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An Inequality for Hilbert-Schmidt Norm
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Abstract. For the absolute value |C|=(C*C)'? and the Hilbert-Schmidt
norm [|Cllys=(tr C*C)'? of an operator C, the following inequality is
proved for any bounded linear operators A and B on a Hilbert space

HAI=|Bl lus =2 | A — Bl gs.

The corresponding inequality for two normal states ¢ and y of a von
Neumann algebra M is also proved in the following form:

d(@, Y= E(@) =W =212 d(e, ).

Here £(y) denotes the unique vector representative of a state y in a natural
positive cone 2* for M, and d(¢, ) denotes the Bures distance defined as
the infimum (which is also the minimum) of the distance of vector repre-
sentatives of ¢ and y. In particular,

€@ ) —E@a)ll 22, =&l

for any vector representatives ¢ jofe;,j=1,2

1. Main Results

In a study of quasi-equivalence of quasifree states of canonical commutation
relations, we have encountered the following inequality, which seems to have
an independent interest and hence we present it here as an independent article.

Theorem 1. For any two bounded linear operators A and B on a Hilbert space H,
Al =B s <2' | A —Blls. (L.1)

Remark. The coefficient 2'/? is the best possible for a general 4 and B. If 4
and B are restricted to be selfadjoint, then the best coefficient is 1 instead of
212 (Lemma 5.2, [1].)
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The above theorem can be reformulated in the context of (non-commu-

tative) L,-space over a von Neumann algebra M. A vector ¢ in a repre-
sentation space H of M is called a vector representative of a state ¢ of M if

P(A4)=(4&,€)

holds for all AeM. [We have omitted the distinction between the repre-
sentative operator, say n(4), and A4 itself] In a standard representation space of
M obtained from a normal semifinite faithful weight ¢, of M by Gelfand-
Naimark-Segal-(GNS) construction, the closure of vectors 4'/*5(x) with xeM,
x=0, ¢y(x?)< oo, is called the natural positive cone and denoted by 2, where
n(x) is the GNS-representative vector of xeM. Any normal state ¢ of M has a
unique vector representative £(¢) belonging to 2% (For example, Theorem 6,

[2])

The infimum of the distance |{;—¢,|| for vector representatives ¢; of
normal states ¢; (j=1,2) of M (infimum taken over all possible representation
spaces of M as well as over all possible representative vectors in the space) is
called the Bures distance of ¢, and ¢, and denoted by d(¢4, ¢,).

Theorem 2. For any two normal states ¢, and ¢, of M,

A1, 9)=E(9)) =Ll ) =22 d(9y, @) (1.2)

2. Proof of Theorem 1 for Hilbert-Schmidt Class Operators

In this section, we prove (1.1) for A and B in the Hilbert-Schmidt class. This
result will be used afterwards for the proof of the general case.

For two operators R and S in the Hilbert-Schmidt class, we obtain the
following by Schwartz inequality:

2|tr (SR)| £ 2(tr SS*)1/2(tr R*R)'? <tr S*S +tr R*R.

By applying this twice, we obtain the following inequality for X and Y in the
Hilbert-Schmidt class and a bounded linear operator Q satisfying X >0, Y=0
and [Qfl =1
4trQX Y |=4[tr(Y2QX 2 (X2 Y1)
S2(tr XV2Q*YQX P4+ tr YVEX YY)
=2tr YQXQ*+2tr XY
<trQ*Y2Q+trQX?Q*+2tr XY
Str(X2+ Y2+ XY+ YX).
Let A=U|A| and B=V|B| be the polar decompositions of 4 and B. By
using the above inequality for X =|A4|, Y =|B| and Q = V* U, we obtain
2|A—Bllfs=2(tr (|A|*+|B|*)—2Retr|B| V*U|A|)
22tr(|A]* +|B|*) —tr (|4]* +|B|*+|A||B| +|B| | 4])
=tr(|A|—|B|)>=| 4|~ Bl s
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3. Proof of Theorem 2

