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Abstract. We show that any measure on R" possessing the Lee-Yang property
retains that property when multiplied by a ferromagnetic pair interaction.
Newman's Lee-Yang theorem for one-component ferromagnets with general
single-spin measure is an immediate consequence. We also prove an analogous
result for two-component ferromagnets. For ΛΓ-component ferromagnets
(JV ^ 3), we prove a Lee-Yang theorem when the interaction is sufficiently
anisotropic.

1. Introduction

The Lee-Yang theorem on the zeros of the partition function is an important
tool in the rigorous study of phase transitions in lattice spin systems [1]. In
addition, it has applications to the proof of existence of the infinite-volume limit [2]
and of a mass gap [3,4], and to the proof of correlation inequalities [5, 6] and
inequalities for critical exponents [4, 7, 8].

In this paper we shall give a new proof of a generalized Lee-Yang Theorem.
Our methods lead to an essentially complete result for one-component and
two-component (classical) ferromagnets with quite general single-spin measures.
We have also some promising partial results for JV-component ferromagnets
(N ^ 3). We end the paper with some conjectures.

Consider, for purposes of orientation, the model of one-component "spins"
φ. defined by the partition function

Z= JexpΓ Σ Jtj<Pi<Pj+ Σ Mi] Π dvfr.). (1.1)
L i J = l i = l J ί = l

Here the dv. are suitable probability measures on the real line the pair interaction
coefficients Jtj are nonnegative ("ferromagnetic"); and the magnetic fields λ.
are allowed to take arbitrary complex values. The Lee-Yang theorem then states
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that, for suitable measures dv., the partition function Z(hl , . . . , hn) is nonzero when-
ever Re h. > 0 for all i. The theorem was originally proven by Lee and Yang [9]
only for the spin-| model

dv.(φ) = ±\δ(φ - 1) + δ(φ + l)]dφ, all L (1.2)

Subsequently, numerous alternate proofs for the spin-^ case were found
[10-17,41], and the theorem was also extended to more general single-spin
measures dv. [18, 19, 15, 16, 42, 43]. The best result is that of Newman [15], which
allows arbitrary even measures dv. with the property that

JΛ/v.(φ) + 0 for Re h £ 0, all i. (1.3)

This result is essentially the best possible: it states that the Lee- Yang property
holds for all Jtj ^ 0 if and only if it holds for Jtj = 0. But while the condition (1.3)
is exceedingly natural, Newman's method of proof is quite indirect : he shows
that (1.3) is a necessary and sufficient condition for the model (1.1) to be approxim-
able in a certain sense by spin-^ models and then he appeals to the already proven
Lee- Yang theorem for the spin-| case. The original motivation of the present
work, therefore, was to find a direct proof of Newman's result, utilizing directly
the condition (1.3). We did discover a rather elementary such proof; it is given in
Appendix A. But we also discovered a far-reaching generalization of Newman's
theorem, one which we believe clarifies the underlying structure of the Lee- Yang
theorem.

Our method is based on the identity

(1.4)
iJ=l

where

Z0(A1,...Λ) = JexpΓ £ V«l Π <*vM) (1.5)
L i = l J i = l

Now the hypothesis (1.3) ensures precisely that Z0 has the Lee- Yang property;
so what we need to show is that this property is preserved by a certain (infinite-
order) differential operator. Noting additionally the identity

expΓ Σ V^ = lim Π (1 + k-1Viz/, (1.6)

and taking account of the hypothesis Jfj. ^> 0, the Lee- Yang theorem is then
reduced (modulo the approximation of entire functions by polynomials) to the
following proposition about polynomials: if P(z1 ?...,zJ and <2(z1? ... ,zn) are
polynomials which are nonvanishing when Re z. > 0 for all /, then the polynomial
S(z1,...,zII) = P(3/3z1,...,3/3zII) Q(z19...9zn) also has this property (or else is
identically zero). Now this is a well-known result in the case n=l (Proposition 2. 1)
but it is also true in general, as we demonstrate (Proposition 2.2).

In fact, we deduce immediately the following generalization of Newman's
result: Let dμ0 be any measure on Un (not necessarily a product measure) posses-
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sing the "Lee-Yang property" (defined precisely in Sect. 3); then, for any set
of J.j ^ 0, the measure

= expΓ y J φφλdμe x pLu=ι IJ(PI(PJ] μ° (φ) (1-7)

also has the Lee-Yang property. In other words, ferromagnetic pair interactions
(among others) are "universal multipliers for Lee-Yang measures".

Similar considerations yield a general Lee-Yang theorem for two-component
ferromagnets: Let

Σ Σ W<?r + Σ Σ W'
i f < / = l α = l i = ι α = ι i = l

where J\j} ^ | J\2}\ for all ij, and each dvt is a rotationally symmetric measure on
R2 whose projection onto one of the coordinates has the Lee-Yang property.
Then Z ^ 0 whenever Re h(^} > \ Im h(2) \ for all ί. This generalizes a result obtained
by Dunlop [20] for the plane-rotator model

dvί(φ) = δ(\φ\2-l)dφ,alli (1.9)

by infinitely more complicated (though intriguing) methods.
Sadly, we are unable to give a similarly complete solution of the Lee-Yang

problem for ^-component ferromagnets with N ^ 3. At present, we have only
the following partial result: in the obvious generalization of (1.8), one has Z ̂  0
whenever

Γ N -11/2

ReA{ 1 ) > Σ (Im/*jα))2 for all/, (1.10)
Lα = 2 J

provided that

J™^ Σ 14α) I for ally. (1.11)
α = 2

This is a Lee-Yang theorem for highly anisotropic JV-component ferromagnets,
the first such result (known to us) for N > 3. On the other hand, it is clearly un-
satisfactory: the condition (1.11) ought to be replaced by

J<1} ^ max I Jf)\ for all i,j, (1.12)
2^α^N J

as is known by entirely different methods [10, 11,21, 20] for N = 3 (with a restric-
ted class of single-spin measures). This result (for all N} would indeed follow by
an extension of our methods, as we indicate in Sect. 5, provided that an as-yet-
unproven generalization of Proposition 2.2 is true. But we are unable to find a
proof—we hope that others will be more clever!

2. General Theorems

We begin with a result about polynomials of a single complex variable, which
gives the flavor of our methods.
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Proposition 2.1. Let P and Q be polynomials in a single complex variable, with
the property that P(z) Φ 0 whenever Re z > 0, and Q(z) Φ 0 whenever Re z > c
(c real). Then S(z) = P(d/dz)Q(z) is either nonvanishing whenever Re z > c or else
is identically zero. Moreover, S(z) = 0 if and only ίfP(z) has a zero at z = 0 of order
m > deg Q.

Proof. P can be factored as

degP

P(z) = a
i= 1

with a Φ 0 and Re α. rg 0 for all ί. Hence it suffices to prove the proposition for
P(z) — z — α, Re α rg 0 the general case follows by repeated application of this
special case. Now Q can be factored as

degβ

Q(z) = b Π (*-/*;)
j=ι

with b ̂  0 and Re β. ̂  c for all j. Then

and this has strictly positive real part whenever Re z > c (unless deg Q — 0, in
which case it is identically zero). Hence Q'(z)/Q(z) Φ α whenever Re z > c (unless
deg Q = 0 and α - 0) that is, P(d/dz) Q(z) = Q'(z) - αβ(z) φ 0 for Re z > c. The
last assertion of the proposition is easily verified. QED.

Remarks. 1. Proposition 2.1 is actually a special case of a much more general
result of Takagi [22] (see Marden [23, pp. 82-84]). The proof given here is a
simplification of the method of Benz [32] it is modeled on the standard proof of
the Gauss-Lucas theorem [23, p. 22] .

