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The Baker Transformation and a Mapping Associated
to the Restricted Three Body Problem

Robert L. Devaney1*

Department of Mathematics, University of Maryland, College Park, MD 20742, USA

Abstract. The nonlinear mapping of the plane

was recently introduced by Henon as an asymptotic form of the equations
of motion of the restricted three body problem. This is an area preserving
diffeomorphism, except along the x-axis where the mapping is singular. We
show that this mapping exhibits a type of stochastic behavior known as
topological transitivity, by showing that it is topologically conjugate to the
well known baker transformation. Consequently, periodic points are dense
in the plane and there is also a dense orbit. We note that the baker
transformation also preserves Lebesgue measure and is ergodic, so this
raises interesting open questions about the ergodic properties of the non-
linear mapping.

Consider the nonlinear mapping of the plane (x1? y1) = F(x0, y0) given by

1

1
yi=yo-χo----

This mapping was recently encountered by Henon [2] in his studies of the
restricted three body problem of classical mechanics. Roughly speaking, this
mapping is an asymptotic form of the equations of motion which is related to
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the ultimate behavior of families of periodic solutions as the mass-ratio tends to
zero.

Henon's numerical work indicates that this mapping has highly unstable
and chaotic behavior, and he has conjectured that it is equivalent to the well-
known baker transformation. Our goal in this paper is to verify this conjecture
by constructing a topological conjugacy between F and the baker transfor-
mation.

The conjugacy is given in fact by a natural mapping: to any point p e R 2 ,
we associate a doubly infinite sequence s(p) of + Γ s and — Γs according to
whether successive iterates of p lie above or below the x-axis. The mapping is
not defined when j/ = 0, so certain orbits terminate when they meet this line.
We can extend the conjugacy to these points by assigning a terminating
sequence of + Γs and — Γs to them.

There is a natural identification of these sequences with the open square
\u\, \v\<l in the plane. Under this identification, the mapping F goes over to
the baker transformation. Thus the coding s gives a complete description of the
associated dynamical system, since we may take the baker transformation to be
completely understood.

Theorem A. The mapping F of Hέnon is topologically conjugate to the baker
transformation of the open square 0^\u\, \v\ < 1 in the plane.

The dynamics of the baker transformation thus yield immediately the
following corollaries.

Corollary B. Periodic points for F are dense in the plane. There are exactly 2n

— 2 fixed points for Fn for each n ^ l . Moreover, each periodic point is hyper-
bolic.

Corollary C. There is a point p e R 2 whose F-orbit is dense in R 2 . Equivalently,
F is topologically transitive.

The x-axis is a singular set for F since orbits which meet this set cannot be
continued. Although the set of all such singular orbits is of measure zero in the
plane, it nevertheless is dense.

Corollary D. Let S denote the set of points in R 2 whose orbits terminate at the
singular set j/ = 0. Then S is dense in R2.

The proofs of each of these corollaries follow immediately from the exis-
tence of the topological conjugacy given by Theorem A and the corresponding
statements for the baker transformation.

The mapping F preserves Lebesgue measure in the plane. This raises
several intriguing questions about the ergodic properties of this mapping. Is F
ergodic? It is well-known that the baker transformation preserves Lebesgue
measure in the square and that it is ergodic. So our conjugacy gives a different
(infinite) measure on the square which arises naturally in the context of
mechanics. It would be interesting to know exactly what this measure on the
square is.



Baker Transformation 467

1. The Baker Transformation

F is a real analytic, area preserving mapping defined on R 2 — (y = 0). Its inverse
is also real analytic and is given by (x_x, y_ί) = F~1(x0, y0) where

1
X 1 ΛΛ

Hence F~x is not defined on the line yo= — x 0.
We will find it convenient to denote the point Fj(x0, y0) by (xj, j ^ ) for jeΈ.
Let p e R 2 . If Fk(p) is defined for all keZ, we may assign a doubly infinite

sequence s(p) of + Γs and — Γs to p via the rule

φ ) = ( . . . s_ 2 , s_ 1 , s o ; s 1 ,5 2 , ...),

where

Some F-orbits terminate when j^(p) = O under forward iteration, or when ̂ (p)
= — Xy(p) under backward iteration. To these orbits we assign a terminating
sequence of the form

if j;_ fc(p)= —x_k(p\ or a sequence of the form

[ O , ^ . , . . . , 5 _ 1 s 0 ; 5 1 , 5 2 , . . . ) ,

if 3>j+i(p) = 0 with ) ^ 1 . We also allow finite sequences of the form

[0,1s_j, ...,s_l9soιsu . . . ,s k ,0].

