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Abstract. If one studies interacting fields on a black hole background using
ordinary Feynman diagrams, one is faced with a problem of what to do with
lines that cross the horizon. To avoid this difficulty a formulation is developed
which can be expressed graphically in terms of a new class of diagram with
external lines only at infinity. This formalism is applied to study the question of
whether spontaneously broken symmetry would be restored near the black
hole. It is also used to show that a black hole can emit more particles than
antiparticles even in theories where the particle number is locally conserved by
a global U(l) symmetry.

1. Introduction

The theory of non-interacting quantum fields in the vicinity of a black hole is now
well understood in the semi-classical approximation in which the gravitional field
of the black hole can be regarded as a fixed stationary background. One finds that
the black hole creates and emits particles as if it were a hot body [1] with a
temperature proportional to the surface gravity of the black hole [2]. (In the case
of an uncharged non-rotating black hole,

in units in which G = c = h = k = l, where M is the mass of the black hole.) One can
understand this emission heuristically as follows: The Uncertainty Principle
implies that "empty" spacetime is filled with closed loops of particles. One can
visualise one of these as corresponding to a particle-antiparticle pair which appear
together, move apart and them come together again and annihilate each other.
They cannot continue to exist as "real" particles because in that case they would
both have positive energy which would violate the conservation of energy.
However when a black hole is present, one of the pair can tunnel throught the horizon
into the interior where there are particle states which have negative energy with
respect to infinity. This allows the other particle to escape to infinity as a real particle
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with positive energy. The ίlux of negative energy across the horizon reduces the mass
of the black hole and causes the horizon to shrink. However the rate of change of the
metric ~ M ~3 is very slow compared to the typical frequency of the radiation ~ M "1

as long as M M, i.e. the Planck mass ~10 ~ 5 g. It is therefore a good approximation
to neglect the time dependence of the metric and to calculate the emission from a
sequence of stationary metrics.

A consequence of the pair creation picture is that the radiation at infinity
appears to an observer there to be described by a density matrix rather than by a
pure state. This is because such an observer cannot even in principle observe the
particles that fell into the black hole. Thus he has to reduce the pure quantum state
describing the particle-antiparticle pair by summing over all possible states for the
unobserved particle. In fact it turns out that the density matrix describing the
emitted radiation is completely thermal [3-5], i.e. the black hole emits with equal
probability every configuration of particles with a given energy though not every
configuration escapes to infinity with equal probability because there is a potential
barrier around the black hole which depends on spin, angular momentum and
energy of the individual particles and which may reflect some of them back into
the black hole. The black hole can be in thermal equilibrium with black body
radiation at the same temperature though the equilibrium is not stable unless the
total energy is fixed by placing the whole system in an insulated box of a certain
size [6]. The underlying reason for the thermal character of the radiation from
black holes is that the black hole metrics can be analytically continued to
"Euclidean," i.e. positive definite, metrics which are periodic in the imaginary time
coordinate τ= — it with period β [7-10]. This means that any fields which are
analytic in the real Lorentzian black hole metric are periodic in the imaginary time
coordinate and so behave as if they were at finite temperature T = β~ί.

One would like to know how these results for free fields on a black hole back-
ground are modified by the presence of interactions. Strictly speaking, one ought to
include the interactions with the gravitational field itself. That would require a full
quantum theory of gravity which does not yet exist. However for black holes
significantly bigger than the Planck mass, the interactions between the various
matter fields will be much greater than their interactions with the gravitional field
and so, as before, it will be a very good approximation to consider only the
interactions between the matter fields on a fixed black hole background.
Interacting field theories in curved spacetime backgrounds seem to be renormaliz-
able provided they are renormalizable in flat spacetime (see [11] for a review). It
would therefore appear straightforward to calculate the effeect of interactions on
black hole emission: one would just write down a string of Feynman diagrams
where the lines correspond to propagators that were solutions of the free field
wave equation in the curved spacetime background. The trouble with this is that
one would have to include diagrams with lines that crossed the horizon and which
represented particles entering or leaving the black hole. One would not know what
factor to put at the end of these lines. One's first guess might be to put the thermal
factor corresponding to free field particle states. However this would not be
correct because the interactions are likely to be important near the horizon so that
the true spectrum could be very different from the free particle thermal spectrum.
Furthermore, such a procedure would lead to unphysical divergences near the
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horizon because there would appear to be thermal states of very high angular
momentum which would be emitted from the black hole and almost totally
reflected back into it.

I shall therefore adopt a different procedure which can be formulated in terms
of a new kind of perturbation diagram which has external lines only at past and
future infinity and which does not have any lines crossing the horizon. Ordinary
Feynman diagrams give the amplitudes for the various possible final pure
quantum states. However the radiation from a black hole is described by a density
matrix rather than a pure quantum state. This new class of diagrams directly
measures certain moments of the density matrix of the outgoing radiation. These
diagrams can be regarded as combinations of Feynman diagrams for the
amplitude for a certain number of particles to escape to infinity and to fall into the
black hole multiplied by the complex conjugate diagrams and summed over the
unobserved particle states. However this summation over internal states is
automatic: one does not have to specify the behaviour on the horizon except to
assume the fields are regular there.