This is almost exactly the same as the preceding proof. Let QeM and Q|| 1.
Let s(¢) denote the support projection of a state ¢ of M, j(x)=JxJ, J be the
modular conjugation associated with the positive natural cone 2% and 4,, be
the relative modular operator of two states ¢ and y defined by (for example)

Ay (xE(@)+ (1 —j(s(@M ) =Js(@) x* <), (3.1

where £(+) denotes the vector representative of a state in P4 x runs over M, ¥

runs over the space H, and 4/} is the closure of the operator defined by (3.1)

and is positiﬁelfadjoint with its square defining 4,,,,.
Since ME(p)=j(s(¢))H and J¥ =¥ for any ¥e2* we obtain
HQL(@), EWNI=41((s(@) Q& (o), JEW))]
=4{(Q&(9), Js(@) E(Y))|  (antiunitarity of J and J?=1)
4Q&(p), 4, E(@) (by (3.1))
44,5 0 (), 451 &)
<2(14,, Q&(@)I* + 14, E@)1)
=2{(4,; Q&(), Q&(@) +(4}; E(@). E(9))}
=2{JS(<0)Q*5(L// Q@)+ Us(@) W), E(@))}
Ss(@) Q* W >+ 10 (e )|12+2('( '( N EW), é(co))
<i|J6(<0)Q*|| IEWIZ+ Q1% 1€ @)% +2(E W), E(o)
SHEWIZ+ 1@ +HEW), E(e)) (é(co), W),
where we have used (E(o), E() =(E(), E(@)) (=0) in the last line.

If &, and &, are vector representatives of ¢, and ¢,, then there exist partial
unitaries u; in M’ such that &;=u;{(;) (j=1,2). We obtain from the above
inequality for Q =j(u¥ u,)*€M the following:

(€2, &) =WF u, E(2), E(@ ) =T <), JuT u, E(>))
=(&(9,), 0*<(9,)
[by J¢(@,)=E(p,) and J?=1]. Noting that [[£;|>=I¢(e,)*=¢,(1), we obtain
20€, =& =2(IE, 1P+ 11E,07 =2 Re (&5, €)))
22([1E(@DI* + 1E(@ )12 =21(E5, 1))
Z [ &(@1)—E(o)l%

4. Proof of a Weaker Version of Theorem 1

For an approximation argument, we need the following:

Proposition. If lim | K, |ys=0, then

n— 00
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lim [[[4+K,|—[A] [us=0

for any bounded linear operator A.

For this purpose, we shall prove a weaker version of Theorem 1 where the
coefficient 2'/? is replaced by a larger number. (It then proves the above
Proposition if we set B=A4A+K,,.)

Lemma 1. Let A be a bounded positive definite selfadjoint operator and K be in
the Hilbert Schmidt class, both acting on a separable Hilbert space H. Then there
exists a selfadjoint operator C in the Hilbert-Schmidt class such that

ACH+CA=K*A+ AK, 4.1

1€ —ReKllys= [Tm K|y, (4.2)
[Cllas =22 [ K s, (4.3)

1C? = K*Kl =(2+2"%) | Klus [Tm K | s, (4.4)

where 2Re K=K+ K*, 2ilmK =K — K*.
Proof. We first prove the case where A has a pure point spectrum. Let
A=Y ) E, with Ef=E,=E}, dim E;=1 (degeneracy of A’s allowed), E; L E; (i )
i=1
and /,;>0. Let ¥eE,H and | ¥j||=1. Let K;;=(K ¥, ¥) and
Cijz(/li+)“j)_1()"iKij+}‘jKji)

=(Re K);;+i(2,+2) (4, —4)(Im K) (4.5)

ijs
where K,; is the complex conjugate of K, (ReK),;=(1/2)(K;;+K;) and
(Im K),;;=(1/2i)(K;;— K ;). We then obtain C,;=C;; and

ZlCij—(ReK)ij|2:Z|(}”i+)"j)_l(/1i_)~j)(lmK)ij[2
ij ij
= ZI(Im K)ijlz'
ij
Hence, there exists a selfadjoint operator C in the Hilbert-Schmidt class such
that C,;=(C¥,, ¥) and (4.2) is satisfied. (Because A is assumed to be positive
definite, XE;=1.) Then we obtain (4.3) by the following computation