So for each p e R 2 , there is assigned a sequence fo the form

[0,s_7., ...,so;sl9 . . . ,5 k,0] 9

where; and/or fe may be infinite. We assign the sequence [0; 0] to the origin.
Let Σ denote the set of all possible sequences of the above type, excluding

those which terminate (to the right and/or left) with an infinite string of + Γs
or — Γs. That is, Σ consists of all sequences except those of the form

(. . . ,α,α,α,5_ j ? ...9s0;sί9 ...,sk,0]

[ O 9 s _ j 9 . . . 9 s _ ί 9 s 0 ; s l 9 . . . , s k , α , α , α , . . . )

with an infinite string of α's. Σ may be mapped onto the open square 0^|w|,
\v\<ί in the plane via the transformation

k s ~k ss
/ = 1 l i= 0
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Note that sequences of the form [0; su ..., ski 0] are mapped to v = 0, while
sequences of the form [0,s_j9 . . . , s o ; 0 ] are mapped to w = 0. The boundaries
|M| = 1 and |u| = l are excluded since sequences of the forms

( . . . , α , α , α ; s o , . . . , s k , 0 ]

[0, s_j, . . . , s o ; α , α , α , ...)

are excluded.
Also, one should think of the disallowed sequences of the forms

[0, s_j9 . . . , s _ 1 , s 0 ; . . . , s k , + 1 , - 1 , - 1 , - 1 , . . . )

and

[0, s_ j ? . . . , s _ 1 } s 0 ; . . . , s k , - 1 , + 1 , + 1 , + 1 , . . . )

as being identified with the allowed sequence

this being the usual identification which yields the dyadic rationals. There is a
similar identification for negative indices.

On Σ we may define the usual shift automorphism by

σ ( [ 0 , s _ j 9 . . . , s _ l 9 s o ; s ί 9 . . . , s k , 0 ] ) = [ 0 , s _ j , . . . 9 s _ ί ; s θ 9 s l 9 . . . , s k , 0 ]

provided s o φ 0 . On the square, σ is represented by the well-known baker
transformation (see, for example, [4, p. 63] or [1]). If we impose the topology
of the square on Σ, then σ is a homeomorphism as long as s0 + 0, where σ is
undefined. The range of σ includes all sequences except those with sί=0.

In the next sections we will prove that s gives a topological conjugacy
between F and σ, i.e., s is a homeomorphism which makes the following
diagram commute

2. Hyperbolicity

In this section we prove that there exists at least one point in the plane which
corresponds to any allowable sequence. Our main tool is the (non-uniform)
hyperbolicity of F.

Let (ξ0, ηQ) be a tangent vector to IR2. We denote the forward image
dF(ξo,ηo) by (ξ^ηj and the inverse image dF-1{ξ0,ηQ) by {ξ_ί,η_1). In each
tangent space, define the sectors
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and let

(χ,y) X>y (χ,y)

So the unstable sectors Su consist of the second and fourth quadrants in each

tangent space, while Ss consists of the other quadrants. Let ||(^o?^o)ll denote
the sup norm on each tangent space, i.e., \\(ξ0, ηo)\\ = sup(|£0 |

The proof of the following proposition is straightforward.

Proposition 1.

ii) For(ξ0,η0)eS»(Xiy),

\\dF(ξ0, ηo)\\^mi

iii) For (ξ0, ηo)eSs(x, y),

Remark. This proposition implies that F is non-uniformly hyperbolic; the rate
of expansion in the unstable sector tends to 1 as |>Ί->oo. The existence of
invariant manifolds almost everywhere for such mappings is a difficult problem
studied by Pesin [6].

Definition. A smooth curve y(t) is called an unstable curve if γ(ή lies in the
interior of S"(ί) for all t. An unstable curve of the form (t,f(f)) for — oo<ί<oo
is called an unstable separatrix if lim f(ή=+ao. Similarly, y(t) is a stable

ί-> ± 00

curve if y'(t) lies in the interior of Ss

γ{t) for all t. And a stable curve of the form
(t,f(ή) is a stable separatrix if either

i) lim/(ί) = oo and lim /(ί) = 0, or
t—> 00 t—> — 0 0

ii) lim/(ί) = 0 and lim f(t)=—00.
ί-> 00 t-> — 00

See Fig. 1.