2. The arbitrariness of c is a trivial consequence of in variance under translation
of the variable associated with Q. Note, however, that the variable associated with P
cannot be translated here zero is a distinguished point.

3. Proposition 2.1 was implicitly noted by Newman [15] in the course of the
proof of an intermediate result (his Proposition 2.4). It was our attempt to under-
stand the role of this proposition in the proof of the Lee- Yang theorem that led
to the present work.

Proposition 2.1 is already sufficient, together with the approximation theorems
given later in this section, to prove Newman's version of the Lee -Yang theorem;
this proof is given in Appendix A. But it is in fact possible to prove a yet more
general result which makes clear (we believe) what is really going on in the Lee-
Yang theorem. To do this, we need a multi-variable generalization of Pro-
position 2.1.

Notation. If z = (z1,...,z I I)6Cw and c = (c1? ... ,cJe!RM, then R e z > c means
that Re z . > c. for all j; analogously for Re z ̂  c. d/dz means the rc-tuple (d/dzl , . . . ,
d/dzn).
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Proposition 2.2. Let P. and g.(l ^ i ̂  k) be polynomials in n complex variables,
and define

R(υ, w) = Σ P»β,(w)
i = l

and

S(z) = Σ Pt(d/dz)Qt(z).
i = l

(a) // R(v, w) ̂  0 whenever Re v ̂  0 and Re w ̂  c(ce R"), ί/zerc S(z) 7^ 0 whenever
Re z ̂  c.

(b) // K(t?, w) 7^ 0 whenever Re u > 0 and Re w > c, £/zerc dί/zer S(z) ^= 0 whenever
Re z > c, or e/se S(z) is identically zero.
This Theorem generalizes Proposition 2.1 in two major ways: first, the single

complex variable is replaced by n complex variables and second, the single product
PQ is replaced by a sum of k such terms. The second generalization can be thought
about as follows: write R(v, w) as a sum of monomials with all variables v standing
to the left of all variables w; then S(z) is obtained by replacing each i;.(1 rgj ^ n)
by d/dZj, and each w. by z.. This representation makes clear that S depends only
on R, not on the particular decomposition of R into £ ,̂-6; This second generaliza-
tion is of no particular interest for the application we have in mind, but it turns
our to be quite natural for the proof of the propositions.

Note first that by translation in variance (Remark 2 above), we can take c = 0.
We then proceed in a series of lemmas:

Lemma 2.3. Let Q0 and Qί be polynomials in a single complex variable, and assume
that R(υ, w) = β0(w) + vQ^w) £ 0 whenever Re υ ̂  0 and Re w ̂  0. Then S(z) =
Q0(z) + β;(z) ± 0 whenever Re z ̂  0.

Proof. Setting υ = 0, we find that β0(z) ̂  0 whenever Re z ̂  0. If Q1 = 0, this
completes the proof; so assume that Qί φ 0. Then, letting c -> -h oo, we find that
Qι(z)^Q whenever R e z > 0 (for otherwise, by Hurtwitz' Theorem [23, p. 4]
applied to υ~ 1Q0 + Qί, there would exist zeros of R(v, w) with Re w > 0 for any
sufficiently large v\). Moreover, if Qv(zQ) = 0 and Re z0 = 0, then 6i(z0)/β0(z0)
is real and nonnegative (for otherwise, by the implicit function theorem, there
would exists zeros of R(v, w) with w near z0 and Re w > 0 for suitable (large) v
with Reι;>0). Finally, we note that Re[QQ(z)/Q1(z)']>Q whenever R e z ^ O
and β1(z) :fO (for otherwise there would exist a zero of R(v9w) with Rei; ^0
and Re w ̂  0).

Now Q1 can be factored as

degQi

Q1(z) = b Π (z-βj)
j = ι

with b + 0 and Re β. ̂  0 for all;. Then
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and this has nonnegative real part for Re z ̂  0 (except at the zeros of Qv where it
is undefined). Hence

whenever Re z ̂  0 and β^z) ̂  0. On the other hand, if Re z = 0 and Q^z) = 0,
then

This completes the proof.

Remark L It is indeed possible for Ql to have zeros on the imaginary axis:
consider, for example, Q0(w) = 1 + w and β1 (w) = w.
Remark 2. A related result has been obtained by Dieudonne [24].

Lemma 2.4. (Grace [25] ). Let K aC be a circular region (i.e. a closed disc, the
closed exterior of a disc, or a closed half-plane), and let

be a polynomial which is nonvanishing whenever xeK. Next letx1,...,xNbe complex
variables, and let E0,...,EN be the elementary symmetric functions of the {x f},
i.e. £ = l,E = *

Em= Σ X t ί

X i 2 ' " X t m '
ΐ l < Ϊ 2 < . . <im

Then the polynomial
N /NV 1

F ( x l 9 . . . 9 x N ) = Σ ai Em(x19...9xN)
m = 0 \m J

is nonvanishing whenever xl,... ,XN are all in K.

Proof. See Obreschkoff [26, pp. 23-24] or Marden [23, pp. 62-63].

Proof of Proposition 2.2. Let N be any integer ^ the maximal degree of R(υ, w)
in any of the variables v. and introduce new variables vf\ 1 rg k :g N. Now let
jR(F, w) be the polynomial obtained by expanding R(v, w) as a sum of monimials
and replacing each factor vj by

By repeated application of Lemma 2.4, R(V, w) is nonvanishing whenever
Re vf} ^ 0 for all j, k and Re w. ̂  0 for all j. Now jR(F, w) is of degree at most 1
in each variable ι/.fc); so we can repeatedly apply Lemma 2.3 to convert each
vf} into d/dWj, while all other variables are fixed in the closed right half-plane.
The result of this process is easily seen to be S(w). This proves (a).
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To prove (b\ let ε > 0 and define P(.ε)(ι;) = Pi(vί + ε, ... , vn + ε), and likewise
for Qίε); and define R(ε) and S(ε) in the obvious way involving Pίε) and Qίε). Now
clearly R(ε\v, w) + 0 whenever Re z ̂  0 and Re w ^ 0, so by part (a), S{ε)(z) ± 0
whenever Rez ^0. But S(ε)(z) converges to S(z) as εlO, uniformly on compacts;
so Hurwitz' theorem on C" implies that either S(z) is nonvanishing on the open
set Re z > 0, or else S(z) is identically zero. This completes the proof.

Remarks. 1. Part (b) of Proposition 2.2 can also be proven by an "elementary"
argument (i.e. one avoiding Grace's Theorem); the proof is based on the identity

More precisely, we define K(ε) as above, and note that

uniformly on compacts. Now the differential operator in brackets is a product
of polynomials each of which is of degree 1 in each variable and which is non-
vanishing when the real parts of all variables are nonnegative; so it follows from
Lemma 2.3, by a repetitive argument similar to that used above, that this operator
preserves the nonvanishing of R(ε) for Re v ̂  0, Re w ̂  0. The conclusion of part (b)
then follows by Hurwitz' theorem.

2. If the coefficients in P. and Q. are allowed to depend analytically on an auxi-
liary variable ζ varying in a domain D <= Cr and the hypothesis of the proposition
holds for all (eD, then in part (b) of the proposition, S(z; ζ) can vanish identically
for one value of ζ only if it does so for all ζeD. This is an immediate consequence
of including the variable ζ in the Hurwitz argument.