[Cllus= 1€ —Re K[us+ [Re Kljys
<2'2(|Im K|fs+ IRe K| §)'*
=212 K ys.
From (4.5), (4.1) is checked for ¥ =% and =%, and hence for all ¢ and ¥.
To prove (4.4), we use the following inequality:
IC? =K*K|,=(1/2) [(C = K*)(C + K)+(C+K*)(C—K)|,
SNC—Kus €+ Kllgs. (4.6)
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In addition, we have

IC~Kls=1IC~Re K| s+ IIm K| §s <2 | Im K| s,

ICH+K s < Clis+ 1K [lus = (14+21%) [ K | s (4.7)
Therefore we obtain (4.4). [Actually, (2+2%/?) in (4.4) can be easily improved to
(145%)]

We now consider the general case. By a result of von Neumann [3], there
exist for any ¢>0 a selfadjoint operator L, in the Hilbert-Schmidt class and a
selfadjoint operator B, with a pure point spectrum such that 4=B,+ L,—2¢
and |L,|lgg<e. For this B, and K, let C, be the operator C constructed above.
Then [|C,[us<2"?|K|ys and B,=¢. Hence there exists a weak accumulation
point C of C, as ¢—0 in the Hilbert space of the Hilbert-Schmidt operators
(with the inner product (C,, C,>=tr C} C,). Due to the reality of tr DC for all
D=D*, C is selfadjoint. Since

(B,9,KY¥Y)+(K®,B,¥)=(C,®,B,¥)+(B.®, C, V)
holds for all @ and ¥ and since B,® and B, ¥ tend strongly to A4® and AY,
respectively, we obtain the same relation for 4, K and C, which shows (4.1).
From (4.2), (4.3) and the estimate (4.4) for C,, the same inequalities hold for the
weak accumulation point C and hence (4.2), (4.3) and (4.4) holds for this C.

Remark. Suppose that ker 4 =0. From (4.1), it follows that
C=ReK+if(A+4) 1A=V dE()(Im K)dE(Y), (4.8)

where A={AdE(A). Since C is uniquely determined, C, actually converges to C
in this case.
Other inequalities we need are the following: For A*=4 and B* =B,

Al =[Bl us = | A — Bl us. (4.9)
This is given in Lemma 5.2, [1]. For positive selfadjoint 4 and B,
|A—B|fs=1A4>—B*|,. (4.10)

This is given in Lemma 4.1, [4].

We now prove a weaker version of Theorem 1. First consider the case
where A4 is positive. Let K=B—A. If Kis not in the Hilbert-Schmidt class, the
inequality holds for the trivial reason that the right hand side is +co. If Kis in
the Hilbert-Schmidt class, then use C given in Lemma 1. We obtain

IBl=((A+K)*(A+K))"*={(4+ C)*+(K*K — C*)}'~.
Hence by (4.9) and (4.10) we obtain

1Bl =Allus= [l 1Bl = A+ Cl lus + [ [A+ C| = Alls
SIK*K = C?I2 + 11 Cllys
SPIK|as=PBlIB— Al s, (4.11)

where f may be taken to be 2'/2 4+ (2421/2)1/2,
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Now we consider the general case. Let F be the projection operator on
(Range A)*. We assume that B— A=K is in the Hilbert-Schmidt class. Then
F(B—A)=FB is in the Hilbert-Schmidt class with |FB||ys=I/B—A4llys-

Let A=U|A| be the polar decomposition of A. We have UU*=1—F Then

Bl = 1Al us =< 1Bl =I(1—=F) Bl llus + [ lU*B| = 4] llss
SIFBllus+ I U*(B—UlADlus
S(B+ DB —Allys,

where we have used (4.10), |B|> —|(1 —F) B|*>=|FB|* and (4.11).