One first defines Green's functions for the interacting fields on the Euclidean
section of the black hole metric by standard perturbation methods using the free
field propagators on the curved space background. The renormalization of these
Green's functions is essentially similar to that of Green's functions in flat
Euclidean space with the possible addition of a φ2R counterterm (such a
counterterm will be absent on black hole backgrounds because R = 0). We do not
have a closed form for the free field propagators but the renormalization can be
performed numerically at least to one loop by zeta function regularization [12].
One then analytically continues these Green's functions from the Euclidean regime
of imaginary t where they are defined to the Lorentzian regime of real ί. One
interprets the Green's functions not as matrix elements of time ordered products of
field operators between an "in" and "out" vacua but as expectation values in a
mixed state described by a density matrix. The fact that the Euclidean metric is
periodic in the imaginary time coordinate means that these Green's functions will
describe a situation in which there is a black hole in equilibrium with thermal
radiation. The radiation will be strictly thermal in the presence of interactions [8].
However the outgoing radiation at infinity will not appear to have an exactly
thermal spectrum when analysed in terms of free particle states because these are
not energy eigenfunctions of the full, interacting Hamiltonian. To determine the
spectrum in terms of free particle states one uses the interacting Green's functions
analytically continued from the Euclidean section to propagate from a point at
future infinity slightly above the real t axis to a similar point slightly below. One
obtains a series of perturbation diagrams with external lines going to points at
future infinity above and below the real ί-axis. If the Green's functions had been
strictly causal (as in flat space at zero temperature), these diagrams would have
been zero. However the periodicity in imaginary time of the background metric
means that the Green's functions will have singularities periodically distributed up
the imaginary time axis and these will give a non-zero contribution.

The above procedure allows one to determine the spectrum of outgoing
radiation from a black hole in equilibrium with thermal radiation. However this is
not a situation that one is likely to encounter what one would like to calculate is
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the emission from a black hole radiating into empty space with no incoming
radiation. One therefore has to substract out the effects of the incoming radiation
from the equilibrium spectrum. One does this by replacing each line in the
equilibrium diagrams by a pair of propagators from points at past infinity above
and below the real ί-axis. On therfore obtains a series of diagrams with external
lines at past and future infinity. The sum of all such diagrams (with appropriate
signs) and the equilibrium diagrams gives the spectrum or higher moments of the
density matrix of the outgoing radiation for a black hole radiating into empty
space.

Using this formalism one could calculate the QED corrections to the emission
of photons, electrons and positrons. Page [13] has shown that there are
corrections of order e2 caused by the fluctuating charge on the black hole. There
will also be other corrections of the same order from one loop effects. These could
be calculated by using numerical zeta function techniques. However one would
expect the effects to be small. Of more interest are situations in which interactions
can produce qualitatively new effects. Two examples are discussed in Sect. 6 and 7.
The first is spontaneous symmetry breaking. One would expect that symmetry
might be restored near the black hole if the temperature were above a certain
critical value. On the other hand one would not expect the presence of the black
hole to effect the symmetry breaking a long way away. This might cause an
explosive outburst when a black hole got down to about 101 * g, at which point the
temperature would be of the order of the electroweak unification energy of about
100 GeV. The other possible effect that is discussed is the emission of different
numbers of particles and antiparticles. Such particle-anti-particle assymetry can
occur in Grand Unified Theories which do not conserve baryon number locally.
On the other hand, it has been shown [14] that there cannot be any net asymmetry
between the emission of particles and antiparticles in theories that have local
conservation of particle number and in which the particles interact only with the
background metric, even if these interactions violate CP. However this result does
not apply to fields which interact with themselves and each other. An example is
given of an interacting field theory which conserves particle number locally but
which would give different rates of emission for particles and antiparticles. It is
probable that this effect is not of much practical significance for black holes
substantially bigger than the Planck mass but its importance lies in the fact that it
demonstrates that gravitational interactions can produce baryon asymmetry
without recourse to Grand Unified Theories. One could think of the initial
singularity of the universe as being like a whole collection of Planck mass black
holes. Presumably it could therefore give rise to a universe with a net baryon
number.

The plan of the paper is as follows:
In Sect. 2 Green's functions for free and interacting fields are defined on the

Euclidean section of the black hole metric. Their analytic structure and Fourier
transforms with respect to real time are discussed. In Sect. 3 the asymptotic values
of the Euclidean Green's functions at large radii are interpreted in terms of
annihilation and creation operators for ingoing and outgoing particles in thermal
equilibrium. The number operator for outgoing particles is expressed in terms of
diagrams with two outgoing external lines. In Sect. 4 the effect of the incoming
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radiation is substracted out by replacing the Euclidean free field propagators by
the Unruh propagator. This can be expressed in terms of the Euclidean pro-
pagator and leads to diagrams with incoming and outgoing external lines. As an
application of this formalism it is shown in Sect. 5 how to calculate the expectation
value of \φ\2 and Tμv. Section 6 deals with the possible restoration of spon-
taneously broken symmetry near the black hole and Sect. 7 discusses the possible
asymetric emission of particles and antiparticles.