3. Grace's theorem has been employed in a similar way by Millard and
Viswanathan [27] .

Our next goal is to extend Propositions 2.1 and 2.2 to suitable classes of entire
functions. If/is an entire function Cn, and b > 0, we define

= s"c

p"L exp(-&ΣV i = ι
Then, for each a ̂  0, let ̂ n

a+ be the space of entire functions/such that ||/||b < oo
for all b > a. That is, j/"+ is the space of entire functions of exponential order
strictly less than 2, or of order 2 and type at most a. We equip jtfn

a+ with the family
of norms || ||b,i»α (or equivalently, the countable family || ||α + 1 / f c » f c integer);
then j/)j+ is a Frechet space. Note also that jtf"+ is closed under differentiation;
this is a simple consequence of the Cauchy integral formula. Finally, we note two
other elementary facts about j^"+ [28] :

1. A bounded sequence (or net) in $/n

a+ converges in the topology of s/n

a +

if and only if it converges pointwise on C" (or even on an arbitrarily small non-
empty open subset of Cn).

2. For any/ej/"+, the partial sums of the Taylor series of/con verge to/
in the topology of stfn

a+ . Hence the polynomials are dense in j/"+ .
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Let/(z) = Σαmz» and g(z) = ̂ .z"
m m

be entire functions on C" then we can define the formal power series

V- (2.2)
k m

n

[Here m = (mΐ , . . . , mn) is a multi-index, zm = [] z™* and δ/δzk - d/δz*1 . . . 3zJ".]
i= 1

For suitable/and g, we can actually make sense of (2.2) :

Proposition 2.5. Let α, b> 0 wiί/z αb < |, and teί c > b/(l - 4ab). Let f, g be entire
functions on Cn with \\f\\a < oo, \\g\\b < oo. Γ/zen the series (2.2) is absolutely
convergent for all z, and defines an entire function such that

\\mel ^κn

abc\\fl\\dl (2.3)
for some K"bc < oo independent off and g. It follows that

is a continuous bilinear map from j/"+ x ^l+ into ^5/(i_4a b ) +? for any a, b
wίίA afo < ~.

Proof. By a simple estimate using the Cauchy integral formula,

\βm ί\\gl
i= 1

(with 0° Ξ 1). Since (k/2e)k/2 ^ C, Γ( (k + l)/2) with C1 > 0, it follows that

l/ϊ.l^c 2 | | f f | 4Πfc»'/ 2M(«<) (2-4)
1=1

where we have defined A(0) = 1, A(2s +l) = A(2s -f 2) = s ! for 5 - 0, 1, 2, ....
Therefore the proposition reduces to the case n = 1 with

/(z)=l+(z-ί-z2)exp(αz2)

and z real and positive. Clearly the terms 1 are unimportant. The evaluation of
the double series (2.2) is then a combinatorial problem that can be handled as
follows: For x real, write

00

exp(αx2)=C3(α) J exp( - ί2/α + 2tx)dt (2.5)
— oo

and use this (formally) with x = d/dz. Since
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we have

exp (α d2/dz2) [(z + z2) exp (bz2)]

= C3 (α) ] [(z + 2ί) + (z + 2ί)2] exp [ - ί> + b(z + 2ί)2]Λ

where c' = b/(l-4αb) and P1 is a quadratic polynomial in z whose coefficients
depend only on a and b. Then

(d/dz + 52/dz2) exp (αd2/3z2) [(z + 22) exp(foz2)]

= P2(0,b;z)exp(c'z2)

where P2 is a quartic polynomial in z whose coefficients depend only on a and b.
The rest of the proof is easy.
Remarks. 1. A partially alternate proof can be based on the methods of [29,
Theorem 7] or [30, Lemma 14.1.1.].

2. We do not know whether the estimate (2.3) is true for c = b/(l — 4ab). We
suspect that it is not, but we have no counterexample.

For any set A c C", let 0>n(A) be the set of polynomials on C" which are non-
vanishing on A and let^J+(v4)be the closure oϊ^n(A) in j3/"+ . It follows immediate-
ly by Hurwitz' theorem that any fG^+(A) is either identically zero or else is
nonvanishing in the interior of A. However, the converse is not true : as we shall
see shortly (Proposition 2.7), there exist entire functions /e s$n

a + , nonvanishing
on A, which are not approximable by polynomials nonvanishing on A.

Let Dn denote the set {ze C" : Re z > 0}. Then Propositions 2.2 and 2.5 immedi-
ately imply:

Proposition 2.6. Let α , f c ^ 0 with ab<\, and let fe0>n

a+(Dn) and ge0>n

b + (D").

Then h(z) =f(d/dz) g(z) is in ̂ /(1 _.ab) + (Dn).
For a partial converse to Proposition 2.6, see [31, 32] and [33, Sect. IX.6].

For our application we shall need to know which "pair interactions" lie in

0>n

a+ (Dn). The criterion is simple :

Proposition 2.7. Let B be a (complex) n x n symmetric matrix, and let
/(z) = expQ^Zjzp. Then the following are equivalent:

(a) Btj ^Ofor all ij.

(b) /e^"|β|| + (D"), where \\B\\ is the norm of B considered as a bilinear form on
C" (or W) equipped with the Euclidean norm.

(c) There exist polynomials { P. } in &n(Dn) converging pointwise tof.

Proof. To prove (a) => (b), note that

and since Btj ^ 0, the polynomials on the right are all nonvanishing in Dn. More-
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over,

\B\\Σ

from which the convergence in ^/pιι+ easily follows [28]. Clearly (b) implies (c).
Finally, note that (c) implies that for fixed (z2,... ,zπ)eD"~1, there exist poly-
nomials (βj in ̂ (D1) converging pointwise to

j=2

Now Qie^>1(D1) implies that \Qt(z)\ ^ Iβ fc')! whenever R e z ^ J R e z ' and
Im z = Im z', and this inequality clearly carries over to/. But it is not hard to see

n

that this implies B11 Ξ> 0 and Re Σ BIJZJ = O Since this holds for all (z2,..., zn)e
j=2

D""1, we must have Blj ^0 for 2 <^j ^n. Analogously one shows that Btj ^0
for all 1,7; hence (c) implies (a). QED.

Remarks. 1. | | JB | | ^maxΣ|^, j | ? by a simple argument using the Riesz-Thorin
i j

interpolation theorem (or Holder's inequality).

2. Polya [31] and Obrechkoff [34] have shown that /e ̂ ΐ+ (D1) if and only if

/(z) - Ke^2 + yz Π 1 - - /αj' (2.6)
Λ α j/

O^^^α, Reα^O for all j, Σl^ l'2 < °°?

 and R e7^ -^Reα^Γ1. For a
,/ j

proof, see Levin [33, Sect. VIII. 1]. Analogous results exist for various other
regions in C1 [33,35].

