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Abstract. A compact convergent integral representation for dimensionally
renormalized Feynman amplitudes is explicitly constructed. The subtracted
integrand is expressed as a distribution in the Schwinger α-parametric space,
and is obtained by applying upon the bare integrand a new subtraction
operator Rf which respects Zimmermann's forest structure.

1. Introduction

Dimensional renormalization [1-9], first introduced by Speer and Westwater [1]
and applied in the study of gauge theories by tΉooft and Veltman [3], has proved
to be an essential tool in quantum field theory. Indeed, it preserves gauge
invariance, Lorentz invariance and avoids the infrared problem which appears
when subtractions are performed at zeromomenta. Another advantage of this
renormalization is that the Callan-Symanzik [10] function β(g) is then inde-
pendent of the dimension of space time (apart from a trivial (D — A)g factor) and is
also independent of the mass ratios which enter the theory.

In recent years, dimensional regularization and dimensional renormalization
were established on firm ground as were other kinds of renormalization, and we
refer to the literature [7,9,11]. According to Bogoliubov-Parasiuk-Hepp (BPH)
recurrence, the usual method to calculate such an amplitude is first to renormalize
the smaller divergent subgraphs by extracting their poles at D = 4, then to
introduce their finite parts into larger subgraphs and reproduce the same
procedure in a recurrent way. This method becomes very difficult at high orders of
perturbation, dealing with overlapping divergences, spinor, coupling derivatives
and gluon propagators.

On the other hand, the existence of a compact expression which, for a given
Feynman graph, gives directly the dimensionally renormalized integrand is still
missing. Some authors in the study of the properties of dimensional renormaliz-
ation come close to achieving this goal (for instance, the CH operators of
Breitenlohner and Maison [7] or the £P0*λ operators of Collins [6], organized in
forests of divergent subgraphs). But the successive applications of these operators,
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Fig. 1. The one loop graph attached to (1.1) and (1.2)

which include the implicit extraction of a pole singularity attached to a given
subgraph, without giving an explicit algorithm to isolate this pole, remain to be
made precise.

In this paper we solve this question and we construct explicitly a subtraction
operator R\ acting directly upon the bare integrand of any Feynman graph
expressed in the α-Schwinger-Symanzik representation; this operator gives the
dimensionally renormalized integral as a compact, convergent integral in the α-
parametric space. The action of Rf transforms the bare integrand into a
distribution expressible in terms of 0, δ distributions and their derivatives. Such
distributions are shown to exist and to be integrable over the α-parametric
domain.

This paper is organized as follows: In the end of this introduction we describe,
using the example of a one loop graph, the principle of the method which shall be
used to obtain the dimensionally renormalized amplitude. Then, we recally the
integral representation of a dimensionally regularized integrand [12]. In Sect. 2,
we define the subtraction operator R'; we give two examples and we comment on
our result. Section 3 is devoted to the proofs and is divided into three parts: first,
we show that Rf defines a renormalization which satisfies the recurrence of
Bogoliubov-Parasiuk [13] and we describe the corresponding counterterms then
we show by recurrence that R" corresponds, subgraph by subgraph, to the
extraction of the pole singularities at D = 4 and we prove the absolute convergence
of the finite parts (via the introduction of a regulator in order to avoid
distributions) finally, we remove the regulator and we prove the existence and the
integrability of the distributions which describe the dimensionally renormalized
integrand.

We now describe the principle of the method which shall be used to obtain the
dimensionally renormalized amplitude by considering the simple example of the
one-loop graph of Fig. 1 which diverges logarithmically at D = 4. For Re D <4, the
amplitude of the graph is given by the integral representation

IG(S,m,D) = f daidu2

 e X p ( ~ ( c ί l + « >
o (αx + α 2 )

For 4 < R e D < 6 , it has been shown in [12] that

/ G (S,m,D)= J dGcxda2 . (1.2)
o ^α1 H-α2;

The function IG(S,m,D) behaves like Γ\2 — —) ar large imaginary D and con-
D\

sequently a contour integral around the single pole D = 4 can be seen as the
integrals over two lines C+ and C_ as shown in Fig. 2.
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Fig. 2. Integration contour around the pole of the graph of Fig. 1

C+

The residue of the pole is found to be

00

r= - j da1da2δ[-^Ln(α1+α2)],
o

and defining the dimensionally renormalized amplitude of G as

D - 4 '

which is equivalent to

(1.3)

(1.4a)

(1.4b)

where the contour in the D' complex plane encircles the two points £>' =
D' — D, we obtain

and

where θ(x) is + 1 for x>0 and 0 for x<0.
The above integral, for Re D < 6, is absolutely convergent at aί + α2 ~0 because

of the subtraction, and at ocι or/and ot2 ~ co because of the absence of subtraction
moreover, as wanted, the variables m2 and S are treated equally in the subtraction
procedure. Another property of the above subtraction is that the zero mass limit of
I%(S, m, D) exists for 2 < Re D < 6.

The purpose of this paper is to generalize the above example to any graph G
and thus to obtain in compact form a convergent integral representation for IQ.
Several difficulties are encountered :

The above procedure of subtracting away the negative powers of (D — 4) in the
Laurent expansion destroys unitarity as soon as multiple poles occur because it
cannot be implemented by a counterterm formalism. It is necessary to suppress
these negative powers by using a forest (set of non-overlapping subgraphs)
subtraction formula with the condition that for each subgraph we subtract the
corresponding pole at D = 4 and nothing else.
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If we consider a graph with coupling derivatives or/and spinors, the de-
pendence in D of the α-integrand contains a polynomial in D. Each power of D is
obtained from a contraction gμ

μ generated by a pair of coupling derivatives or/and
spinors. Now, when we calculate the residue at D = 4 associated to a subgraph Sf,
one power of D should be included (excluded) in the calculation if the pair of
coupling derivatives or/and spinors belongs (does not belong) to £f. In other
words, when we proceed to the calculation of residues for a set of subgraphs
^ v ...,£fn, how are we going to decide how many powers of D are generated by
each of the 5^'s? This problem already exists for scalar amplitudes because the
subtractions over divergent subgraphs generate coupling derivatives for the
corresponding reduced subgraphs. A convenient solution to these difficulties has
been proposed by Ashmore [8] who introduced a multidimensional formalism.
This formalism attaches a separate dimension to each subgraph and is exposed in
Appendix A.