2. The Euclidean Green's Functions

The Lorentzian (signature —h + +) Schwarzschild metric is normally given in the
form

ds2=-(l-2Mr-ΐ)dt2 + (l-2Mr-ΐΓΐdr2 + r2(dθ2 + sin2θdφ2). (2.1)

If one puts τ = + it, this gives a positive definite (Euclidean) metric for r > 2M.
There is an apparent singularity at r — 2M but this can be removed by introducing
a new radial coordinate

x = 4M(l-2Mr-1)1/2. (2.2)

Then the metric becomes

The apparent singularity at r = 2M, x = 0 is thus just like the origin of polar
coordinates and will be removed if τ/4M is regarted as an angular coordinate and
is identified with period 2π, i.e. τ is identified with period 8πM. One therefore
obtains a complete singularity free positive definite (Euclidean) metric which is
periodic in the imaginary time coordinate τ. Integer spin quantum fields on this
background are thus automatically periodic in imaginary time and so contribute
to the canonical ensemble at a temperature T = (8πM)-1.

In the case of half-integer spins, a rotation of 2π in the angular coordinate
τ/4M about the "axis" x = 0 will change the sign of the field. Thus fermion fields on
the Euclidean section are antiperiodic in imaginary time which is again how they
should be for the canonical ensemble.

In a similar manner one can find a complete, singularity free, Euclidean section
of the Kerr metrics though in this case the angular momentum J has to be taken to
be imaginary. Fields on such a background will contribute to the grand canonical
ensemble in which, in addition to a temperature there is a chemical potential (the
angular velocity) for angular momentum. One then analytically continues the
angular momentum J of the black hole to real values.

The Euclidean Green's functions for the free fields are defined to be the unique
solutions of the relevant inhomogeneous wave equations that are regular on the
Euclidean section and die away at large values of r. For example, the Green's
function of a scalar field of mass m obeys the equation

G0(x9y) = δ(x,y). (2.4)
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It can be represented as

where φn and λn are the eigenfunctions and eigenvalues of the elliptic operator
— Π + ̂ 2 on the Euclidean section

nφn. (2.6)

The eigenfunctions are normalized by

=δmn. (2.7)

Strictly speaking, the summation in (2.5) ought to be replaced by an integral and
the Kronecker delta in (2.7) ought to be replaced by a <S-function because the
spectrum of the wave operator will be continuous since the Euclidean section is
unbounded. However, for numerical calculations it is convenient to introduce a
boundary at a large value of r and to impose Dirichlet or Neumann boundary
conditions there. Near to the boundary this will introduce unphysical divergences
of the energy momentum tensor etc. [15-17]. However, if the boundary is at large
radius it will not have much effect on the Green's functions near the black hole
which is where the interactions will be concentrated. In the case of the
Schwarzschild metric the eigenfunctions can be written in the form

n(r), (2.8)

where the radial function obeys the equation

-V(r)R = -λn(l-2Mr~1)R, (2.9)
dr [ dr

where

4M

They are regular at r = 2M and are zero at the boundary.
On the Euclidean section G0 will be singular only when the two points are

coincident. However if one continues G0(2, 1) to the complex ί2 — 11 plane for fixed
r1? 01? φί and r2, Θ2, φ2 there will be a singularity whenever the points 1 and 2 can be
joined by a null geodesic (Fig. 1). These singularities will be periodically repeated
in the imaginary ί direction because the Euclidean section is periodic in the
imaginary time coordinate.

One can Fourier analyse G0(2, 1) in terms of t2 — t1. If Im(ί2 — ί1)>0, the
contour lies above the real axis in figure 1 and

j dωβ-to<'>-'>>.(l-β~'l<T1 sgn(ω)
-oo

2}Yfm(θl,φ1)
(2.10)
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Fig. 1. The Euclidean propagator G0(2,1) contains singularities that are periodically repeated in the
complex ί2~

ίι plane

If Im(ί2 —ί1)<0, the positions of 1 and 2 on the right of 2.10 are reversed. Note
that the Green's function contains both positive and negative frequencies whereas,
in flat space at zero temperature it would contain only positive frequencies. This is
because there is a contribution from the repeated singularities in the upper half
t2 —11 plane. The negative frequency component in less than the positive frequency
component by the Boltzman factor e~βω. The radial function R_ is the solution of
the radial equation

d2R , _ „

dr'

where

and where

with the boundary conditions that

(2.11)

k

as r -> — oo

as r'—»oo,

where k = (ω2 — m2)1/2 sgn(ω). In other words, R_ represents a wave of frequency
ω in the Lorentzian Schwarzschild metric that emerges from the past horizon with
unit amplitude and which is partially reflected back into the future horizon (with
probability |/ί(ω)|2) and partly transmitted to infinity as a purely outgoing wave
(with probability \B(ω)\2 = 1 - \A(ώ)\2) (Fig. 2). B(ω) is defined to be zero for |ω| <m.