For each α > 0, let 3~n

a be the space of tempered distributions T on R" such
that

(2 7)
ί=ι J

for some tempered distribution Tα . We equip 3~n

a with the weak topology generated
by the test functions

ί=ι

with fa£<?(Un). That is, a sequence (or net) of distributions T(j}e^~n

a converges
to Ύ^9~n

a if and only if the distributions Tfl

(j) [defined as in (2.7)] converge to
Ta in the usual (weak) topology of &"(R"). Also, we define ̂  = p) ^r

α, equipped
α>0

with the obvious topology.
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Lemma 2.8, Let 0 < a ̂  oo. Then the Laplace transform Tι-> f defined by

f(χ) = $e?'xT(x)dx (2.9)

is a sequentially continuous linear map of&~n

a into ^n

1/4a+ That is, if a sequence Tα)

converges to T in $~n

a, then T(7) converges to T in ̂ n

l/4.a+

Proof. Assume first that 0 < α < o o . Then f(z)=Tβ(/z), where fz(x) =
exp(z x - ax2). Since Ta e^ '(IR"), we have.

|T f l (/) |^Ksup(l + |x|M) Σ |δα/(x)| (2.10)
* |α |£N

for some K, M, N. Now

sup(l + |x|M) X |aα/z(x)|^C(l + |z|M + ] V)exp(|z|2/4α) (2.11)

for a suitable constant C (depending on M, AT, α). Hence Tej/n

ί/4a+. Now fix
β>l/4a and let 0z(x) = exp(z χ- ax2 - β \ z \ 2 ) . Then it follows from (2.11)
that {gz}zeCr,is & bounded family in ^(IR"). Hence, since weak and strong con-
vergence are equivalent for sequences in <?'(Rn) [36, pp. 74, 238], T^\gz) con-
verges to Ta(gz) uniformly for zeC" in other words, T0) converges to T in ̂ n

1/4a+ .
The case a = oo follows immediately from the foregoing, since convergence

in J^ [resp. s#n

Q + ] is equivalent to convergence in ̂ " for all a < oo [resp. in
0]. QED.

Remark. We would get continuity instead of just sequential continuity if we had
equipped 3~n

a with the strong topology.

Proposition 2.9. Let 0 ^ α < /? ^ oo let T be a distribution in ̂ n

β whose Laplace

transform f lies in 0>n

l/4β + (Dn); and let fe~^(Dn). Then, for every γ < β - α
[and for y = oo if β = co], the distribution fT lies in £Γn

y and its Laplace transform

fTliesίn0»[/4y+(Dn).

Proof. Clearly fTeέF". To prove the statement about the Laplace transform,
assume first that/is a polynomial, i.e./e^"(D"). Then clearly

fT(z)=f(d/dz)f(z\

so by Proposition 2.6 [with a = α, b = 1/4 j8] we have

general /e^+(D"), let {/.} be a sequence
in ^%DM). For general /e^+(D"), let {/7} be a sequence in ^n(Z)^) converging
to/in j/"+ . Then {/JT} converges to/Tin ̂ , so by Lemma 2.8, {./VΓ} converges
to/Tin eδ/"/4y+ Since ^"1/4y+(Dn) is closed in ^/"/4y+ , this proves the proposition.

Finally, let us append a remark which clarifies the "strong Lee- Yang theorem"
of Newman [15, section 3] :

3™| Z(x + iy) |2 > 0 whenever xe(0, oo)n and ye R",

for every multi-index m. (2.12)

(Here we write x = Re h, y = Im A. The ordinary Lee- Yang theorem is just the
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case m = 0.) The point is that (2.12) is actually a consequence of our form of the
Lee- Yang Theorem :

Proposition 2.10. Let f be an analytic function on Dn which is a limit, uniformly on
compacts, of polynomials Pe&n(Dn). [In particular, fe£P"+(Dn) for some α suffices^]
For xe(0,oo)" and yeUn, let F(x,y) = \f(x + iy)\2 and let Gm(x, y) = dmF/dxm.
Then, for each multi-index m, we have either

(i) Gm(x, y) > 0/or all xe(0, oo)n and all yeRn or else
(ii) Gm(x, y) = 0/or all xe(0, oo)n and all yeUn.

Proof. Consider first the case/- Pe0>n(Dn). Let Q(z) = P(f); clearly βe^n(Dn).
Now define

R(z, z') = P(z + iz')Q(z - iz'\ (2.13)

Note that if x and y are real, then R(x, y) = F(x, y). Moreover, R is a polynomial
which is nonvanishing on the open set

Ωa = {(z,z'):Rezi>a,\lmzt

i\ <αfor 1 ̂ i^n}

for each a > 0. By Proposition 2.2 (and Remark 2 following its proof), we have
for each multi-index m either

(i) dmR/dzm ± 0 in Ωa

or else

(ii) dmR/dzm~QmΩa.

Moreover, if (ii) holds for one value of α then it holds for all a, by analytic continua-
tion; and (J Ωa contains the set (0, oo)" x Rn of real points. Thus, to complete

α>0

the proof for the case/= P, we need only determine the sign of Gm(x, y) in case (i)
we use induction on each component of m. Clearly G0(x, y)^0 Suppose that
Gm(x, y) ̂  0 for all x e (0, oo)π and all y e R"9 but that GΓ(x', /) < 0 for some x' e (0, oo)rt

and /eR", with r = m + (l,0, ... ,0). Then, by the above, Gτ(x,y)<0 for all
xe(0, oon) and yeRn. Fix w = (x2, ... , xπ)e(0, oo)""1 and yeR", and consider

K
Gm(x1 , w, 3;) and Gr(x1 , w, y) = SGm/dx1 as polynomials in x1 . Let Gm(x1) = Σ ckck\

with cκ ̂  0 (we suppress the dependence on w and y, which are fixed once and for
all). Clearly cκ > 0, since otherwise GJx^ -» — ooasx 1 -^ + co, contrary to the
hypothesis on Gm. Therefore either G^xJ = 0 for all xl (if X = 0) or else G^XJ) > 0
for x1 -> + oo. But either possibility contradicts Gr(x, y) < 0 for all xe(0, oo)" and
y E 1R". This completes the proof in the special case/= P.

Now let/= limP^ with each Pje^fl(Dπ). Form K;. from P;. as before; since
7->oo

the convergence is uniform on compacts, all derivatives converge as well, so we
have

for each multi-index m. Fix m. Then, by the above, each d™R. is either strictly
positive on (j Ωa or else identically zero there. It is then easy to see, using Hurwitz'
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theorem and perhaps passing to a subsequence, that lim δ™JR. is either strictly
j->00

positive on the connected open set (J Ωa or else is identically zero there. This
α>0

completes the proof.

Remarks. 1. If Gm = 0 for some m, then obviously Gm, = 0 for all m' ̂  m moreover,
F(x, y) must be a polynomial in x of degree less than m (with coefficients depending
on y). This happens, of course, if/is a polynomial but it also happens in other cases,
e.g./(x) = exp(iz) with n = 1, m = 1.

2. If/ is the Laplace transform of an even, positive measure μ not supported
at the origin, then case (ii) of the proposition cannot occur for any multi-index m,
since F(x, 0) must increase at least exponentially rapidly as x -> oo in a suitable
direction in (0, oo)". This observation, combined with our form of the Lee-Yang
theorem, will immediately imply (2.12), Newman's strong Lee-Yang theorem.

3. One-Component Models

The proof of a very general Lee-Yang Theorem for one-component ferromagnets
is now essentially complete; all we have to do is to collect the pieces from the
preceding section.

Definition 3.1. A finite (positive) measure μ on (R"(μ φ 0) is said to have the Lee-
Yang property (with falloff β) ifμe^n

β and μ^^n

i/4β + (Dn).
Since μ φ 0 implies that μ φ 0, it follows that μ(z) ̂  0 for Re z > 0 this is the

usual conclusion of the Lee-Yang theorem. Note, however, that μe^n

ί/4β + (Dn)
is a stronger hypothesis: it says not only that μ is nonvanishing in Dn but that it
is approximable by polynomials with this property.

Theorem 3.2. Let μ0 have the Lee-Yang property with falloff β; and let
/e^"+(Dn)[α < /?] be nonnegative on the support o/μ0, and strictly positive on a
set of nonzero μ0-measure. Then μ =/μ0 has the Lee-Yang property with falloff γ,
for every y < β — α [and y = coifβ= oo ]. In particular, we can take

= exp £ JijΨtΨj
Li,j=l J

with all J.j ^ 0, provided that α = || J \\ < β. (Here \\ J \\ is the norm of J considered
as a bilinear form on Un equipped with the Euclidean norm.)