The multidimensionally regularized Euclidian Feynman amplitude is given by
the integral representation

oo e

IG{pi,m,D,ω^)= J f] ώ / ^ m , ^ ] ) , ^ ) , (1.6)
0 a= 1

where

ί / \
- f ] aam

2

a SG(p f, α, D,
/

\\ P y ( α Γ ^ 4 . (1.7)
JThe functions PG(α), P^(α) and pd~1(oί)p are characteristic functions of the

topology of the graph and of its subgraphs. The function SG(pi9 α, D, co^) describes
the spin and coupling derivatives part of the amplitude. In (1.7) the dimension D is
the dimension of space-time and the variables <Ά? are introduced according to
Ashmore's formalism (Appendix A) to be the dimensions attached to every
subgraph £f.

The integral (1.6) is absolutely convergent for {ReD, Reα^} sufficiently small
and defines by analytic continuation a meromorphic function of the variables D
and cxfy. As a generalization of the result obtained in [12], the analytic con-
tinuation of IG(pt, m, D, ωy) is given almost everywhere (that is away from those
hyperplanes in D and ω^ where /G(pf5 m,D,ω^) is singular) by the following
absolutely convergent integral representation:

oo €

/G(p ί ? m, D, ωy) = j [ ] dαflKYG(p , m, α, D, α^) . (1.8)
0 a= 1

The subtraction operator R is defined in [14] as

κ= Π ( i-v 2 ^)=f i + Σ Π (-v 2 W)l, (i 9)
[ J

where the generalized Taylor operators τ^2^] are defined in [14] and where the
sum over J^ runs over all forests of "divergent" subgraphs.
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2. The Subtraction Operator R'

We consider a graph G and its Feynman amplitude IG(p, m, D) as defined in (1.6-8)
with all cα '̂s = 0. Let us consider three consecutive poles of IG:D~ < D * < D + (if D*
is the smallest pole of IG, D~ = — oo). From now on, we denote by B~ and JB +

respectively the strips D~ < R e D < D * and D * < R e D < D + . We intend to define
the dimensionally renormalized amplitude at D*.

We note that the operator τ^2^ introduced in (1.9) subtracts differently
whether we stand in the strips B~ or B +. Let us call τ^ (respectively τ£) the
generalized Taylor operator relative to Sf and subtracting minimally (of degree
— 2£(Sf\ where /(5^) is the number of internal lines in the subgraph £f) in the strip
B~ (respectively B + ). If ^ develops no pole at D*, τ^ =τ£.

According to the requirements imposed by dimensional renormalization,
namely - subtraction of the Feynman amplitude in agreement with a counterterm
structure - extraction and subtraction of the singular part of the Laurent
expansion around D* for each divergent subgraph once its interior has been
subtracted - we found in the strip D ~ < R e D < D + which contains D* the
following convergent integral representation for the renormalized amplitude:

00 £

I%(pitm,D)=\ Π daaRΎG(Pi,m,a,D,(A?). (2.1)
0 a= 1

The operator Rf in (2.1) acts upon the function YG(pi9m,(x,,D,oj^) in the following
way:

First, it subtracts the amplitude according to a forest formula of divergent
subgraphs

i+ΣΠK). (2-2)

where τ^ are new subtraction operators defined as

(Dy) = Xy F(OL, (ύy) + (τ/ — τ^ )F(α, ω^)θ(^). (2.3)

The function θ(x^) is the Heaviside function and is introduced in order to perform
the Cauchy integration around D*. In this subtraction procedure the ωy are
considered as small positive parameters which do not change the number of
subtractions of τ + and τ~.

Second, it replaces the variables ω^ by the operators - — acting upon the 0's at

The latter operation performs for every a& the complex integration
j ^ σ too

2π Jiaΰ
σ> ω

and generalizes to every subgraph the Cauchy extraction of the pole at D*
performed in the example of Sect. 1.

Once the operator (2.2) is applied on YG, the dependence of the integrand in
any ω^ appears in terms of the form:

^ / 2 , (2.5)
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Fig. 3. The two loops quadratic diagram of Example 1

where N is a polynomial of ω^ and Q some polynomial of the α's. So the second
part above transforms (2.5) into either

χ,=o> (2-6)

which generates for every subgraph θ, δ, δ\ ... distributions in the α-space, or

d
ΛH α,

\
= ΛΓ(α, 0) (2.7)

if there is no θ function.
To sum up the action of the operator R', we shall write

(2.ί

where A means the operation ω^-*-—\x = 0 once all operators τj, have been

applied.
We now illustrate the rules given above by two examples:

Example ί. We consider the two loop quadratic diagram of Fig. 3 at D* = 4.

exp — (α, + α 2 + α3)m2 — p2 ι 2 3

α x α 2 + α 2 α 3 + α 3 α 1 /
r-coG)/2/α _j_α \ω1 2/2/α _^ α ) ω 2 3 / 2 ( α + α ) ω 3 l / 2 '

(2.9)

The divergent subgraphs at {" '\ are: {123} quadratically divergent; {12},
[ofy, = OJ

{23}, {31} logarithmically divergent

D* =

1 - ( α 1 + α 2 + α 3 ) r n 2 + p "
α 1 α 2 + α 2 α 3 + α 3 α ]

2 α 3 + α 3 α 1 ) 'P/2

+ circ. perm.

D/2(r, . ^ ΛD/2αf 2 (α 2 +α 3

+ circ. perm. (2.10)
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Fig. 4. The two loops diagram of Example 2

The above result differs from the usual R operation [14] (subtraction at zero
external momentum) first by the presence of θ distribution, second by the fact that
the mass m2 terms are subtracted, the consequence of which is that the subgraphs
{12}, {23} and {31} give non-zero subtraction terms although they are not
generalized vertices.