Similarly, R _ is the solution of the radial equation that represents an incoming
wave of amplitude (ω//c)1/2 from past infinity which is partially reflected to an
outgoing wave at future infinity (with probability |ί(ω)|2 = |;4(ω)|2) and partly
transmitted to a purely ingoing wave on the future horizon (with probability
\B(ω)\2 = \B(ω)\2 = ί-\A(ω)\2) (Fig.2). R_ is defined to be zero for |ω|<m. The



428 S. W. Hawking

future
horiz

past
horizor^

past
horizon

R_
Fig. 2. The solution R_ represents a wave that emerges from the past horizon and is partially reflected
back into the future horizon. S_ represents a wave that comes in from infinity and is partially reflected
back to infinity

alternative basis .R + and R + are defined in a similar manner with past and future
interchanged.

The Euclidean Green's functions of an interacting field theory can now be
constructed in the usual diagrammatic manner where the lines correspond to the
Euclidean Green's function of the free field and the vertices represent terms in the
interaction Lagrangian. One then integrates the positions of the vertices over the
Euclidean section of the metric. As in flat space this will give rise to divergences
which have to be rendered finite by some technique such as Pauli-Villars,
dimensional or zeta-function regularization. The undefined quantities introduced
by the regularization are then absorbed into a redefinition of the parameters such
as masses or coupling constants. This renormalization is difficult to perform in
practice because one does not have a closed from for the radial functions or a
composition law for them. However for certain one loop diagrams, one can apply
numerical zeta function regularization [12]. The one loop renormalization of the
effective action for a scalar field will be considered in Sect. 6.

3. The Interpretation of the Green's Functions

By construction, the interacting Green's functions are periodic or antiperiodic in
the imaginary time coordinate. They are therefore best interpreted as the
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expectation values of products of the field operators, not in some pure quantum
state, but in a mixed state with the density matrix

Q = e-fE, (3.1)

where H is the full, interacting, Hamiltonian. Thus, for example, the interacting
two point function is

(3.2)

The usual time ordering operator has been omitted deliberately. I shall return to
operator ordering below.

I shall make the usual interaction picture assumption that the interactions can
be neglected near infinity. This means that the field operators φ(x) and φ(x) will
obey the free field equations in the asymptotic region. They can therefore be
represented in terms of annihilation and creation operators for incoming and
outgoing waves at infinity

00

Φ(*)= Σ ί

Y
, m ω) = /2 exp " i(ωt ~

where

and

The operators αout(Λ m ω) and α0

+

ut(/, m ω) are the annihilation and creation for
an outgoing particle of frequency ω with angular quantum numbers { and m (I
shall normally omit the indices £,m). Similarly α in(/,m;ω) and α^(/,m;ω) are the
operators for an ingoing particle and the h's are the corresponding operators for
antiparticles.

The "out" operators all commute with each other apart from

[αout(/, m ω), α0

+

ut(/', m' ω')] = δ^,δmm,δ(ω - ω'}

[ftout(Λ m ω), £0

+

ut(Λ m' ω')] = δ^δ^ω - ω') . (3.4)
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The "in" operators obey similar commutation relations among themselves and the
αin and bin operators commute with the αout and feout operators but not, in general,
with the α0

+

ut and fc0

+

ut.
One can use the orthonormal properties of the basis functions under the

normal scalar product to express the annihilation and creation operators in terms
of the field operators. Thus, for example,

*outM = - i f /o*ut(ω x)rμφ(x)dΣ"(x) , (3.5)

where the integral is taken over a timelike surface at large radius. By operating on
the thermal density matrix ρ with various annihilation and creation operators one
can measure different moments of the density matrix in terms of a basis of free
particle states. The density matrix will not appear thermal in terms of this basis
because the free particle states are not eigenstates of the full, interacting
Hamiltonian. For example, the expectation value of the number of outgoing
particles in the mode/out(ω) will be

Tr(a0
<"„»>=

= Π dΣ»(x)dΣ\y}f^(ω x)/0*ut(ω y)

The term in curly brackets in (3.6) is the analytic continuation of the full
interacting Euclidean Green's function (G(x, y) where the point x is taken to
lie on a timelike tube at large radius with a small negative imaginary time co-
ordinate and the point y lies on a similar timelike tube with a small positive
imaginary time coordinate [18]. The general rule for the expectation value
(Tιρ)~ίΎτ(φ(xi)φ(x2)φ(x3)...φ(xn)ρ) is that one analytically continues the appro-
priate π-point Green's function from the Euclidean regime to the Lorentzian
regime where the points xvx2,...xn are given small imaginary time coordinates so
that