Theorem 3.2 follows immediately from Propositions 2.9 and 2.7; the positivity
conditions on/are needed only to ensure that μ ^ 0 and μ φ 0.

Corollary 3.3. Let {v.} 1 < f < l l be measures on [R1, each having the Lee-Yang
property with falloff β; and let J be a symmetric n x n matrix with nonnegative
entries \_\\J\\ < β]. Then the measure μ on Un given by

r n - I B
dμ(φ) = exp £ Jijφiφj fl dvi(Viϊ ΐ3-1)

L U = I - l i = l

has the Lee-Yang property with falloff y, for every y < β — \\J\\ [and y = co if
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β = oo ]. In particular, we can let each v. be an even measure in 3~l

β satisfying condi-

tion (1.3).

Proof. Only the last sentence (which is Newman's [15] Lee- Yang Theorem)
requires further explanation it is a consequence of the following lemma :

Lemma 3.4. Let v be an even measure in 3~l

β satisfying condition (1.3). Then

(3.2)

with K> 0, 0 ̂  b ̂  l/4β and 0 < oq ^ α2 ̂  . . . , with Σ^Γ2 < oo here the sequence

{oίj} may be empty, finite or infinite.

Proof '[1 5, 5]. Since ve^ , v is an entire function either of order strictly less than 2,
or of order 2 and type at most l/4β. Moreover, v is even and has only pure imagin-
ary zeros, which we shall denote ± ία.. If v is of order p < 2, then (3.2) [with
fc^O] follows from the Hadamard factorization theorem [33, Sect. 1. 10] after
grouping conjugate pairs of factors. If v is of order 2 and finite type, then (3.2) follows
similarly from Lindelofs extension of the Hadamard factorization Theorem
[33, Sect. 1.1 1] we must have b real, since v(h) is real for h real, and we must have
b g: 0, since otherwise v(h) would vanish as h -> ± oo, which is impossible for the

Laplace transform of a measure. It easily follows [28] from (3.2) that ve^/4/J + (D1),
since the obvious approximating polynomials form a bounded sequence in
^ 1/4/3+ [Λey are all bounded in absolute value by v(|λ|)] which is pointwise
convergent to v. QED.

Remarks. 1. For non-even measures v, condition (1.3) is not in general sufficient

to imply ve^J^^D1). For example, consider v = <5a, so that v(λ) = exp (ah).

Clearly this satisfies (1.3); but ve^>J/4/? + (D1) only if a g O. In general one must
test whether v is of the form (2.6).

2. Lemma 3.4 may also be extended to even measures v satisfying a weakened
form of (1.3):

e / z | > c , (3.3)

for some c. Then the α;. in (3.2) no longer need be real, but come in complex-
conjugate pairs and satisfy |lm a^| ^ c. Still, it is easy to show that X|^ |~2 < oo.

Moreover, we have ve^|/4j8+(Dc). where Dc = [ z :Re z > c}. As an example of a
model for which this extension is useful, consider the spin-1 measure

+5^) (3.4)
0 ^

with 0 ̂  K ^ 1 here

v(λ) = * + (!-*) cosh A. (3.5)

ForO ^K ̂ |, v has the ordinary Lee -Yang property (1.3). But even for ~ < κ< 1, v
satisfies (3.3) with c = cosh" 1 (/c/(l - K)). Hence we can apply the obvious generaliz-
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ation of Corollary 3.3 in which the region Dn is replaced by Dn

c. (This is the reason
for the otherwise pedantic insistence on arbitrary c in Propositions 2. 1 and 2.2.)
The physical consequences of this theorem is that a ferromagnetic model with
single-spin measure (3.4) is free of phase translations in the region h > c (and by
symmetry h < — c). Of course, for K > | there will in general be phase transitions
at h=/=Q; indeed, at suitable temperature one expects the appearance of three
distinct phase as h is varied [37, 38].

In Appendix B we compare our approach to the Lee- Yang Theorem with the
Asano contraction method [10-14,43], and give an "explanation" from within
our own approach of why the Asano method works.

4. Two-Component Models

We now begin the application of our methods to Lee- Yang theorems for N-com-
ponent classical ferromagnets (N ̂  2). First we must determine the zero-free
region for the Laplace transform of the single-spin measure : this is the largest
region for which one can even hope for a Lee- Yang theorem.

Proposition 4.1. Let ve^be a rotationally invariant measure on UN (N ^2)
satisfying

J ehφ^dv(φ) £ Qfor Re h + 0. (4. 1)

Then the, Laplace transform v is of the form

(4.2)

where F is an entire function (of order at most 1) with only real negative zeros. More
precisely ,

(4 3)

with C = £ A(α)2> a > °> ° = b - V4j8 and 0 < α1 ^ α2 ^ ... , with £α~2 < oo here
«=1 j

the sequence {α .̂} may be empty, finite or infinite. Finally, vE&N

ί/4β + (LN\ where

LN = L+N\JL-N (4.4)

and
( Γ N T/21

L± - < h : + Re /*(1) >\ £ (Im A(α))2 \ . (4.5)
I L α =2 J J

Remarks. 1. We indicate the components of a spin by Greek superscripts in paren-
theses, running from 1 to N we label the spins on a lattice by lower-case Latin
subscripts, running from 1 to n.

2. (4.1) says that the projection of v onto the first coordinate has the Lee- Yang
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property as a measure on IR1. It does not say that v has the Lee-Yang property as a
measure on UN. Indeed, (4.2) implies that v cannot have the Lee-Yang property as
a measure on UN (unless v is Gaussian, so that {α.} is empty): for one can always

find he RN with Re /z(α) > 0 for all α such that ζ = ^A(α)2 takes an arbitrary negative
α

real value.

Proof. By rotational invariance, v(h) is a function only of ζ = £/z(α)2. By hypothesis
α

(4.1), v(h) has only pure imaginary zeros in h(1) when Λ(2) = ... = h(N} = 0. The
representation (4.2) follows. Indeed, Lemma 3.4 implies the representation (4.3)
Then ve^ 4β+(LN) follows as in Lemma 3.4, as a result of the following lemma.

N

Lemma 4.2. Let LN be defined by (4.4} and (4.5) and let heLN. Then ζ = £ /z(α)2 is
never real and negative α=1

Proof. Write h^x^ + i/^x + iy) with jςyeR"- 1 . Then Re ζ = x(1)2 - y™2 +
|x|2-|y|2 and Imζ - 2(x(1V1) + x y). If Imζ = 0, then | y| ̂  |x ( 1 ) | |y ( 1 ) |/lx

by the Schwarz inequality. But he LN means that |x(1)| > |y| hence x| >|y(1)|.
It follows that Re ζ > 0. QED.