Example 2 (Fig. 4). This example illustrates the difficulties incoming from
coupling derivatives. We concentrate on the forest of the two logarithmically
divergent subgraphs at D* = 2, G = {1,2,3,4} and S? = {3,4}.

where
2

™2 _wt2
 Δa

a -2 a = 1,2,3,4 (2.12a)
4αf

(2.12b)

( 2 1 2 d )

1 2 3 4 3 4 . (2.12e)

In (2.12), the momentum ^elR^, the vectors zx and Z 2 G I R D 0 I R C O G , and z3 and

The derivatives —y and ^-^ generate the following polynomial of ω:

4 F 2(α) + 2 P 2 ( α ) + 2P(α)

2P(α) P(α) ' { '
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with

^ μ _ - P Ϊ « 2 ( α 3 + α 4 ) + PS«3«4> ( 2 1 4 a )

,a2a4

P(oc)

(2.14c)

(2.14d)

Then,

- j i ( % + « / 1 2 '(«3+«4p 2 j (2.15)

and finally

/D+2\

(2.16)

where the derivatives θ^ means 0(M)[ —iLn^o^+α 2 )(α 3 -fα 4 )}] and θ^] means

0<">[-iLn(a3+a4)].
To close this section, let us comment on our result. The dimensionally

renormalized integrand is a distribution which is a sum of products of derivatives
of the θ distribution. This fact raises a problem of existence of these products it is
shown in Sect. 3 and Appendix C that the manifolds in a which are the support of
the <5(n) distributions (n = 0,1, 2,...) are neither tangent between themselves, nor
tangent to the edges of the integration domain in α. To prove the integrability of
these distributions, in Sect. 3 we introduce a regulator a > 0 and we define the
functions θ^ which tend toward θ{n) when α-»0. Then, we prove the absolute
convergence of the integrals at a > 0 and finally we introduce test functions to
show that this limit is the result of integrating the integrand at a = 0 in the sense of
distribution.

In the strip D~ < Re D <D*, the integral representation (1.8) for the regularized
function IG(p, m, D) develops singularities at D = D*, because of divergences when
some oζ->O. On the other hand, in the strip D * < R e D < D + , the subtraction
operator R in (1.8) in such that no divergences appear at D* when some oζ->O, but
the divergences appear when some oζ->oo because the R operator also subtracts
the mass term. The R' operator in (2.8) generates for each forest a product of θ
distributions (amongst other distributions) which organize themselves in such a
way that subtractions are present when oζ->O and absent when oζ-> oo, so that the
amplitude remains finite at D = D*.

When derivative couplings or spinors are present or when we have nested
quadratic divergences, we generate in SG(pi9 a, D, ω) a polynomial in D of the type
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this formulation tells what subgraphs are responsible for what power of D. The
terms in Dq (without ω's) generate only θ distributions. As mentioned above, these
products of distributions are sufficient to make the α-integrals convergent at
D = D* in a way which is implementable by counterterms in a Lagrangian; this
finite part would violate field equations and Ward identities and another finite
renormalization has to be performed to restore them. The corresponding finite
counterterms are responsible for the δ{n) distributions.

It is known that dimensional renormalization depends on a mass scale this
dependence is implicit in our renormalization operator R\ since in the Schwinger
representation, the oζ have the dimension of the inverse of the square of a mass,
and the subtractions are performed by functions 0(n)[ — -jLnQ^(α)].

In the massless case, the R' dimensionally renormalized amplitude exists at D*
provided that the dimensionally regularized amplitude exists in a neίghtborhood
of D*. This is known to be the case for strictly renormalizable field theories at D*,
at non-exceptional momentum and when all masses are nul [7,15].

3. Construction of the Subtraction Operator Rr and Convergence of the
Renormalized Integral lζ'(D)

This section is devoted to the proofs of the assertions of Sect. 2. As explained in
Sect. 2, to separate the problems of convergence and those of the distributions in
the integrand, we regularize the θ{n) distributions by introducing C00 functions θ{"]

given by (3.26). Then we define the regularized operator Rf

a in a similar way to Rr

by a forest formula

where the generalized Taylor operator τ'ay is defined from τ'y by regularizing the
θ{n) distribution. Obviously, when α = 0, we recover the R' operator. The Taylor
operator τ'a may be written

<,, = V + ^ = V+ + V (3-2)
This section is then divided into three parts. In parts A and B we study the

operator R'a for αφO. In part A we prove that the operator R'a, acting upon a
regularized integrand, divides it into a sum of terms which, after integration, will
determine the counterterms, according to BPH recurrence. In part B we prove the
absolute convergence of the renormalized integrals

GO

I*°(p,m,D)=\ l\docR'aYG(p, m, α, D, ώ) (3.3)
o

in a neighbourhood of D*, for any α>0. Simultaneously, we prove that the
corresponding counterterms are given by the extraction of the poles of IG at D* via
the modified Cauchy integral (3.18). Finally in part C we study the limit a->0. First
we prove that the integral /*" tends toward a limit, which is the dimensionally
renormalized integral. Then, as explained in Sect. 2, the subtracted integrand
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R' YG = lim R'aYG appears as a sum of products of distributions in α space. We give
a-+0 +

a sense to this object as a distribution. Simultaneously we prove that the "integral
of this distribution" iζ is perfectly meaningful and corresponds to the dimen-
sionally renormalized integral.

A. The Counterterm Structure of the Operator R'a. In this section we use the
notations of Sect. 2. The counterterm structure will be proved if in each strip B~
and B + , R'a acts upon the regularized integrand YG(p, m, α, D, ω) and gives the
following characteristic decomposition

R'aYG(p,m,(x,D,ω)= £ ^Cf^D^Y^^rn^D), (3.4)
[ J

where the sum runs over all (eventually empty) families {&*, χ} of connected, one
particle irreducible, disjoint subgraphs 9 which have a pole at D* and over the
families χ of ωD*(^) derivatives relative to momenta on external legs of 9* and to
internal masses of 9 {(ODJJ/') is the superficial degree of divergence of £f at D*).
Here R ± Y^/u^ are the dimensionally regularized integrands of the reduced graph
[G/Ur

e5^]χ, and are defined respectively in the strips B+ and B~. C^faD) are
functions of the oc's relative to y , and are defined respectively in the strip B+ or B~.

We prove this result in the strip B~.

Theorem 1.

,m,α,D), (3.5)

where the R'a~] operator is given by a sum over all forests in 9 which do not contain
the graph 9 itself,

Proof. To prove this result, let us look at the difference between the two operators
R'a and R~. In the proof, we shall forget the dependence on α, since we only look at
algebraic rules. We have

« ' - « - = Σ fΠ (-•£)- Π (-v)l (3.7)
J5-Φ0 ψe& &>£& \Δ

For any given forest #", we have the following identity

Π(-^)-Π(-v)=Σ Π (-v) Πf(v-^) Π(-^)9 (3 8)

where the sum runs over all non-empty families {^J of disjoint elements of J^
(each y . giving a pole at D*). 9>{9i} means that the graph 9 of 3F is either
disjoint or contains some y..

