G. Sinai

Received January 30, 1981