Proposition 2. // y(t) is an unstable (respectively stable) curve, then so is F(y(t))
(respectively, F~1(y(t))). Moreover, if y'(t) is contained in a particular quadrant
of Su

y{t) (respectively, Ss

y{t)), then dF(yf(ή) (respectively, dF~1(yf(t))) is contained in
the same quadrant.

Proof. One checks easily that ξx and ξ_1 have the same sign as ξ0, and that r\γ

or η_ί have the same sign as η0, provided (ξo,ηo) lies in the appropriate
sector.

Proposition 3. i) Let y(t) be an unstable separatίx. Then F(y(ή) is a pair of
unstable separatrices, one on each side of the line y = — x.

ii) Let μ(t) be a stable separatrix. Then F~1(μ(t)) is a pair of stable separa-
trices, one of each of the above types fi.e., one on each side of the x-axis).

Proof We prove i); case ii) is similar. Let y(ή = (t,f(t)) for ίeR and suppose ί*
is the unique point for which /(ί*) = 0. Let y1(ή = (t,f(ή) with ί<ί* and γ2(t)
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Fig. 1. y is an unstable separatrix, while μx and μ2 are stable separatrices

= ( ί

J/(0) with t>t*' Then
proposition.

and F(y2(ί)) satisfy the conclusion of the

Definition. An unstable strip is a closed region in the plane bounded by a pair
of non-intersecting unstable separatrices, or else the closed region to the left or
right of a single unstable separatrix. Stable strips are defined analogously.

Corollary 4. Let V be an unstable strip. Then F(V) is a pair of unstable strips,
one on each side of y = — x. If H is a stable strip, then F~1(H) is a pair of stable
strips, one on each side of y = 0.

Note that stable and unstable separatrices must meet at a unique point.
Consequently, the intersection of stable and unstable strips is non-empty and
bounded by stable and unstable curves.

We now prove that there exists at least one point in 1R2 corresponding to
any sequence of the form (...s_2,s_ί,s0; s l 5s 2,. . .) as long as ^φSy for some
pair i,j^.O and sk + s^ for another pair fc, / < 0 . The proof is analogous to the
proof of the conjugacy of the well-known Smale "horseshoe" diffeomorphism
with the binary shift, so we merely sketch the proof. Further details can be
found in Smale's original paper [7], or in the books of Moser [4] or Nitecki
[5].

Let Q1 (respectively, Q_1) denote the upper (respectively, lower) half plane.
The closures of Qx and Q_ί are stable strips, while the closures of F(Q1) and
F(Q_1) are unstable strips bounded by the line y= — x.

Define inductively

= closure(QSonF-1(Hs-1...s-n))
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One checks immediately that the HSQS_ί^s_n form a nested sequence of stable
strips. See, for example, Moser [4, p. 172]. Moreover, any point on the bound-
ary of HSoS χ s n is mapped to y = 0 by some iterate of F.

Similarly, define

^1...Sn = closure(F(β S l )n.. .nF"(β a n ))

= closure(F(β S l )nF(7 S 2 . .J).

These are nested unstable strips whose boundaries consist of unstable separa-
trices mapped to y= — x by some iterate of F " 1 .

Lemma 5. // some S φSy, then VSi Sn with n^ί, j ^ l is bounded by two unstable
separatrίces.

Proof. For fixed n, the set of unstable strips VSo^Sn fills the plane, and any two
strips meet only along at most one unstable separatrix in their boundaries. One
checks easily that FS o_S n is bounded by only one unstable separatrix when Sj=l
or Sj = — 1 for all j , 1 ̂ j ^ n. Hence all other strips lie between these two, and
hence they are bounded by two unstable separatrices.

Now suppose (s) = (...s_2, s_ί9 so; s1 ? s2...) is any sequence satisfying st + Sj
for some ί, j > 0 and sk φ s£ for some k, £ ̂  0. Consider the sets
VSι...SnπjF/SoS_ι s_n. By the lemma, these form a nested sequence of compact sets.
The intersection

Π (^,.....nHSoϊ.,..,.„)
n= 1

then contains at least one point. This point must then have associated se-
quence (5), as the kίh iterate of this point lies in β s_ k . This proves the existence
of a point corresponding to each doubly infinite sequence.