Let us now apply the operator (3.8) on the integrand YG(D,ω). (For simplicity
of notation, we omit the dependence in p and m.) In (3.8) we may take the
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dimensions (%> equal to zero before applying the Taylor operators, if 9* does not
belong to the involved forest 3F. Since (τ^. — τ .̂) is equal to (— Uy.), we first apply
the result of Appendix B, giving the action of the operator ( ^ — Vx)

 o n 7G(D,ω).
We have from (B.10)

+ Σ Σ αj,, ω), (3.9)

where the sum runs over all families of derivatives as in (3.4).
Noting by [ ] the operator (3.8), we obtain

,ω)= Σ Π (-V)
{^i,Xί}^>{^}

Π (-*w Π (-£)ljπ ¥:• w^,, z j (3 10)
As in [12,16], any Yfi* is a homogeneous function of α of such degree that it may
pass through the τ^ operator by simply modifying its degree. We obtain

[]7G(Aω)= Σ Π K-

Π (--

Then, to obtain the action of R'— R~ on YG, we have to sum (3.11) over all non-

empty forests 3F and to perform the operation <%->^—\x =0 Reorganizing this

sum as a sum over all non-empty families of disjoint divergent subgraphs and of
corresponding derivatives {^,χ}, it is easy to obtain the identity (3.5). This ends
the proof of Theorem 1.

We have a similar result in the strip B+, whose proof can be performed exactly
in the same way and where in (3.5-6), we change R'}~\ R~~ and Ua^ respectively
into R'(+\ R+ and Vay The operators R'^ + ) and jR^(~) differ from R'a only by the last
operator Ua and Va relative to the entire graph these operators do not subtract,
but on the contrary retain the divergent part at D* due to the graph £f.

We thus have proved the identity (3.4). The functions Q±(α,D), which are
expected to give an integral representation of the counterterms in the strips B +

and B~ respectively, are given by

Cf{a,D) = R^^{a,D,ω) (3.12)

Before going to part (£?), we prove the following result, which will be useful in part
(B).

Theorem 2. Let G be a divergent graph at D*. If we consider the right hand side of
(3.4), where the sum is restricted to the families {^,χ} (eventually empty) such that
the subgraphs £f are strictly contained in G, we have the following identity in both
strips B+ and B~ :

+ Σ

= Σ fπ ̂ fmΦ'w^) ( 3 1 3 )
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In the left hand side we sum over all non-empty forests 3F which do not contain the
graph G.

The proof is similar to the proof of Theorem 1. We apply the technique of

Eq.(3.7) to 1+ £ Π (-τ'aΛ s o t h a t t h e subgraphs ^ in (3.8) are all different

from G. Multiplying by (1 — τG) we obtain (3.13).

B. Extraction of Poles and Convergence of Subtracted Integrals, We now consider
the problems of convergence. We want to prove that the subtracted integrand
R'aYG(a,D, ω) is absolutely integrable for D~ <RQD<D+ and corresponds to the
extraction of the poles at D* via BPH recurrence. Let us recall that, if the
corresponding counterterms C\( (D) are known for any divergent subgraph ^ in G,
the counterterm of the graph G itself is given by extracting the singular part at D*
of the function AaG, which is defined by

P ^ f l ) , (3.14)

where the sum runs over all non-empty families of divergent subgraphs ίf of G
different from G, as in Theorem 2.

We shall prove that the counterterms C*f (D) are meromorphic functions of D,
whith a pole at D*, and are given in the strips B+ and B~ respectively by the
following convergent integrals:

C*(D)=]γidaa{R*->Tp{<x,D)} if DeB~ (3.15a)
o

= ]l\daa{R'^X}{a,D)} if DeB+. (3.15b)
0

This result will allow us to integrate over the α's the identity (3.4) of Theorem 1 in
the strips B~ and B + . We shall then obtain the counterterm expression of the
subtracted integral

^D), (3.16.a)

where the sum (^,χ) contains Sf = G, so that from (3.14)

I%ip9 m, D) = AaG(p, m, D) + £ CJG(i))/[G/G]χ(p, m). (3.16b)
x

In (3.16b), we see explicitly how the pole at D*, corresponding to the entire graph
G, cancels.

Let us now set the following theorem:

Theorem 3. For any α>0, the integral

If{p, m, D) = J Π daR'a • YG(p, m, a, D, ω) (3.17)
0

is absolutely convergent for any D such that D~ <RQD<D + .



Dimensionally Renormalized Feynman Amplitudes 13

The corresponding counterterms have poles at D* and are given in the strips
B~ and B+ by the convergent integral representations (3.15a and b). Moreover,
this subtraction operator corresponds to the extraction of the singular part of Λac

at D* (defined by 3.16) via the Cauchy integral

where c is a complex contour containing the poles of AaJz — D at z = D and at
z = D* (see Fig. 5).

Proof. As explained before, the function eφ~D)1 in (3.18) is introduced to control
the convergence of the integral when |Imz|-> + oo. To treat in a correct way the
question of absolute convergence, we have to use the Lx norm on α integrals. Let
us note

ΎG(D)\ if DeB~, (3.19a)

= JY\da\R+YG(D)\ if DeB+. (3.19b)

Since in B+ and B~ the number of subtractions is different, ||/G | | t is analytic in B +

and B~, but not defined on the line ReD = D*.
Similarly, we define \\Cχ

a^{D)\\1 and ||/g-(p,m, D)\\x in £ + and £~ from the
integral representations (3.15) and (3.17) (up to now, they are not proved to be
finite). We now perform the BPH recursion on the number of loops L(G) of a graph
G to prove the theorem. The recursion hypothesis will be the following:

a) for any graph £f such as L(^)<L(G), Theorem 3 is satisfied.
b) Moreover, for any Sf divergent at D* such as L(<9*)<L(G), the function

IIQ^C^IIi (which is finite in B+ and B~ from hypothesis a) is polynomially
bounded in B+ and B~ as |ϊmD|-> + oo for ReD fixed (of course for any a>0).