It is convenient, following Dunlop [20], to introduce the variable
fi = (h^\ ih(2\ ..., ih(N\ Then the set heLN becomes the tube

(4.6)

where

N -11/21

Σ*(°>2 (4.7)
α = 2 J )

are the forward and backward light cones. Our ultimate goal is a Lee-Yang
theorem for the region (1.10), that is, for the tube

Refi .eΓ + foralH (4.8)

We study first the case N = 2. This case is particularly simple because the
tube (4.8) is equivalent by linear transformation to a product of half-planes. That
is, introducing the new variables

h± = 2-1/2(£(1) ± #2>) - 2~1/2(/z(1) ± ι7z(2)), (4.9)

the tube (4.8) becomes

Re h-+ > 0, Re h7 > 0 for all i. (4.10)

We are then precisely in the situation studied in Sect. 2; the Lee-Yang Theorems
of Sect. 3 carry over immediately. We need only note that

φ-+h~φ+l (4.11)

so that differentiation of the partition function with respect to h± brings down a
factor of φ + . Thus, a "ferromagnetic pair interaction" is an entire function of the
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form

with all coefficients jί * 3: 0. Rewriting this using (4.9), we find that

/(<?) = expΓ t X JίfVfVf 1 (4.13)
L i , j = l α , / ϊ = l J

subject to the conditions [20]

' J<J x > and J'f) are real

and J^1' are pure imaginary

for all ij. In particular, in the usual case in which

J(J2) = j(2i) = Q for all -̂  (4 15)

we recover the well-known [21] condition

l J l f o r a l l U (4.16)

We then have the following immediate analogues of Theorem 3.2 and Corrollary
3.3:

Theorem 4.3. Let μQ be a finite (positive) measure on IR2"( = (IR2)") with μQ φ 0,

μ0e3T2

β

n andμ0e^4β + (L+

2)
n) and kί/e^((L+)n)[α < /J] be nonnegative on the

support of μ0, and strictly positive on a set of nonzero ^-measure. Then μ =fμ0 is
a finite (positive) measure with μ φ 0, μe^~2" andμe^2" +((L+

2)
n\for every y < β — α

[and y = coifβ = co~].In particular, we can takefoftheform (4.13) — (4.16), provided
that α = || J || < β. (Here \\ J \\ is the norm of J considered as a bilinear form on U2n

equipped with the Euclidean norm.)

Corollary 4.4. For 1 ̂  i g n, lei v/e^ b^ α rotationally invariant measure on R2

satisfying condition (4.1)1 and let J be a symmetric real 2n x 2n matrix satisfying
(4.5) - (4.16) [ || J || < /?]. T/2<?n ίAe measure μ on U2n given by

dμ(φ) = expΓ f Σ J^φfφf 1 Π ̂ .(φ,) (4.17)
L i , j = l c t = l J i = l

=aoifβ= oo].
/M particular, the partition function

μ(h)= JexpΓ t Σ h^φ^λdμ(ψ} (4.18)
L i = l a = l J

is nonvanishing if

ReA| 1 ) >| lmA| 2 ) | for alii. (4.19)
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Remarks. 1. The last sentence of Corollary 4.4 has been proven by Dunlop [20]
for the special case of the plane rotator (1.9), by quite different methods. His proof
also extends [21] to the two-component | φ |4 model.

2. The zero-free region obtained in Corollary 4.4 can in some cases be extended
by exploiting the covariance (or invariance) of the partition function under
(complex) rotations [20, Theorems 1 and 3]. For example, if the interaction is
isotropic C/ j1* = J ?2) for all ij), then the partition function is invariant under the
simultaneous rotation of all spins hence the region (4.19) can be extended to

(J2{h :u Re h > u x Im h | for all ί} (4.20)

5. N-Component Models (N ;> 3)

The main result of this section is Corollary 5.5, a Lee-Yang Theorem for JV-com-
ponent ferromagnets in which the interaction is sufficiently anisotropic [see (1.11)].
As explained in the Introduction, this result—unlike those in the previous sections
—is not "best possible". But it is the only Lee-Yang Theorem we know of, for
JV > 3! Moreover, we believe that our methods can probably be extended to derive
a "best possible" Lee-Yang theorem for general N.

The case N ^ 3 is considerably more difficult than the case N = 2, because the
tube (4.8) is no longer equivalent to a product of half-planes. The trouble is that, in
three or more dimensions, the light cone is round! As a result, our fundamental
theorems—Propositions 2.2 and 2.7—are no longer adequate. Rather, we require
generalizations of these propositions to tubes more general than products of half-
planes. We state these conjectured generalizations in the form of two questions, to
which we can provide at present only some partial answers.

Question 5.1. Let Γ c= [R" be a closed convex cone, and let

Γ* - ( xetR" :χ y ̂  0 for all yeΓ] (5.1)

be its dual cone. Let R(v, w) and S(z) be defined as in Proposition 2.2. Now assume
that R(υ, w) ̂  0 whenever Re i eΓ* and Re weΓ + c. Does it follow that S(z) ^ 0
whenever Re zeΓ + cl If not, for which cones Γ and which polynomials R is it
true?

Question 5.2. (a) Let Γ1 c [R"1 and Γ2 c IR"2 be open convex cones, and let B be
a (real or complex) n ^ x n2 matrix. For which B is the function

11 "2

Σ V B wZ-ί ίj ί
ί = 1 . 7 = l

approximable by polynomials nonvanishing in the set

TΓι x T Γ 2 {(w,z):ReweΓ 1 ,RezeΓ 2 }? (5.3)

(b) [Restricted form] In the above, Iεtnί=n2 = n and Γ1 = Γ2 = Γ, and let B
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be symmetric. For which B is the function

/(z) = exp( t BίjZίz}} (5.4)
\ί,j=l /

approximable by polynomials nonvanishing in the set

ΓΓ = {z :RezeΓ}? (5.5)

With regard to Question to Question 5.1, we have the following result, applicable
to special polynomials P. :

Proposition 5.3. Assume that there exist vectors Λ(1), ... , /l(M)eΓ and polynomials
P. (1 g i rg k) in M complex variables, such that

p.(υ) = pμw v, ... , λ(M} v)for all i, (5.6)

and such that

is nonvanishing whenever Re v ^ 0 and Re weΓ + c. Then

S ( z ) = Σ P ί ( S / 8 z ) Q i ( z ) (5.8)
i = l

is nonvanishing whenever Re zeΓ + c.
To understand this proposition, note that the vectors 1(1), ... , A(M)eΓ define

"supporting hyperplanes" for the cone Γ*. Thus, if Rei eΓ*, then Re λ(*} v ^0
for 1 rg / rg M. Hence the hypothesis in R implies the usual hypothesis on R. In
fact (and this is the weakness of the proposition), it is stronger : it implies that R(v , w)
is nonvanishing whenever Re weΓ + c and Re t e {A(1) , . . . , A(M) }* and this latter
cone is in general larger than Γ*. (If Γ* is "round", it is necessarily larger.) Hence
not all # can be accommodated.

Examples. 1. Take k = 1 then the hypothesis on .R reduces simply to the require-
ment that P(5)^0 whenever Re£^0. But by (5.6) this implies that P(v)£Q
whenever Re ι;e{l(1), ... ,λ(M)}*. As an example of a polynomial P(v) which is
nonvanishing for Re v in Γ* but not in this larger set, let Γ = Γ* = Γ+ , the closed
forward light cone in Un(n ^ 3); and let

P(υ) = 1 + (v, + α)2 - £ v] (5.9)
j=2

with α > 0. By Lemma 4.2, P(u) is nonvanishing if Re t eΓ*. But for υ real, the zero
manifold of P is a spacelike hyperboloid which is asymptotic to the cone Γ*. Hence,
if Γ is a convex cone strictly larger than Γ*, P necessarily has a zero in f

2. Again let Γ = Γ* = Γ+ , and take P of the special form

P(v)= flP^Ό). (5.10)
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Then the hypothesis of the proposition can be satisfied: take M = 2n — 2;
λ(1) = e(1) + β(2U(2) = e(1) - e(2), etc. [the e(ί) (1 ̂ j ^n) are the unit vectors];
and take

But this is possible because the special form (5.10) implies that P(υ) is nonvanishing
not only for Re yeΓ* but also for Re i; in the larger cone

f = {λ ( 1>,...,>l<M>}* = {x:x 1 ^ max χ.|}. (5.12)

Proof of Proposition 5.3. Introduce also the new variables w(1), ... ,w(M)eC, and
define

k / M \

R(v9 w, w) = Σ P^β. w + Σ w^λ^ . (5.13)

Now R is a polynomial which is nonvanishing whenever Re v ^0, Re w ^0 and
Re weΓ + c. So fix w with Re weΓ + c9 and apply Proposition 2.2. It follows that

S(w, w) = Σ ^(3/3w)Q/ w + Σ w(°λ(/) ) (5.14)
ί=l V « f = l /

is nonvanishing whenever Re w Ξg 0 and Re weΓ + c. But

M

/ M \

) βf U + Σ W(OAM (5. 1 5)
V ^=ι /

by (5.6). Setting w = 0 completes the proof.

