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Abstract. We prove a large number of results about atoms in constant
magnetic field including (i) Asymptotic formula for the ground state energy of
Hydrogen in large field, (ii) Proof that the ground state of Hydrogen in an
arbitrary constant field has Lz = 0 and of the monotonicity of the binding energy
as a function of B, (iii) Borel summability of Zeeman series in arbitrary atoms,
(iv) Dilation analyticity for arbitrary atoms with infinite nuclear mass, and (v)
Proof that every once negatively charged ion has infinitely many bound states
in non-zero magnetic field with estimates of the binding energy for small B and
large Lz.

1. Introduction

This is the third paper in our series on Schrόdinger operators with magnetic field
concentrating especially on the case of constant magnetic field where we normally
use the gauge

a = i ( B o x r ) . (1.1)

In this paper we consider primarily the physically important case of Coulomb
forces and constant B. There turn out to be a number of previously undiscovered
phenomena of mathematical and/or physical interest. This is, in part, because of
the dearth of previous mathematical literature on the subject and, in part, because
the natural units of B are so large (about 109 Gauss) that theoretically interesting
efforts at large field cannot be seen in the laboratory with present techniques. The
natural unit of B is B* = \mc2(ot2/μB) = 235 x 109 Gauss; μB the Bohr magneton
and \mc2v? the binding energy of Hydrogen. In a field of size 5*, the Landau
energy exactly equals the ground state energy.
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The other papers in our series deal with the following subjects: Paper I [9]
discussed features of general interactions: both general B's and constant B with
general potential. The paper dealt primarily with the two body case. The techni-
ques and ideas of [9] are especially relevant to the present work. In particular, the
stability method of that paper ([9], Sect. 6) will be useful here as it has been use-
ful in the study of constant electric field [22, 23]. Moreover, the general scat-
tering and spectral properties of Hydrogen in a constant field are treated in [9].
If [a given by (1.1)]

H = (-ίV-a)2-r-1

then H has no singular continuous spectrum (Theorem 4.7 of [9]) and modified
Dollard-type scattering operators exist and are complete (Theorem 4.3 of [9]).
Paper II [10] deals with certain special features of the reduction of center of mass
and Paper IV [11] with numerical calculation of the ground state of Hydrogen in
large magnetic fields.

In the present paper, there are points of direct relevance to the other papers in
the series. First, there is an error in our discussion of dilation analyticity in [9]
which fortunately is not major. The main consequences [(a) and (b)] and proof of
Theorem 4.7 in [9] are correct but we do not quite prove precisely what is stated.
This is further discussed in Sect. 6 of this paper. With regard to Paper II [10], we
have found an interesting formula for the quasimomentum dependence of general
N-body systems with total charge β = 0 after reduction of the center of mass.
While this formula is only marginally relevant to the main thrust of the present
paper, we have included it here (Appendix 2) since II has already been published.
Finally, Sect. 2 is directly related to Paper IV [11].

The contents of the paper are as follows. We begin with consideration of one
electron systems. In Sect. 2, Hydrogen in large B field is studied by reducing it to a
one dimensional weakly coupled system. Such systems have been discussed in
[43,14,27] but only for potentials V=0{\x\~1~ε) at infinity. Since we need
V=0(\x\~1) at infinity, we begin by studying such one dimensional systems.

In Sects. 3 and 4 the main results are that the ground state in Hydrogen has
Lz = 0 and a binding energy which is monotone increasing in Bo. The main
technical tool is the use of correlation inequalities. Such inequalities were
originally proven by Griffiths [19] for statistical mechanical models and their
applicability for Euclidean quantum field theories was first noted by Guerra et al.
[20]. Here we exploit them to study non-relativistic quantum theory with
potentials V vanishing at infinity. Motivated by our work, Lieb and Simon [32]
have found another application to Born-Oppenheimer curves.

In Sect. 5, we prove Borel summability of the perturbation series for the
Zeeman effect in hydrogen in constant field. Our method of estimating the N!
growth in the perturbation coefficients has been borrowed in related contexts: for
the Stark problem by Herbst and Simon [22, 23] and for the J R " 1 expansion in
molecules by Morgan and Simon [34].