If L(G) = 0, the hypothesis is trivially satisfied, since R'a = l. Let us prove the
recursion hypothesis in the next order. According to a), the function AaG(p, m, D)
defined by (3.14) is given by the convergent integral representation in B+ and B~
respectively

AaG{D)= ]l\daa X YlR'a
i±)¥x(D,ω)]R±Y[G/uy](D). (3.20)

Using Theorem 2, this integral representation may be written:

+- Σ Π ( - O UD,ω). (3.21)

We now perform the Cauchy integral (3.18) in order to remove from Aac its
singular part at D*. We have to take for C a contour around the two poles at D
and D*; this is always possible since D~ < R e D < D + .

We know, from Appendix D, that any || I[G/se]£D) || 1 is polynomially bounded as
|ImD|—•-f oo. This result and part b) of the recurrence hypothesis show that
\\AaG{p,m,D)\\1 is polynomially bounded in B+ and B~ as |ImD|-> + oo (ReD
being fixed). So, \\A (p, m, z)\\ 1 |g

α(z~D)2 | is exponentially decreasing as |Imz|-> 4- oo.
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/A

|

I
1

c-

D*

C+ I
φ
V

1 "
I
I

Fig.5. Integration contour C+ and C_, defined in (3.22-23), for the integral (3.18) in the complex z
plane

We may take for C (see Fig. 5) the two lines C + and C_ defined respectively by

C+={z = σ++iy} such that Sup(D*,Re(D))<σ+ <D+ , (3.22)

C_={z = σ_-ΐ}/} such that D~ <σ_ <Inf(D*,ReZ>). (3.23)

The contour does not cross the line Rez = D*, so we may apply Fubini's
theorem and invert the integrations in z and in α. Since the α-integrand of (3.21) on
C + differs from the integrand on C~ by the subtraction operator τ^ — τ^ 5 we
obtain:

o α

Oa{z-D)i

We note that the term (τ£ — τG) 1 + Π (~ τ^

(3.24)

P' m > α ' z ? ω ) ^s a function of

z which is a sum, relative to the forests J% of terms of the form: N(z)Q~zl2, where
N(z) is a polynomial of z. The g's are products of P(α) polynomials relative to
reduced graphs [ ^ ] ^ of the forest. Using the relation

1
ί (3.25)

^ C + « - D Qzl2 " ρ ΰ / 2 flV

where θα is the convolution product of the Heaviside function with a gaussian

(3.26)

we deduce that the integrand in (3.24) is R'aYG(p,m,a,D,ω).
From Fubini's Theorem and (3.18), we have proved that the integral (3.17) is

absolutely convergent. Then, subtracting Aac(D) from lQa(D), we obtain for the
counterterms relative to G the convergent integral representations (3.15a) and
(3.15b) in the strips B+ and B~. Theorem 3 is proved for the graph G, that is part
a) of the recursion hypothesis is achieved.
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To verify part b) of the recursion, let us come back to the Cauchy integral
(3.18). We denote by B^G(p,rn,a,D) the integrand of the convergent integral
representation (3.21) of Λac. The Lγ norm of IG

a is given, inverting z and a
integrations in (3.18), by

jR'a\\ _ 1
LG 111 "~ o _

(3.27)

where C is the union of the two lines C+ and C_. Denoting by ds the curvilinear
absciss on C (that is to say ds = \dz\), we have the inequality

? ^ S K T ^ α | I m < z " B ) l Ί β f l

± > , m , « , z ) | . (3.28)
Z π 0 C \ z ~ υ \

And according to Fubini's theorem

zπ c\z — υ\

\AaJ\x being by hypothesis polynomially bounded as |Imz|-> +oo, the con-
vergence of (3.29) is ensured by the exp[ —α|Im(z —D)| 2], and | |/^|li is obviously
polynomially bounded as |ImD|-> + oo, as well as the counterterms relative to G,
by (3.16b).

So we have proved the second part of the recursion hypothesis. This ends the
proof of Theorem 3.

C. The Limit α—>0+. We now look at the limit α—>0 in order to recover the counter-
terms corresponding to the operation R'. Two problems occur since in this
limit the integrand appears as a sum of products of functions and distributions in α
space:

First, the definition of such products: in Appendix C, we study the supports of
the distributions θ{n)\_ — ̂ LnQ(α)](rc^l) which appear in the renormalized inte-
grand via Eq. (3.25). Each distribution is defined only if its support is a smooth
algebraic manifold. Moreover, the supports may intersect each other and/or the
limits of the integration domain. Products of the corresponding distributions are
defined only if these manifolds are not "tangent." These two parts are made
explicit and proved in Appendix C.

Second, the integration of RΎG over the α-space: this means that the
distribution RΎG is applied over the test function 1 in the α space IR^G). So it is not
sufficient to define RΎG as a distribution over the usual spaces ^(IR^) or <y(W?) (see

00

[17]) to give a sense to j docRΎG.
o

Let us compactify IR/ by imbedding it in the /-dimensional sphere S^ via the
stereographic projection and let us take for the space of test functions the space
E = CGO(Sf). The following theorem proves that RΎG is a distribution on the space

00

E. This is sufficient for the integral j docRΎG to be meaningful, since E contains the
o

function i, and contains the usual space
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Theorem 4. Given a graph G,for any function φ belonging to £, the limit as a—>0+ of
the integral

f Π dθLR'aYG(p,m,α,D9 ω) φ(α) (3.30)
0 G

exists for any D belonging to the strip D~ < ReD<D+ and defines a distribution on
E. In particular, the renormalized amplitude IG(p,m,D) defined by applying this
distribution onto the function!, corresponds to the usual dimensionally renormalized
amplitude.

To prove the existence of the limit of (3.30), we construct recursively the
integral (3.30) using a Cauchy integral generalizing (3.18), in order to control the
limit α->0+. Such a construction is the generalization of the construction
performed in the two last sections but is rather lengthy and will not be given here
we refer to [18] for a complete proof. The existence of the limit (3.30) is sufficient
to define a distribution in E indeed, the space E (with the usual topology induced
by the sup norm on its elements and all their partial derivatives) is a countably
normed space; it follows that its dual Έl is complete (see [17]), and consequently
the distributions R'aYG converge towards a distribution in E', defined as RΎG. This
ends the principle of the proof.