For the terminating sequences, we argue as follows. To find a point corre-
sponding to the one sided terminating sequence ( . . . s_ 2 ,s_ l 5 s 0 ; sl9 ...,sn,0]
we first note that VSi^Sn is bounded by one or two unstable separatrices. Only
one of these curves is mapped to the line y= — x by F 1 " " . Call this curve y.
Then any point in

(.QΛ —-n=0

is associated to the sequence

( . . . s _ 2 , s _ 1 , s o ; s 1 , s 2 , . . . , s Λ , 0 ] ,

The other types of terminating sequences are handled similarly.
We conclude this section by proving that s gives a continuous mapping

from R 2 to Σ. If s(p) is a non-terminating sequence, then our construction of
the stable and unstable strips shows that s is continuous at p. So we confine
our attention to terminating sequences.

First suppose p*=(x*,0) is on the x-axis. We will prove that s is con-
tinuous at p*; all other one- or two-sided terminating sequences are handled
similarly.
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Lemma 6. Let M> 1. Suppose p = (x0, y0). Then there exists ε > 0 such that

i) 7 / 0 < j ; 0 < ε and \x*— x o | < c β , £/ιen x x > M and y1< —M.

ii) 7/ — ε < y o < 0 and \x* — xo\<ε, then xx< —M and yί>M.

Proof. For part i) we choose ε so that x*H 2ε>M. Then we have
o

xί=x0-\ >xg —εH—>M + ε>M

Part ii) follows similarly.

Remark. This lemma shows that points near the x-axis are mapped arbitrarily
far away by F, with yί approaching either + oo or — oo, depending upon the
sign o f j v

Now suppose s(p*) = [0; sf, s*> ...) and keZ + . We claim that there is a
neighborhood W of /?* such that if p = (xo,yo)eW and yoή=0, then s(p)
= (...s_1,s0; sί...) satisfies

i) Sj = sf for l ^ j ^ f c
ii) if y o > 0 , then so= + 1 while s_t= - 1 for l^ i^fe.

iii) if yo<0, then 5 0 = — 1 while s_t= + 1 for l^irgfc.

In the topology of the square, this means that s(p) is close to s(p*), proving
continuity.

Choose M>k, so that 2M — k>0. If _yo>0, then by the lemma, there exists
ε > 0 such that if \x*— xo\<ε and yo<ε, then x1>M and y1<—M. We also
have

x2 = xλ H > M
)Ί M

Continuing inductively, it follows that for 2^/^/c, we have

x i + 1 > M - ϊ > 0

yί+1<-2M + i<0.

Hence s_t(p)= —1 for l^i^k and so(p)= + 1 as required.
If y0 < 0, the argument is similar.

3. Proof of Theorem A

In this section we complete the proof of Theorem A by showing that s is 1 — 1.
Suppose p = (xo,yo)- We show first that the orbit of p either changes sign
infinitely often or else meets y = 0. This follows from several lemmas.

Lemma 1. Suppose xo^0, yo>O. Then there exists n>0 such that yn^0. //
x o ^0, yo<0, there exists n'>0 such that JV^O.
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Proof We prove the first statement; the proof of the second is similar. Suppose
yn>0 for all n. Then we have

1
n n-1 ^ ^ n-ί '" 0 =

We also have

and by induction

yn<y0-nx0.

Therefore, if xo>O, we have a contradiction. If xo = 0, then x1 >0 and we may
apply the above argument using x1 instead, again providing a contradiction.

Lemma 2. Suppose xo<0 and yo>0. Then there exists n>0 such that either
yn^0 or else xn^0. If xo>0 and yo<0, then there exists n'>0 such that either
yn,Ξ^O or else xn,^0.

Proof Again we prove only the first statement. Assume yn>0 for all n. As in
Lemma 1 we have xn>x0 and 0<yn<yo<nxo. Now

1 1 1
%9 — ^ 1 i -^ Xπ "ι I

yi yo yo-
χo

and by induction,

1 1 1

+ + + +

Now the series ^ diverges, so that xM->oo, which gives a con-
tradictioa - o > Ό - ^ o

Combining Lemmas 1 and 2, we find that the orbit of p must continually
cross the x-axis, or else meet it after a finite number of iterates. It is for this
reason that sequences which end with an infinite sequence of + Γs or — Γs are
disallowed.

For the remainder of this section we let p = (χ09 y0) and p' = (x'o, y'o). Define
Δxn = x'n — xn and Δyn = y'n — yn for each neΊL.