Remark. There is also an analogue here of Proposition 2.2 (b); its proof is essentially
identical.

With regard to Question 5.2, we are able to make only a few remarks :
1. We state Question 5.2. in two forms — the general form and the "on-diagon-

al" form — because here, unlike in Proposition 2.7, the two forms are not obviously
equivalent. (They may be nonobviously equivalent.)

2. A necessary condition in case (a) is that

(5.16)
i = l j=\

This follows by taking w = αu, z = ooc with αeC and applying the n = 1 case of
Proposition 2.7. Perhaps (5.16) is also a sufficient condition. This is certainly the
case if Γ1 and Γ2 are the "positive hyper octants"

Γί = {xeRnί : χ . > 0 for all i}, etc, (5.17)
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since in this case (5.16) reduces to the requirement Btj ^ 0 for all ij, and the result
is true by a minor modification of the proof of Proposition 2.7. However, we have
been unable to prove this conjecture for more general Γ19Γ2.

3. In case (a) we do have the following sufficient condition:

Proposition 5.4. Let μ(1),..., μ(M)eΓ* and λ(1),..., λ(M)eΓ*. Now define

M

Then Pk is nonvanishing in the set (5.3), and

HmPk(w,z)=/(w,z), (5.19)
k-»oo

where fis defined by (5.2) and

M

(5.20)

Moreover, the limit (5. 19) holds in the topology of jtf"1^"2 for sufficiently large a.

Proof. Since Γ1 is open, we have

Γ* = { Q } ( J { x : χ y>QfoτaΆyeΓί}.

Hence, for Re we Γ1 , we have either μ(*)mw = 0 or Re μ(^ w > 0; and likewise for
λ(^ z. It follows that Pk is nonvanishing in the set (5.3). The limit (5.19) follows
from

fe^oo

The converenge in j/"|+Π2 is proved as in Proposition 2.7.
Note that every matrix B of the form (5.20) satisfies (5.16) [as it must!] but

the converse is not in general true. For example, let Γl = Γ2 = Γ+ , the forward
light cone, with n1 = n2 = n ̂  3. Then for a diagonal matrix J3, (5.16) is equivalent
to

B n ^ max IB^I, (5.21)

2^j^n

while (5.20) is equivalent to

β n ^ Σ I ^ (5-22)
J = 2

[To see that (5.22) is a necessary condition, note that (5.20) implies tr(5G) ̂  0 for
every diagonal matrix G with G11 = l and G.. = ±1(2 ^j ^ n). It is easy to see
that (5.22) is a sufficient condition : it suffices to take M = n — 1, for each; (2 ̂  j <Ξ n)
to take

7 β(Λ) (5 23)

with suitable α .̂ ̂  1.]
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These remarks imply a Lee-Yang theorem for JV-component ferromagnets
with highly anisotropic interactions:

Corollary 5.5. For 1 ̂  i ̂  n, let v.e&"^ be a rotationally invariant measure on UN

satisfying condition (4.1); and let J(^\_\ ^ i, j ^n, 1 ̂ α ^N] be real numbers
satisfying

N

JW > V I J Φ I for all ij. (5.24)
α = l

Then the measure μ on RNn given by

dμ(φ) = exp JgVfVf Π <*vM) (5.25)

^ 0, μe^n andμe&"ly + ((L+

N)n\ provided that β is sufficiently large (how large
depends on J and γ). In particular, the partition function

/2(h) = J exp( Σ Σ AίβVίβ) }dμ(φ) (5.26)
\ i = l α = l /

/s nonvanishing if

/ N \ l / 2

Re //^ > Σ (Im ̂ ί^)2 f°r al1 L (5 27)

Proof. This follows from Proposition 5.4, the above remarks, and Proposition 5.3
in the accustomed manner [note that (5.18) satisfies the hypotheses of Proposition
5.3. for essentially the same reason as (5.10)]. QED

Remarks (continued). 4. In case (b) of Question 5.2, a necessary condition [ana-
logous to (5.16)] is that

Σ ByX^OforallxeΓ. (5.28)
i j= l

However, this is clearly not a sufficient condition: (5.28) would allow any positive
definite matrix B, for any Γ, which clearly contradicts Proposition 2.7. We suspect
that (5. 1 6) may be a necessary condition in case (b) as well as in case (a).

5. For the special case Γ = Γ+, the forward light cone, (5.21) is a sufficient
condition for case (b) : for by a minor modification of Lemma 4.2, (5.21) implies that

n n

Σ Bijzizj = Σ Bϋzf ^s never real and negative, for Re zeΓ so we can write
U=l i = l

/(z) = exp( Σ Blff\ = lim ( 1 + fc- 1 £ B,/^ Y, (5.29)
\U=1 / fc-+oo\ i, j=l /

a limit of polynomials nonvanishing in Re zeΓ.
6. The preceding remark would allow us to handle rotators with isotropic

interactions, for arbitrary JV, provided that we could find a satisfactory answer to
Question 5.1 in this case. This is so because we can write

exp[ VY Pj =
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and the last factor is a harmless constant for the plane rotator measure (1.9). The
same remark applies to single-spin measures which, though not of the form (1.9),
satisfy the following strong version of (4.1):

\ehφ^-c^2dv(φ) ± 0 for Re h ± 0, for all c ̂  0 (5.31)

—for in this case we can absorb the last factor in (5.30) into the single-spin measure.
Newman [39] (see also the remarks at the end of [40]) has found all rotationally
invariant measures satisfying (5.31) aside from (1.9), they are

dv(φ) = C φ2mexp(-a\φ*-b\φ\2)Yl(l + </> >2) exp ( - φ\2/v2) (5.32)
j

with C > 0, m ̂  0 integral, a ̂  0, b real, and α. > 0 with £αΓ4 < oo here the

sequence {α^.} may be empty, finite or infinite. In particular, by taking m = 0 and
{α.} empty, we obtain the JV-component | φ |4 lattice field theory. Finally, note that
this idea also handles some anisotropic interactions, in particular those which can
be written as a product of terms each of which looks like (5.30) except that (φ. -f φ^2

is replaced by φfj9 with

φ.. = (φW + φW, φm + φW, ... , φW + φW) (5.33)

for some sequence of + signs. This allows some (but not all) interactions of the form
(1.12).

The moral of this rather long story is that the JV-component Lee-Yang theorem
(N ^ 3) rides on finding a satisfactory answer to Question 5.1, for the case where Γ
is a product of forward light cones. But this we must leave as an exercise for the
ambitious reader.

Appendix A: Alternate Proof of Newman's Lee-Yang Theorem

In this Appendix we shall give an alternate proof of Corollary 3.3—which is a
slight generalization of Newman's [15] Lee-Yang Theorem—based on the ele-
mentary Proposition 2.1 instead of the more difficult Proposition 2.2. (Actually,
we shall prove only the β = oo case of Corollary 3.3 see Remark 1 following the
proof.)