Appendix A. Multidimensional Regularization

In this appendix we remind and adapt to our notations the construction of the
dimenionally regularized Feynman integrands of [8]. Let us first recall how to
obtain the Schwinger parametric form at integer dimension N: Given a Feynman
graph G with da derivative couplings {kμ\ ..., kμda] on each line a (μ are the Lorentz
indices), each propagator is written as

(A.I)
0

where ka and zα are ΛΓ dimensional vectors.
Integrating over internal momentum ka and taking into account momentum

conservation at each vertex, we obtain the usual Schwinger representation for the
Feynman integral at dimension N

oo z?(G)

' G ( P P m a ) = ί Yl daa' γ

G(Pi>mΦαj> (A.2)
O β = l

where the Feynman integrand YG is given by

da I d \ }
Π - T7Γ Z G ( ^ ? ffς9 αα) , (A.3a)

U = l i = l \ ^ Z α V Jz = O

and where ZG is given by:

ZG(p~i,WΓa,aa)=:PG(oί)~NI2 expί — ^ ααm^— ^ PΪ^G H ^ P j ] (A.3b)
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In (A. 3), dG(α)ί7 and PG(α) are the Symanzik functions, characteristic of the
topology of the graph the dependence in the zα's is reported in

Pi =Pi+ΣείaZJ2aa> ( A 4 )

where the p.'s are the external momenta incoming at a vertex i and where [ε.J is
the incidence matrix of the graph G and is defined as

( + 1 if the oriented line a points away from the vertex i
— 1 if the oriented line a points toward the vertex i (A.5)

0 if the line a does not contain the vertex i.
In (A.3), the dimension N may become a complex dimension D to define ZG as an
analytic function of D (see [12] for the definition of scalar products in dimension
D\

We now define a multidimensional amplitude [8] in the following way: To
each subgraph £f we associate an additional positive dimension ωy so that the
internal momentum ka belongs to the space IRD (J) lRωc, while the external

momentum pt belongs to the space IRD (J) IRω . At each vertex we impose energy-

momentum conservation in all space IRω = 1RD (J) lRω^

Pi- Σ β A (A.6)
a- 1

(For practical use (as in Sect. 2), the external momenta p. may be chosen in the
subspace 1RD.)

It is then possible to extend Schwinger representation (A.2-3) by introducing a

vector za in IRD (J) lRω and by computing (for ω^ integer) the integrals

\Y\dD+^K

- Σ a
a=l

D+ Σ ω

i=1 L a= 1

£

Π D+ Σ ω^i ^ (A.7)

where the scalar products in [ ] are taken in 1RD φ IRW .

The above integrals may be factorized into contributions corresponding to
each subspace IRI)©lRft)G and IRω^+ G, and (A.3) may be calculated in each of these
subspaces. In each of these subspaces IRωr, we integrate over the internal momenta
of 9 (all internal momenta outside 9 have zero components in IRω5J. We obtain

IG{Pi,ma,Ω<r)= $ Y\ daJsip^m^cL^Ωy), (A.8a)
0 α= 1



18 M. C. Bergere and F. David

with

YG(pi9ma9*a,Ωr)= Π Π (ynr) % ^ « ^ A β - o ( A 8 b )

The function YG is here

ΫG(pi,nra,cca,Ω6,)= f ] Zτ(pl,nΓa,oca)\N=Ωτ9 (A.9)
TCG

where Z r is defined in (A.3b); the quantities Ωy are ω^ for ^ φ G and ΏG is
ωG) InZ τ , the scalar products are taken in JRΩr so that

K 2 ] r = - [ X 2 ] « r / X for TΦG (A.10)

CPi3τ = M r + Σ ε;αCzJr/2αα
α

If the variables ω^ become complex variables, the integrand in (A.8) becomes an
analytic function of these variables and defines the multidimensional regularized
integrand.

Let us recall that a Feynman amplitude is obtained by associating y Dirac and
internal group matrices to (A.I) and by contracting some Lorentz and internal
indices, so that the dependence of (A.8) in the ω^'s appears in two ways: - first, by
the quantity P^(α)~ω^/2, - second, by various contractions between Lorentz
indices which give some gμv, μ and v being relative to some Rω^ and !Rω^,. The final
contraction is then,

Σ toμμ]R^ = TrRωysf = ω^. (All)

(We do not emphasize the problems of the γ matrices and of the y5 anomaly which
have been extensively treated in the literature, especially in [7].)

With these algebraic rules, one defines the regularized Feynman integrand
which appears to be of the form:

TCG

•exp ( A 1 2 )

where SG(pi9 αfl, Ωy) is a rational function of the variables αα which depends only
polynomially on the p.'s and on the Ω^.

Let us consider the convergence of the integral (A.8a). The following theorem
is proved in [8].

Theorem. The integral (A. 8a) is absolutely convergent for Re(Ωse) sufficiently small,
and defines by analytic continuation a meromorphίc function of the variables Ω#>.

We now apply to this object the results of [12], which allow us to construct an
explicit convergent integral representation of the analytic continuation of (A.8a)
in all variables Ω^.
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It is easy to prove that, following the definitions of [14], the integrand
YG(PH ma > αα> Ω$r) admits a Taylor expansion in every Hepp's sector for every {Ω^}.
So we can extend without difficulty the methods of [12] to obtain the following
theorem:

Theorem. The integral

Pi, m a 9
0 a

da{R YG{pi9 mβ, αβ, Ωe/)} (A.13)

is absolutely convergent for {Re(Ω^)} not belonging to one of the hyper planes in Rfc

corresponding to a singularity of IG(pt, ma, Ω^). This integral defines the analytic
continuation of (A.8a) almost everywhere.

R is the subtraction operator defined in [14] and in Sect. 1.

Appendix B. Action of Taylor Operators upon a Multidimensional Regularized
Integrand

In this appendix, we intend to extend the results of [16] and to give the expression
for

τnyYG(pi9ma,oca9Ωτ)9 (B.I)

where τ^ is a generalized Taylor operator defined in [14] and where YG is defined
in (A.8.9).

