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Lax Representation for the Systems

of S. Kowalevskaya Type
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Abstract. We describe a number of dynamical systems that are general-
izations of the S. Kowalevskaya system and admit the Lax representation.

It is well known (see for example [1, 2]), that the equations of motion of a
three-dimensional heavy rigid body rotated about a fixed point is a com-
pletely integrable dynamical system only in the cases of Euler [3], Lagrange
[4], and S. Kowalevskaya [5]. In the present note we describe a number
of systems that are of the Kowalevskaya type and admit the Lax representa-
tion1.

1. Let ^ be the Lie algebra of a group G, ̂ * be the space dual to ,̂ {xj
be the coordinates of a point in the space ^*. In the space 3F(<g*) of smooth
functions on ^*, let us define the Poisson bracket2

{/,g} = q,xy3«/3'g, d^d/dx,. (i)

Here Cy

aβ are the structure constants of the Lie algebra. The space ^(^} is
endowed by the above formula with the structure of the Lie algebra. A
dynamical system in ^* is determined by a Hamiltonian function H(X)E^, so
that the equations of motion have the form

*, = {H,xa}. (2)

The coadjoint representation of the group G acts on the space ^*. Orbits of
this representation are invariant with respect to an arbitrary Hamiltonian H,
and are the phase spaces of the considered systems.

2. Let G be a compact simple Lie group, K be its subgroup such that the
factor space G/K is a symmetric space [6]. Then ^ = ̂ ®^, tf is the Lie al-

1 Note that the Lax representation for equations of motion of a rigid body was discovered first
by S. Manakov [8] for some particular cases
2 In this note we use the tensor notations; in particular, everywhere repeated indices imply sum-
mation
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gebra of the group K, 5̂  is the orthogonal complement to JΓ in ^ relative to
the Killing-Cartan form.

It is well known that a certain irreducible representation T°(fe) of the group
K acts on the space 5̂  Let us consider an irreducible representation T(g) of the
group G, such that under the restriction of this representation on the subgroup
K, the irreducible representation T°(fe) is contained in T(g) with the unit mul-
tiplicity. Let V be a vector space in which the representation T(g) acts. Then it
is possible to define the group G = G V that is a semidirect product of the
group G and the abelian vector group V. Let us denote by F° the subspace of
V on which the representation T°(fc) acts, and by A the projection operator on
the subspace F°. Let V be the orthogonal complement to 7°: V=V°@V.
Note that the spaces F° and ̂  are isomorphic, because T(g) contains T°(k)
only once. Therefore we have the decomposition

and the analogous decomposition for the space ^*:

(3)

Here ^ = Jf*, Jf = y*, ̂  = ̂ (())*, J = -T(1)*. In addition, dim Jf = dim 9 = n,
and Ji and & are isomorphic relative to the action of the group K.

Let / be the matrix of the representation T of the Lie algebra ,̂ £ = { £ j k }
corresponds to the matrix of the representation T° of the algebra Jf , acting in
the space .̂ Let us introduce the matrix, which is important in the sequel,

L = A[-ί2+(γ®p + p®γ)']A9 (4)

where p£gP®Ά and ye^3 is the constant vector in 0>. We identify & and ^* by
means of the K-invariant scalar product on ̂ .

The system of S. Kowalevskaya type is defined by the Hamiltonian

H = ±tϊL = a I 2 ( έ ) + β/2(n) + (yp). (5)

Here I2(f) and /2(
n) are tne quadratic functions on 3? and Jf respectively that

are invariant relative to the coadjoint representation of the group K and pe^.

3. Let us consider in detail the case: G = SO(n + l), K = SO(n), G = G-V=E(n
+ 1) is the motion group of the (τt + l)-dimensional Euclidean space V— IR"+1,
V° = JRn, V1 = JBiί. Let / j k=-ίfk < /. and p m (/, fe = !,..-,(« + 1)) be the standard ba-
sis in the space of linear functions on ^* and i^* respectively with the stan-
dard Poisson brackets.

The Hamiltonian (5) takes now the form

where ri =
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Theorem. The equations of motion (2) of the system with Hamiltonian (6) are
equivalent to the Lax equation

L = [L,M], (7)

where L is given by the formula (4), and M = c^ = cA I A, c is a constant.

The theorem is verified by a direct calculation.
From the Lax representation (7) it follows immediately that the eigenvalues

of the matrix L or the quantities I2k = k~1 tr(ίί), fc = l, ...,n are integrals of mo-
tion for Eqs. (2). Notice I2 = 2H.

There are also (n — ί)(n — 2)/2 linear integrals related to the in variance of H
with respect to the group G0 = SO(n — ί) that leaves the vector y invariant, and
also ([n/2] + l) independent polynomials that are invariant with respect to the
coadjoint representation of the group G. Using the theory of reduction of hamil-
tonian systems with symmetries [2, 7] we may show, that the above system is
reduced to a system with a 2 ̂ -dimensional phase space. It can be verified that
integrals /2, / 4,...,/ 2 w are functionally independent and in involution. There-
fore, the systems under consideration are completely integrable.

Finally, we wish to note the following facts.

1. The system considered by S. Kowalevskaya corresponds to n = 2.
2. Similar results are valid for other symmetric spaces. The simplest ones

are the cases of the spaces of rank one: SU(n + ί)/SU(n)x (7(1), Sp(n + l)/Sp(n)
x Sp(ί) and FJSO(9).

3. If peJ in formula (5), then we deal with the generalization of the La-
grange case. In this case the constants α and β may be arbitrary.

4. The results of this sections are valid also for similar systems, related to
group G = SO(n + 2).

The detailed presentation of results will be published elsewhere.
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