Im(ί J < Im(£2) < . . . < Im(g . (3.7)

It can be verified that this prescription reproduces the commutation relations (3.4).
The expectation value of the number of outgoing particles between ω and

ω + dω is

OoutMXω = - dω ίί /out(ω χ)yμG(χ, y)
)dΓ(y}. (3.8)

This will be infinite because the two surface integrals are over a tube of infinite
extent in the time coordinate. However, one can interpret this as a steady finite
rate of emission ήout(ω) for an infinite time. To do this replace /0*t(ω) by/0*t(ω') in
(3.8). Then

<nout(ω, ω')> = 2π(5(ω - ω')ήout(ω) . (3.9)

I shall henceforth assume that such a δ function has been extracted.
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a)

b)

c)

-ω,t,-m

»X ω.l.m

• V -ω, l,-m

*X ω,ι,m

ω,l,m

Fig. 3. The lowest order contributions to the number of outgoing particles in thermal equilibrium

One can represent (3.8) as the sum of all diagrams with two external lines going
to points x below the real t axis and y above the axis (Fig. 3). I shall adopt the
convention that points x and y corresponding to outgoing wave functions are
placed on the right of the diagram at large values of Re(ί), though in fact they are
integrated over contours just below and just above the real t axis, respectively. The
arrows on the lines point from a vertex at which φ acts to one at which φ acts.

Figure 3a represents the lowest order diagram in which the points x and y are
joined by the free-field propagation G0(x,y). This diagram would be zero if G0

were a causal propagator like the flat space propagator at zero temperature
because in that case

ιp(z) = j G0 y)dΣ"(y) (3.10)

would be zero if the imaginary part of the time coordinate of z were less than that
of y.

However, by (2.10)

V*'fi^R*+(r} (3.11)

for Im(ίJ < lm(ty). If one takes the scalar product of this with /(ω; x) to give (3.8),
one obtains a contribution to ήout(ω) of (2π)~l(eβω — I)"1. This is zero in the
limit of large β, i.e. low temperature.
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b)

Fig. 4. Diagrams for higher moments of the density matrix

Figure 3b represents the first-order correction to the free-field emission rate. In
flat space this would be absorbed into the renormalisation of the mass. However,
the finite temperature and curvature of the black hole background will cause the
single closed loop with one vertex to differ from its flat space value [12]. Thus
Fig. 3b will give a non-zero correction to the rate of emission which can be re-
presented by giving the field an r-dependent mass. Similarly, Fig. 3c represents
the one-particle irreducible correction at the second order, and so on. One can
regard this diagram as corresponding to three particles of the thermal radiation
(represented by the three lines crossing the real f-axis) which combine to give
a single particle which is observed at infinity.

One can also calculate corrections between the numbers emitted in different
modes. For example

<"outKKuM)>=(T^^ (3 12)
This is shown diagrammatically in Fig. 4. Note that because the operators
βout(ωι) and a

0ut(ω2^ commute, the surfaces over which the wave functions/^(α^)
and/out(ω2) are integrated can be taken to have the same small negative imaginary
part of the time coordinate. This is indicated in Fig. 4 by taking the external lines
marked ω1 and ω2 to the same point. Similarly, all the external lines carrying
negative frequencies are taken to a point above the real £ axis.

In Fig.4a the blobs indicate all the diagrams in Fig. 3. These contribute
<nout(ω1)><nout(ω2)>, i.e. they give no correlations. However, there are also
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Fig. 5. The diagram for an off-diagonal moment of the density matrix

diagrams like Figs. 4b and 4c in which the ω1 and ω2 lines are connected. These
will give correlations between the numbers of particles at different frequencies or
angular quantum numbers. These correlations arise because the free-field particle
states are not eigenfunctions of the Hamiltonian. One can also measure off-
diagonal moments of the density matrix. For example, Fig. 5 represents

where ω1?ω2,ω3,ω4, >m are all different. This will contain a factor of
δ(ω1 + ω2 — ω3 — ω4) because of the time invariance of the background metric. In a
similar manner one can determine higher moments of the density matrix of the
outgoing radiation.

4. Substracting the Incoming Radiation

In the previous section it was shown how to use the Euclidean Green's functions to
determine the outgoing radiation far from the black hole in the situation that the
black hole was in equilibrium with thermal radiation. Although the consideration
of such a situation is instructive as a gedanken experiment [6], it is not likely to
occur in practice because one cannot make a box which is impervious to gravitons,
let alone black holes. What one wants is to calculate the emission from a black
hole radiating into empty space. This can be done by adding to the diagrams of
Sect. 3a number of extra diagrams with both ingoing and outgoing external lines
which have the effect of subtracting out the contributions of the ingoing radiation.

One starts by defining the "Unruh" free-field Green's function GM(x, y) which
differs from the Euclidean or "Hartle-Hawking" Green's functions by having no
negative frequency component of ingoing radiation.