Lemma 3. Suppose s(p) = s(pr).

i) // zJxo<0 and zlyo>0, then Λxn<Λxn_1 and Ayn>Ayn_1 for all n>0.

Furthermore, lim Ayn=co.

ii) // zJxo>0, zlj;o>0, then Δx__n>Δx0 and Λy_n>Δy_n+1 for all n. Fur-
thermore, lim Δy_n = oo.

W-> 00

Remark. In the first case we are assuming that the straight line connecting p to
p' is an unstable curve, while in the second case, it is a stable curve. If p and p'
lie on the same horizontal or vertical line, the lemma also follows by applying
it to F(p) and F(pf) or F " 1 ^ ) and F~ V )
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Proof. Again we prove only part i). Since p and p' have the same sequences, it
follows that y'n and yn have the same signs. Hence

Ax1=Δx0-{— <zlxo<0

Δy1 = Δyo-Δx1>Δyo-Δxo>Δyo.

By induction, if Δyn_ x >0, then

J L<o
y'n-i y«-i

so that Δxn<Δxn_1 <Δx0. Hence

Δyn = Δyn_ί-Δxn>ΔyΌ-(n-l)Ax0-Ax0.

It follows that Ayn->oo.

Remark. It follows from Lemma 3 that if s(p) = s(p') and the straight line
joining p to p' is an unstable (respectively, stable) curve, then so is the straight
line joining Fn(p) to Fn(p') for all n>0 (respectively, n<0).

Lemma 4. Suppose p and p' have the same two-sided terminating sequence. Then

P = P'

Proof. The result is clear if p = 0. lϊ yk = y'k = O for some fc>05 then the straight
line joining Fh~1(p) to Fk~1(pr) is a stable curve since yk_1 and y']ί_1 have the
same sign. But then the remark above implies that the straight line joining
Fk~a(p) to Fk~a(p') for all α ^ 1 is a stable curve. Hence this line can never have
slope —1, and so there does not exist α > 0 such that yk_a = —xk_a and y'k_Λ =
— x'-k-a contradicting the assumption that s(p) is a two-sided terminating
sequence.

Lemma 5. Suppose s(p) = s(p') and Δxo<0, Δyo>0. Then for any M > 0 there
exists j , fe^O such that y'j>M and y_k< —M.

Proof Assume y\<M for all i^O. By Lemma 3, Δyn increases to oo as n ^ o o .
Hence there exists iV§:0 such that for n^N, Δyn>M. By Lemmas 1 and 2,
there exists fc^JV such that y'k>0. But then yk = y'k — Δyk<0, contradicting the
fact that s(p) = s(pf).

Lemma 6. Suppose s(p) = s(p') and Δxo<0, Δyo>0. Then there exists fc>0 such
that

ii) xk,xk+l>0.

iϋ) 3>k>3>k+i>°

Proof. By Lemma 5, there exists j > 0 such that
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and x'j<0. Now yf

j+1>yfj iϊ x'j+ί<0, so there exists α^O such that x'}_
x; + α + 1 > 0 . T h e n
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<0 but

, Ax

Hence x'j+a>
Ax

. Also x'j+a_1> — fAx. Let k=j + oc — 1. Then we have

i < ^1 +1 ^ 0 and y'k +1 > ŷ  > 0. Furthermore,

3

This completes the proof.
Lemma 7. Suppose s(p) = s(p') and Ax0, Ayo>0. Then there exists k<0 such
that

iii) y ^ Λ . ^ O .

Proo/. The proof is similar to the preceding lemma and hence is omitted.

Proof of uniqueness. Suppose s(p) = s(p') and Axo<0, Ay0>0. The other case is
handled similarly, so the proof is omitted.

Choose fc^O as in Lemma 6, and let ζ be the straight line connecting Fk(p)
to Fk+1(p'). See Fig. 2. We assume that the tangent vectors ζ' lie in the second
quadrant, so that dFa(ζf) also lies in the second quadrant for α>0. In the
terminology of Sect. 1, ζ is an unstable curve. By Lemma 1, there exists n>0
such that yn(Fk+ί(p))<0 but yn(Fk(p)) = yn-ΛFk+1(p))>0. Hence yn(Fk+1(p'))<0.
Then Fn(ζ) is an unstable curve connecting Fn+k(p) to Fn+k+1(p'). Hence
tangent vectors to this curve cannot lie in the second quadrant. This contradic-
tion establishes the result.

Fig. 2
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