5. Proof of Theorem 1

Lemma 2. If K is a Hilbert-Schmidt class operator and a sequence of bounded
linear operators Q,, tends to Q strongly, then

lim [(Q,— Q) Klus=0,  lim [K(Q} —Q*)lus=0.

Proof. Since the sequence Q, has a strong limit, sup ||Q,[ =q is finite. For any
¢>0, there exists a finite rank operator K, such that |K —K,|lgs<e¢. Since the
range of K, has a finite dimension, there exists N, such that for n> N,

1(Q,— Q)| Range K | <e.

Then for n> N,, we obtain

1Q,— Q) Kllus= 1@, — Q) (K = Kl us + 1(Q, — Q) K, [l s
<10,— 0l IK—K, s+ 1(Q, — Q)| Range K[| | K[| us
S(g+ QI+ 1Kl +e)e.
This proves the first relation in Lemma 2. The second follows from the first
by [K(Qy —0")lus=1(Q,— Q) K*| ys-
Proof of Theorem 1. We first consider the case where A>0 and 4 has a pure
point spectfum and hence 4= OZO: 2,E; with E,LE; (i+j) and dimE,=1. Let B

i=1 n

=A+K with |K|ys<oo. Let F,=) E, By the special case of Theorem 1
i=1

proved in Sect. 2, we obtain

A +EKE|—Allus= Il |F,A+FKE| = F Al
<2'?||E,KE, ys.

Since F,KF,—K =(F,K —K)+F,(KF,—K) and lim F,= 1, we have
lim || E,KF, — K [l =0
by Lemma 2. By Proposition, we have

lim || [A+ E,KE| ~|A+K] [4s=0.
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Hence by the same proposition,

|14+ K|~ Allys 272 sup | F,KE, s =2"" | K s (5.1)

Next, we consider the case where 4>0 but A may have an arbitrary
(bounded) spectrum. By the von Neumann approximation theorem and Pro-
position, (5.1) for this case follows from (5.1) for a positive 4 with a pure point
spectrum.

Note that if A=0, A=B,+K,, Bf=B, and F is the spectral projection of
B, for (—o00,0), then 0L —B,F=FK,F—FAF <FK.,FE —B.F
=(KEF)"*Q(KF,K)"? for |Q||£1, |B,F|us<|K,|us and hence we may as-
sume B, >0 by including FB,F in K,.

If Range A=H, then the method of proof at the end of the preceding
section works with F=0 and (1.1), for such a case follows from (1.1) for the
case of a positive A just proved.

Finally we consider a general case. Let u be an isometry with [—uu*
having an infinite dimension. Since |Bu*|*=u|B|?u* and |Au*|*=u|A|*u*, we
have

I [Bu*| —|Au*| | ys= llu(| Bl — |A]) u* | gs= | IB] = |A] | s (52)
where we have used u*u=1. In the same way
| Bu* — Au*||gs= 1B — Al gs- (5.3)

Let v be a partial isometry such that v*v<1—uu* and Rangev
=(Range Au*)*. Let L, be an operator such that L,=L¥, RangeL,=Rangev
and |L,|gs<e for ¢>0. Let 4,=Au*+L,v. Then Range A,=H, and hence we
may use (1.1) for the pair Bu* and A, (instead of B and A4) to obtain

11Bu =14, 14 2" [ Bu* — A, s- (5.4)
As e—0, we obtain |4, — Au*|4—0. By Proposition, (5.4) implies
HBu*| = Au*| | ys =2'? | Bu* — Au*||ys.

By (5.2) and (5.3), we obtain (1.1) for the general case.

Acknowledgement. The authors would like to thank Professor T. Ando for critical reading of the
manuscript.

Note added in proof. A. Kishimoto kindly pointed out the following simplification of the proof in
Sects. 4 and 5: It is easy to prove that if T,— T strongly, then ||T|s Slim || T,llys.. If B=B,+L
with | L]l s <oo and a pure point spectrum for B, and K =4 —B is in the H.S. class, then

1B, +E,(L+K)E,| = |B, + E,LE,| s <2 K lis

and the strong limit of the operator difference is |4]|—|B|. Hence the desired conclusion follows.
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