Gtt(2,l) = G0(2,l)

1 ,

(4.1)
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One can represent Gu in terms of the Euclidean Green's function G0 as shown
in Fig. 6. The first diagram on the right corresponds to the G0(2, 1) term in (4.1),
while the other two diagrams in which the points 1 and 2 are joined to external
wave functions from the points v and u correspond to the second term in (4.1). The
external lines at v and u are integrated with the wave functions /in(ω, /, m) and
/J*(ω,/,m) respectively, and the resultant expression is multiplied by (eβω— 1) and
integrated from ω = m to oo and summed over / and m. The point υ is integrated
over a timelike tube at large radius with a small negative imaginary part to the
time coordinate while u has a small positive imaginary part. The points v and u
are placed on the left of the diagram at large negative values of real t to indicate
that they correspond to incoming wave functions.

The idea is now that to calculate the rate of emission or other moments of the
density matrix of outgoing radiation from a black hole in empty space with no
incoming radiation, one calculates the same diagrams as in Sect. 3, but with the
Euclidean Green's function G0 replaced everywhere by GM. Using the relation
expressed in Fig. 6, one can then reexpress these diagrams in terms of diagrams
involving G0, but with incoming as well as outgoing external lines. For example,
the free-field contribution to the rate of emission given by diagram 3a becomes the
diagram shown in Fig. 7. The first term is what one has in thermal equilibrium and
gives a contribution of (2π)~l x(eβω — I)"1. The second diagram gives a con-
tribution of — \A(ω)\2'(2π)~ί(eβω — \.)~ί where the factor |/l(ω)|2 arises because
of the propagation from ingoing modes or outgoing modes. The third diagram
gives zero because the lines join positive frequency to positive frequency and
negative frequency to negative frequency. The net emission rate is therefore

HS(ω)|2(2π)-Vω-lΓ1. (4.2)

This is the usual result for the emission rate for a non-interacting field [1].
The first-order correction to the rate of emission in thermal equilibrium is

given by Fig. 3b which can be regarded as an r-dependent mass correction. After
subtracting out the effect of the incoming radiation, one obtains eight diagrams.
One can represent all these simply as the r-dependent mass correction given by
Fig. 8.

The second-order correction to the rate of emission in thermal equilibrium is
given by Fig. 3c. This cannot be represented as a local mass correction. After
substracting out the incoming radiation, one obtains 84 diagrams. Similarly, one
can subtract out the effect of incoming radiation from the diagrams for higher
moments of the density matrix of outgoing radiation though the number of
diagrams becomes very large at higher orders of perturbation theory.

The procedure for fermions is similar, except that the thermal factor (eβω — 1)~ 1

is replaced by the Fermi-Dirac factor (e^ + 1)"1. One can also treat gauge fields
and their associated Faddev-Popov ghosts in a similar manner to scalar particles.
One has to include diagrams with incoming external ghost lines in order to
subtract out the incoming ghost-particle radiation.

The next three sections describe applications of this formalism.
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00

Σ / dω(epω-1) <
,.mj

m

-ω*̂

*u

ί̂ ! . Λ

^

fy

Fig. 6. The Unruh propagator Gu expressed in terms of the Euclidean propagator G0 plus external
lines which subtract out the incoming radiation

U'

(eβω-1)

Fig. 7. The free field diagrams for the outgoing radiation from a black hole radiating into empty space
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/
lω'Σ

l,m

Fig. 8. The position dependent mass correction for a black hole radiating into empty space

5. Energy-Momentum Tensor etc.

The partition function Z in thermal equilibrium is given by the trace of the density
matrix ρ = e~βH. Log(Z) can be represented as the sum of all closed-loop diagrams
with no external lines. In flat space this sum is renormalized to zero, but the
periodicity in imaginary time and the curvature will make it non-zero in the
Schwarzschild background. By functionally differentiating log (Z) with respect to
the mass parameter which is allowed to be position-dependent, one obtains the
expectation value of \φ\2 in thermal equilibrium

δlog(Z)
(3.1)

This can be represented as the sum of all diagrams obtained by inserting a
vertex on one of the lines of the closed-loop graphs. Candelas [21] has shown that
(\φ\2y=2jT2(T = (8πM)~i) at r = 2M for a massless non-interacting complex
scalar field in thermal equilibrium. Using a numerical zeta-function technique,
Fawcett [12] has shown that <|φ|2> decreases rapidly at larger radii to the value
^T2 that it would have in flat space at temperature T.

It is not easy to substract out the contribution of the incoming radiation from
the trace of the density matrix itself. However, it is straightforward to substract it
form variational derivatives like (5.1) for <|</>|2>. In the case of a non-interacting
field the answer is given in Fig. 8. The first diagram represents the value in thermal
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equilibrium, while the correction terms can be calculated numerically by solving
the wave equation [22]. One would expect the resultant <|</>|2> to be of order f T2

on the horizon and to decrease to nearly zero at large radius.
The energy-momentum tensor in thermal equilibrium is obtained by func-

tionally differentiating the partition function with respect to the background
metric

<^> = 2 , - - P . (5.2)

Again this is given by the collection of all closed graphs with a single vertex
which now involves derivatives of the Green's function. The lowest order,
noninteracting term can be evaluated numerically [12]. One can then substract
out the effect of the incoming radiation as for <(|φ|2). This will give an energy-
momentum tensor which will be regular on the future horizon, but will have a
negative energy influx into the hole.