Note first that since J.. ̂  0, we can absorb the factor exp(J..φ?) into dv.(φ.) and
preserve the Lee-Yang property of the latter [15, Proposition 2.4] this follows
from the n = 1 case of Proposition 2.7. and 2.9. Hence we can assume that Ju = 0.

The proof is now by induction on n. By hypothesis the theorem is true for n = 1.
So assume that it is true for n = N — 1, that is, assume that the function βN,l

defined by

IV- l N-l \ J V - 1

X J^φ^ Σ hiVi Π ΛM) (A 1)
i , j=l i = l / i = l

lies in &^ ~ ί(DN~x). Now by definition of μN (and Fubini's theorem), we have

μN(h1,...,hN)= $μN_1(h1+J1φN,...,hN_1+JN_1φN)eh»φ»dvN(φN) (A.2)
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with

Ji = JIN + Jm = 2JιN(l ^ί^N-l). (A.3)

Now the point is that since J. ̂  0, the function

g(φN) = βN-ι(hι + JiφN,...,hN_i + JN-ΐφN) (A.4)
lies in ^^(D1), for each fixed (h{ , ... ,hN_ί)eDN~ί and so, by the rc = 1 case of
Proposition 2.9, μN lies in ^^(D1) as a function of /ZN for each fixed
(h1,...,hN_1)eDN~l. Of course, this is not quite what we need to prove (though
it is the essential idea of the proof). To complete the rigorous proof, let { f . } be a
sequence in g?N~ 1(DN~ *) converging to μN_ 1 in j/jj ~ * that is, for each ε > 0 we
have

ί=ι

(A.5)

i= 1 J

for some sequence of constants {c(ε}} converging to zero. Inserting this into (A.2),
and using the hypothesis

J exp(b(pχ)dvN(φ) < GO for all fc, (A.6)

we find easily that

N Ί

ΣK I 2 J (A.7)

for some constant K < oo. Hence the integral converges to μN in j^ + But the
integral equals

h^dvN(φN) (A.8)

(since f. is a polynomial, this equality is trivial), and gje^)l(Dί) whenever

(hi,...,hN_1)eDN~1. Now let {pk} be a sequence in ^(D1) converging to VN

in J/Q+. Then, by Proposition 2.1, gj(d/dhN)pk(hN) is a polynomial in (/z 1 5 . . . ,/?N)
which is nonvanishing in DN (or else is identically zero1). But by Proposition 2.5
and an easy estimate, gj(d/dhN)pk(hN) converges in £/^+ to (A.8) as k -> oo. Hence

the function (A.8) is in Ψ^+ (DN) so by (A.7), μNeP"+ (DN) as well. This completes
the proof.

1 We use Remark 2 following Proposition 2.2 (or an equivalent argument based on the last sentence
of Proposition 2.1) to ensure that gj(d/dhN)Pk(hN) vanishes identically in hN for one value of (/z 1,... ,hN _ J
only it does so for all(hi,...,hN_ί)
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Remarks. 1. By keeping careful track of the rate of Gaussian falloff in the above
proof, one can also handle β finite but sufficiently large (depending on the matrix J).
But the inductive structure of the proof, which treats the n spins asymmetrically,
is unlikely to allow the optimal result || J || < β proven in Corollary 3.3.

2. The inductive idea — considering the spin φN as a "magnetic field" acting
on the spins φί,...,φN_i — is also the basis of the proofs of the (spin-|) Lee - Yang
Theorem due to Newman [15, Theorem 3.1] and Sherman [14].

Appendix B: Comparison with the Asano Contraction Method

The present approach to the Lee -Yang theorem is based on the idea that certain
functions F — namely, Fe^" + (D") — are "universal multipliers" for Lee -Yang
measures : that is, whenever dμQ(φ) has the Lee- Yang property, so does F(φ)dμ0(φ).

The Asano contraction method [10-14, 43], by contrast, is based on the idea
that certain measures μ0 have the following property: if F1(φ)dμ0(φ) and
F2(φ)dμ0(φ) have the Lee-Yang property, then so does F ι(φ)F 2(φ)dμQ(φ). This
idea is extremely powerful, since it allows one to prove the Lee- Yang theorem for
a large model simply by verifying it for each elementary interaction, and this is
often a trivial computation. Unfortunately, however, the only base-measure μ0

for which this idea is known to work is the uncoupled sρin-| Ising measure

dμ0(9) = Π Hδ(<Pι ~ <0 + δ(<Pt + «iW<Pt (B.1)
ί=l

That the Asano property is not a general property of Lee- Yang measures can be
seen from two simple examples in n = 1 :

1. Let μ0 be the usual spin-1 measure

^H^+^o + U (B.2)

Then exp( — bφ2)dμ0(φ) has the Lee- Yang property if and only if b:glog2.
So take F^φ) = F2(φ) = exp( - bφ2) with \ log 2 < b g log 2; then the Asano
property fails.

2. Let μ0 be a spin-| Ising measure in a positive magnetic field :

dμ0(φ) = ehoφlδ(φ - 1) + δ(φ + 1)] dφ (B.3)

with h0 > 0. Now let F^φ) = F2(φ) = exp( - hl φ) with A0/2 <hl ^ h0 the Asano
property again fails.

On the other hand, we can "explain" in terms of our own approach why the
Asano property does hold for the measure (B.I): the point is that if Fί(φ)dμ0(φ)
has the Lee-Yang property, then there exists a function P±(φ\ equal to F^φ) on
the support of μ0 , which is a universal multiplier [in fact, P1 e^"(D")] hence

φ) = P

has the Lee- Yang property. To be explicit:

Proposition B.I. Let F(σ1 ?...,σJ be defined for (σ 1 ? ... , σn} = ± 1, and let
P(φ1? ... , φn) be the unique polynomial of degree at most 1 in each variable which
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coincides with F, i.e.

P(Ψl, ...,«?„)= Σ ... Σ F( f f l,..., f f l l)nl±f*i. (B.4)
σ ι = ± l σ n = ± l ι=l Z

T/ze/Ί the following are equivalent'.

(a) g(Z l,...,zJ= X ... X F(<τ 1 , . . . ,σ l l )Πz< 1 / 2 >< 1 -<"> (B.5)
< 7 i = ± l σ n = ± l i = l

zs nonvanishing if all z.| < 1 [ί/πs is ί/ze Lee- 12mg property in the activity variables
z. = exp(-2A.)];

(b) P(φ1 , . . . , φπ) is nonvanishing if all Re φ. > 0.

Proo/. The transformation

+ φi) (B.6)

maps |z.| < 1 onto Re φ£ > 0 and moreover

p(φ 1 , . . . ,Φj = e(^1,...^π)πH^ (β 7)
ί=l L

Since (1 4- Φ^/2 ̂  0 for Re φf > 0, this completes the proof.

Remarks. 1. Although example 1 above shows that the Asano property does not
hold for the spin-1 measure, a modified Asano property does hold [27] for spin 1
and in fact for all the classical discrete spins: there is a weight function G(φ)
[certain binomial coefficients] such that if F1(φ)dμ0(φ) and F2(φ)dμ0(φ) have the
Lee-Yang property, then so does G(φ)F1(φ)F2(φ)dμ0(φ). It would be interesting
to have a deeper understanding of this phenomenon. Is there any direct generaliz-
ation, for example, to classical Heisenberg spins?

2. The Asano contraction method has the advantage over the method of the
present paper in that it is suited to studying zero-free regions other than half-planes
(or circles in the activity variables) [ 12, 13].
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