To obtain YG in (A.8), we performed the Gaussian integrations of the various
components of the internal momenta ka in each subspace IRΩτ. We make here this
integration in two steps as in [16]: first, integrate the internal momenta of the
subgraph £P (those momenta which have non-zero components in IRΩτ, that is
those corresponding to the lines of £fnT) and obtain a factor

I Pi- Σ Σ hi- Σ fii A
'TnS

(B.2)

where scalar products are taken in IRΩτ and where, in fact, we should write a

product of δ distributions over each connected component of TnSP. In (B.2), we

denote by ψi the components in lRβ τ of \pi + £ εiaza/2oca . Then, we replace ka for
[ aeSnT

ae by v\ and we integrate over the remaining momenta of T. The result
TnS \ dzj

of this procedure is that, for any subgraph ίf, we have

i^ Wa >
 αα> Ωτ)

TCG
Pί+ Σ είa

"ΎnSf

Zjϋ_(p:,mo,aa,Ωτ). (B.3)
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We may now group all functions Z T n ^ with the same subgraph {TΓΛ^) on one
/ T \

side, and all functions Zτ/Tn^ with the same subgraph ———I on the other side.

Now if we take the product over all possible subgraphs T, we obtain

ΫG(Pl,K>*a>Ωτ)=ΫylPi+ Σ £ia^>K^a>Ω'T\γG/APi,ϊήa^a>Ωτ)> " (B.4)
\ G UZa

\ aeΊϊ I

where

Ω'τ = Σ Ωv, (B.5a)
\V such as
\V

Ω'±= X Ωv. (B.5b)
JV such as

I v]y = T

Now, YG is factorized into one function of αα for aeϋf and one function of aa for
αe —. It is then possible to apply the operator τ^ in Sects. 2 and 3, all dimensions
ωv are small and positive in such a way that the number of subtractions generated
by τ^ depends only on n and on the dimension D.

First, let us take care of the coupling derivatives on the graph G by applying

the derivatives — — I in each subspace R Ω τ . We use for any subgraph Σ, the

property

Π ί - jr) ZI\ΪΪ w* αα> β]L = o = SΣ{pi9αβ, Ω)Z,fe, mfl,αβ, Ω], (B.6)

where S^ is a polynomial in p{ and ί2; each monomial of SΣ satisfies the
homogeneity relation

h(p)-2h(a) = h, (B.7)

where h(p) and h(oc) are respectively the degree of homogeneity in the external
momentum p and in all the variables α, and h is the number of coupling
derivatives.

To apply the operator τΣ over SΣZΣ, we dilate by ρ2 all α^ corresponding to the
lines of Σ, and we apply τ^ since SΣ and PΣ in ZΣ are homogeneous in ρ2, we have
to apply T£~2h{a) + LD* over

exp ί - ί]Γ α f lm
2 - ^.dr. ιpλQ

21,

1 [« J J
where ma and pt are the internal masses and the external momenta of the graph Σ.
A Taylor expansion in ρ 2 of this exponential is also a Taylor expansion in ma and
pt. Taking into account the polynomials of p. in SΣ we may write

n+2ί{Σ) + ω{Σ) χ Γ g 1

τnίS 7 I = V y i*s 7 \\ ί"R R"ΐ
1 ^ Σ k = 0 fe! L^Xfc ^ * Jp# = m Λ = θ '
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where £{Σ) is the number of lines of Σ, ω(Σ) is the superficial degree of divergence
of Σ at D = Z)*, χk is a subset of k internal masses and external momenta of Σ and

-— is the kth derivative in regards to the variables in χk in (B.8) summation over all

χ's is understood (as well as summation over Lorentz indices).
It is clear that the above homogeneity properties also hold over all functions

Zτ for TcΣ and with Ω'τ small enough. We denote by

Y^(a,Ω τ) = ~ ~ Yy{Pi,ma,a,Ω'τ)\pi=ma=0 (B.9)

and by [_G/£f]χk the reduced graph obtained by shrinking into a point the
subgraph Sf and by attaching to the reduced vertex the masses of χk and the
momenta of χk which are external momenta p. of £f and internal coupling

d
derivatives of [G/^7] generated by ε -— in (B.4).

The final result used in (3.9) can be read

&Ω')Y (ft, mβ, α, Ω^). (B.10)
k=0

Appendix C

We study here the properties of the distribution θ{n) which appears in the
dimensionally renormalized integrands. For simplicity we shall use a vectorial
notation in α space: an element α = {αα, a = 1, ̂ } in IR̂ + shall be noted α. If /(α) is a
differentiable function of the α's, we shall denote the vector

by f

We have seen in Sect. 2 that we have to define products of distributions of the
form

0 ( n ) [ - i m [ β ^ ( α ) ] ] n^O (Cl)

where !F is a forest of subgraphs of G (excluding tree graphs which are never
divergent), £f a graph of & and where Qy ^ is a polynomial in α, defined as

δ^,^= Π

In (C.2), P^']^ is the Symanzik polynomial of the graph \_^'~]^ obtained by
reducing to points in Of' every graph ϊf" strictly contained in 9*'.

We first look at the existence of the distribution (C.I). This distribution is
singular on the algebraic manifold V^^ defined by

J^ f j F = { α : β ^ ( α ) = l } . (C.3)
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According to [17], this distribution is defined if, on every point of V^ ^ the
gradient

L [ β ( α ) ] (C.4)

is not zero (this means that Vy ^ has no singular points). This is implied by the
following theorem:

Theorem C. 1. On every point of V^^, the vector A^>JF is different from zero.

Proof. From (C.2), Q^ ^ is an homogeneous polynomial of degree L(^), where
L(Sf) is the number of loops of Sf (which is non-zero since £f is not a tree graph).
Applying the Euler relation to Q we obtain, if αe V^ ^

L(^) = α — ρ ^ ^ α Δ ^ . (c.5)

This ensures that A^ ^ is never null.
We now look at the product of such distributions. From Sect. 2, the integrand

in IR̂  appears to be a sum of terms of the type

e
f ] θ ( f l y ) [ - | L n β ^ ^ ( α ) ] Π 0(αα), (C.6)

ϊfeSϊ * α = l

where SF is a forest of subgraphs ^(L(5^)Φ0) and the distributions θ(aca) are
introduced to take into account the integration over the positive αfl's only. Such a
product is defined if the various manifolds V^^ and the hyperplanes Pa defined by

Pa = {a:aa = 0} (C.7)

are never "tangent" at their intersections. This is ensured by the following theorem.

Theorem C. 2. Given any subforest # j = {6?^ iel} of the forest 3F and any subgraph
y o of G (eventually empty), if the intersection

C\V^ ̂ W Π Pa) ( C 8)
iel j \aeSr0 j

is not empty, at every point ofV the vectors A ^ ^(iεl) and the vectors na defined as

d
aa(aey0) (C.9)

are linearly independent.