6. Symmetry Restoration

It is by now well known that spontaneously broken symmetry is restored at
sufficiently high temperatures (see [23] for a review). One might, therefore, expect
that it would be restored locally near a sufficiently hot black hole. To investigate
this / shall consider first the simplest model of a real scalar field with a negative
(mass)2 and a quartic interaction :

(6.1)

In flat space at zero temperature the field will have the expection value :

σ = <^>=(μ2/A)1/2. (6.2)

To determine the behaviour at finite temperature in a curved background space,
one should consider the effective action Γ as a function of the expectation value σ
of the field. One expresses φ as a sum of its expectation value and a fluctuating
component ρ :

φ = σ + ρ. (6.3)

Then

Js — <-£ r\ ~\ J; Λ ~\~ oL' 2 ~τ~ °£ α 5

where

(6.4)

(6.5)

(6.6)
(6.7)
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The effective action Γ(σ) in the thermal equilibrium is given to one loop order
by dropping L1 and L3 (the term linear, cubic and quartic in ρ) and integrating
over all fluctuations ρ which are regular on the Euclidean section and which die off
at infinity :

-Γ(σ)=-J^0l/^d4x + log{j£/ρexp[-JjSf2^
4x]}. (6.8)

The expectation value σ of the field is determined by the requirement that Γ
should be a minimum.

, , (6.9)
δσ

where ρ behaves like a free field with a position-dependent effective mass

m2

ρ=3λσ2~μ2. (6.10)

When T<^μ, the expectation value of ρ2 will be very small and the only solution of
(6.9) will be σ = μλ~ΐ/2. When T>μ, the expectation value of ρ2 will be
approximately that for a massless scalar field. At large radius {ρ2)^ϊ^T2. So
σ — σ0 where

σ2=μ2/λ-{T2, T<TC

(6.11)
σ 0 =0, T>TC,

where the critical temperature

Tc = 2μλ~112 (6.12)

Near r = 2M, <ρ2>>^T2 and 0<σ<σ0.
It is difficult to substract out the effect of the incoming radiation to determine

Γ for the case of a black hole radiating into empty space. It is however,
straightforward to substract out the contribution of the incoming radiation from
<ρ2> in the Eq. (6.9) for σ. Again one expects <ρ2> to be small unless T>μ, in
which case it can be approximated by the value for a massless field. Equation (6.9)
for σ will then have a unique solution on the Euclidean section which tends to the
zero-temperature value μ/Γ1/2 at large radii, σ will decrease at radii less than
about 4M but it will remain non-zero even at r = 2M.

The signal for a phase transition in this situation is not that σ vanish (it cannot
vanish near the black hole if it is non-zero far away) but that the second functional

δ2Γ
derivative of the effective action c . . e ( — should have a zero mode. In other

dσ(x)oσ(y)
words, there should be a small perturbation δσ of the solution of Eq. (6.9) which
vanishes at large radii

-Πδσ + δσ(3λσ2-μ2 + 3λ(ρ2y) + 3λσδ((ρ2y) = Q, (6.13)

where <5«ρ2» is the change in <ρ2> produced by the change in m2 caused by δσ. It
is not easy to see whether (6.13) admits a non-trivial solution, but one would not
expect it to unless σ had been reduced to a value small compared to its zero-
temperature value in a region bigger than the typical wavelength μ~1. Now one



Quantum Fields Around a Black Hole 439

would not expect <ρ2) to be significant expect for r<4M and then only if T>μ
μ-i

which implies M< . The expectation value σ would then be reduced for
8π

r<4M. The region on the Euclidean section on which r<4M has a proper size of
about 9M. Thus it seems that σ would not be reduced on a large enough region to
cause a phase transition, although obviously it is a rather close thing and more
careful calculations should be made. One should also work out the physically
more relevant case where the scalar field is coupled to a gauge field. In this
situation the fluctuations of the gauge field will also help to reduce the expectation
value of the field and so restore symmetry.

If there were a phase transition near the black hole associated with the
Weinberg-Salam unification at a temperature of about lOOGev, (M = 5 x 1010#),
this might produce a sudden burst of emission which might be detectable as a
pulse of gamma rays or radio waves. Searches have been made for gamma-ray
pulses using the atmosphere as a Cerenkov detector [24]. The results were
negative, but the sensitivity was rather low and the upper limit on the frequency of
bursts of the order of 1032 ergs was quite a lot higher than one would expect from
the upper limit on the density of primordial black holes given by the gamma-ray
background [25]. Radio pulses [26] are potentially a more sensitive method of
detecting bursts of emission, but they depend critically on the nature of the burst.
Searches for radio pulses have not revealed any evidence for bursts [27].

7. Particle Antiparticle Asymmetry

In order to generate an asymmetry between the numbers of particles and
antiparticles (or, more precisely, between the occupation numbers of states which
are CP conjugates of each other), three conditions must be satisfied:

1. There must be nonconservation of particle number.
2. There must be CP violating terms in the lagrangian.
3. The situation must not be invariant under time reversal.
Grand Unified Theories provide examples where the baryon number is not

locally conserved although in some cases baryon number minus lepton number is
conserved. These theories can also contain CP violating terms. Finally, the early
universe provides a background in which there is a well defined arrow of time. It is
therefore possible that the observed baryon asymmetry of the universe was
generated by the asymmetric decay of superheavy particles when the temperature
of the universe was about the Grand Unification Energy 1014Gev. (see [28] for a
review).

Black holes provide another possible setting for the generation of particle-
antiparticle asymmetry. In the presence of a black hole the total observed particle
number need not be conserved because particles or antiparticles can cross the
horizon even if the particle number is locally conserved. A black hole in
equilibrium with thermal radiation is invariant under time reversal (or TP reversal
in the case of a rotating hole). This means that the numbers of outgoing particles
and antiparticles must be equal in such a situation even if there are CP violating
interactions between the quantum fields and the background metric [14]. For
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suppose that the number of outgoing particles was greater than the number of
outgoing antiparticles. Then, by CPT, the number of ingoing particles would be
less than the number of ingoing antiparticles. Thus one would build up an excess
of particles, which cannot happen in thermal equilibrium because there is no
arrow of time.

On the other hand, a black hole radiating into empty space does have a well
defined arrow of time. In the case of quantum fields that do not interact with each
other but only with the background metric, subtracting out the effects of the
incoming radiation from the thermal equilibrium results will leave the numbers of
outgoing particles and antiparticles equal to each other [14]. However this need
not be the case for interacting quantum fields.

A simple model which has non-trivial C and T violations but which has a
locally conserved particle number current is provided by three complex scalar
fields with quadratic and quartic interactions.

L= -Σ

+ 91Φ2Φ2Φ3Φ3+92Φ3Φ3Φ1ΦI+93ΦIΦIΦ2Φ2

2

2. (7.1)

The mi and λt and gi terms are required for renormalizability. However they are
real and do not contribute to C or T violation. The ht terms make the Lagrangian
not invariant under the charge conjugation operation which replaces φt by φt.
Moreover provided that the product h1h2h3 is complex, there is no field
redefinition which makes the Lagrangian invariant under charge conjugation.
Because it is invariant under parity reversal, it must therefore be non-invariant
under time reversal. The Lagrangian (7.1) has a global [/(I) invariance:

φ.-^φ.e^ φ^φf^. (7.2)

Thus there is a Noether current

J^-.Σφβ^. (7.3)

This is locally conserved in the background metric, i.e.

Jfμ=0. (7.4)

To obtain asymmetric emission it is necessary to consider diagrams which involve
all three h{ vertices. The simplest one-particle irreduccible diagram for the number
of outgoing particles of species 1 which does this in thermal equilibrium is shown
in Fig. 9. This diagram itself will not give any asymmetry because it corresponds to
thermal equilibrium, but asymmetry can arise when the, incoming radiation is
subtracted out to give diagrams such as the one in Fig. 10. The value of this
diagram will be h1h2h3 times some number F, which may be complex because the
diagram is not asymmetric about the real ί-axis. There will also be a contribution
from the complex conjugate diagram, which will be h*h*h*F*. On the other hand
there will be similar diagrams which give a contribution oϊ
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Fig. 9. The simplest one particle irreductible diagram which involves all three ht vertices

U

Fig. 10. One of the diagrams that subtract out the incoming radiation from Fig. 9 and can give rise to
particle-antiparticle asymmetry

to the number of outgoing antiparticles of species 1. Thus if h1h2h3 is complex, the
numbers of outgoing particles and antiparticles of species 1 may differ and this
difference can remain when one sums over the other two species as well because
the quantities F that appear for the different species will not be related in any
simple way. Thus the black hole can emit unequal numbers of particles and
antiparticles even though the particle number current is locally conserved: the net
flux of particles at infinity is balanced by an equal flux of antiparticles into the
black hole.

It is probable that the asymmetric emission of quarks or leptons by black holes
significantly bigger than the Planck mass is not of much practical significance
because there are tight upper limits on the numbers of such primordial black holes
[29]. Rather the importance of this result lies in the fact that it demonstrates that
gravitational interactions can generate particle asymmetry even in the presence of a
global [/(I) symmetry. This is rather analogous to the way in which instantons can
violate the conservation law that follows from the U(l) symmetry of chiral
invariance [30]. In the context of the early universe it means that CP violating
effects near the initial singularity could lead to baryon asymmetry without any
need to appeal to Grand Unified Theories.
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