Proof We first prove the theorem when the graph 5^0 is empty. Then, we first note
that according to (C.2), every polynomial Q^. ^ may be written as a product of
polynomials Rt relative to the graphs of the subforest # j contained in £f t:

Qyitr= Π Rj> ( C 1 ° )
j e l l ? j C ^

where Rj is defined as the product of the polynomials P[Se]^ relative to the
subgraphs £f of ^ which are contained in y but not contained in any subgraph
S?k of #^ strictly contained in ¥.
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From (C.8) and (CIO), the point α belongs to V if and only if, for any iel,
Ri(<x) = l. Then, if α belongs to V, we have

W(α)= Σ |"^(«) (dl)
jel OT

By the same homogeneity argument used in Theorem C.I, the vectors — jR.(α) are

non-zero; since they are orthogonal that is — #.(«) — K .(α) = 0, if z+y , they are
[ C/QC CCH J

linearly independent. This result, with (C.ll), ensures that at every point of

Π ^ SF* t n e vectors Δ^ ^(α) are linearly independent.
iel

We now consider the case where 6f0 is not empty. Since the vectors nα are
orthogonal, we may restrict ourselves to the subspace

E= Π Pa = {*:oιa = o

To any subgraph SP of #" we associate the subgraph

( c 1 3 )

of [ G / ^ o ] and we consider the forest

^ (C14)

The restriction to the subspace E of the polynomials P[y] may be proved to be
(see [16]):

W α ) = i W i f L(ί^β) = Hί^),
P{snJ*) = 0 if L ( m ) < L ( [ ^ )

The manifold F defined by (C.8) is not empty only if for any ίf of ^ contained in
any &>ieI we have L{^n^o) = 0.

In that case, we are reduced to the problem of the independence of the vectors
Δ&ιtβ relative to the new forest §? and the new subforest #J = [^} in the subspace
E. The proof follows similar to the case Sf0 empty. This ends the proof of
Theorem C.2.

Appendix D

This appendix is devoted to the proof of various properties of the dimensionally
regularized integrals as |ImZ)|-> + oo, which are used in Sect. 3.B.

Let G be a Feynman graph (with internal non-zero masses). According to [12],
its regularized integral has the following integral representation provided that
ReD is different from any pole characteristic of the graph G.

IG(p,m,D)=] Π d<*aR{YG(p,m,D,a)}. (D.I)
0 Λ = l
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According to the appendix C of [12], Eq. (D.I) may be decomposed in absolutely
convergent integrals associated to different Hepp's sectors and different equivalent
classes Γ of nests. A Hepp sector is given by an ordering of the lines

5 = { α ; α f l ^ α β / _ i . . . ^ α f l l } . (D.2)

We perform the change of variables into Hepp variables, that is to say

Then, each contribution is of the form
+ 00 _ ΏL_ l e - 1 _ DLj _ 1

ί dβtβΓ 2 ί Π w Γ " 2 ίΠ
0 0 i = 1 0 jeJj

• e x P - Π A*ίx -1 [ < + £(m, p, jS, x)] ^(p, m, D, j8. Π x}) (D.4)
\ i = K I jeJi

The variables tfp jeJ{ (J{ is some subset of {1, ...,r — 1}), are introduced to take
into account the subtractions due to divergent subgraphs associated to the class Γ.
K is some integer ^ / .

e
The variables tYχ-\ i n exp(— f| β{)CYi-ι) a r e present if and only if the graph G

i = K

is subtracted if not, they are set equal to 1 in (D.4).
The exponents afj=\^) and b) are such that:

\a£— — - ) < 1 , if G is subtracted, (D.5a)

I >0, if G is not subtracted, (D.5b)
V 2 .

D
ai — a^ + ~-(L — Li)>0, K^i<ί, (D.oa)

α - - y ^ > 0 , *•<£, (D.6b)

6}^0. (D.7)

The function E(p,m,β^} is a continuous non-negative function of the β 's

The function F(p,m,D,/?.) is a continuous function of the jδ 's ( Ϊ = 1,^=1) and is
polynomially bounded as |ImD|-^ + 00.

The conditions (D.5, D.6 and D.7) were sufficient to ensure the absolute
convergence of the integral (D.4). We now study the limit |ImD|—• + 00.

Lemma 1. For ReD fixed, different from any poles of G, IG(p,m,D) is exponentially
bounded as |ImD|->oo; more precisely

<.\1mD\ p 8 )
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Proof. Let us integrate (D.4) over βg. We obtain

(L - L>

*<-ψ)i Π dβlβr~~Ί Π wΓ" ~ ί Π #,
Z / 0 i < K O i = X 0 je Jt

( l - # 5 Π (Zr,-i) 2 ' " ' f ( p , m , D , M < + £)1 2 ""' ' • (D.9)
i = K

At ReD fixed, away from a pole, the integrals over the β/s and the χVs are
convergent (from the conditions (D.5, D.6 and D.7). The modulus is majored by
the integral of the modulus, which is polynomially bounded as |InuD|-> + GO. SO it
is easy to see that the integral is polynomially bounded.

From the asymptotic behaviour of the Γ function:

]/ϊπ\y\x~1/2e 2 ' y l , as |y|-» + oo, (D.10)

we deduce the result of Lemma D.I.

Lemma 2. For ReD fixed, different from any poles of G, the Lx norm of the
regularized integral \\IG(p,m,D)\\1 as defined in (3.19) is polynomially bounded as

Proof. Since IG(p,m,D) is a sum of integrals of the form (D.4), its L1 norm is
majored by the sum of the Lx norms of the integrals (D.4). Those L 1 norms are
integrals of the form

ReO.L

dβeβ;e 2

exp| - Π βά,
\ i = K

1

ί
0

- 1

€- 1

Π dββΐ

: + E)j

ReD.Lf 1 1
2 ί Π dχιf\

0 jeJi

ReD.L\F(p,m,D,βχ)\ * (D.ll)

|F| is a continuous function of βχ, polynomially bounded as |ImD|-> + GO. Since |F |
contains the only dependence in |ImD| of (D.ll), and since the integral is
absolutely convergent, the integral (D.ll) is polynomially bounded as
|ImD|—> + oo. The result of LemmaD.2 is then proved.
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