In Sect. 6, we begin our treatment of multielectron systems by discussing
dilation analyticity, extending our results for the case of Hydrogen in [9]. In
Sect. 7, we extend the Borel summability results of Sect. 5 after extending the
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stability results of [9, Sect. 6]. In Sect. 8, we discuss falloff of bound state wave
functions.

In Sect. 9, we discuss in detail a subject we sketched in [8], namely the fact that
negative ions always form in magnetic fields; indeed for any atom A, the ion A~
has infinitely many eigenvalues below the continuum in Bo =+= 0 field. Our proof
uses the fact that polarization of the atom produces a net attractive force between
A and the extra electron, an idea which does not appear in [8]. The importance of
polarization has also been emphysίzed by Larsen [29] who was motivated, in
part, by [8]. We also discuss the behavior of the binding energy as B[0 and as
LJoo.

Appendix 1 contains some results on quadrupole moments of atoms in Bo + 0
fields and Appendix 2 some new results on reduction of the center of mass.

The reader will note that two one-body topics have not been discussed in
iV-body contexts: correlation inequalities and strong field. Because of the Pauli
principle, correlation inqualities are generally not applicable indeed Lz may not
be zero in the ground state of atoms. It might be possible to treat Helium in large
field but this would be premature before the 3-body analog of Simon's result [43]
on one dimensional short range potentials is obtained. The latter appears to be
non-trivial.

The bulk of the results in this paper were obtained by us in the Spring of 1977
and announced in [7, 8] the major exceptions are the dilation analyticity material
in Sect. 6, the material in Sect. 8, the improved results using polarization in Sect. 9
and the discussion in Appendix 2. Since 1977, some subsets of us have used our
methods elsewhere [22, 23, 32, 34] we emphasize that the work here predates that
in the last references. Moreover, Simon [45] has a pedagogical discussion of some
of the material in Sects. 3 and 4. We also note that unaware of our work, some of
the results in Sect. 3 were found using very different methods by Rosner et al.
[39] see the discussion in Sect. 3.

PART A: Hydrogen

2. Large Field Asymptotics

Let a(B) =-(zxr) with z = (0,0,1) and let

H{B) = {-iV-a{B))2--r (2.1)

and define Em(B) to be the lowest point of the spectrum of H(B) restricted to
functions with Lz = m. By general principles (Theorem 5.1 of [9]), Em(B) is an
eigenvalue. In this section, we obtain the first few terms in an asymptotic
expansion of Em(B) about B= oo. The expansion is in a parameter like \n2B/lnB
and thus in the region of astro-physical interest, B~ 10-1000, the expansion itself
is of limited value. However the implicit equations used to obtain the series are of
calculational value, see [11]. The reader may also consult [11] for previous work
on large B behavior. Prior to our work [7], Hasegawa and Howard [47] had
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found the InB and \n2B terms in the asymptotic expansion of ]/ — E + B. They
analyzed the one dimensional problem without showing that the effect of the
"latent two dimensiona" is small on this \n2B level. We emphasize that with a finite
amount of effort one could carry the series to arbitrarily high order.

Physically, for large B, the electron will move in a tight Landau orbit in the x-y
plane and will be bound in the z-direction by the Coulomb potential. The problem
is thus essentially one dimensional. Moreover, by scaling, large B can be replaced

by B fixed and - changed to - with λ small. The problem is thus a weak coupling
r r

i - ione dimensional one with a long range |x| x potential. Such one dimensional
problems for O(|x|~ 3~ε) potentials were treated in [43] and extended to O(|x|~ * ~ε)
potentials in [14, 27]. We therefore begin by analyzing one dimensional problems
with long range Ixp1 potentials. (See Haeringen [21] for other discussion of such
long range one dimensional potentials.)

Theorem 2.1. Let V(x) be a function on (—00,00) obeying

1 * (2.2)
ε; \x\^l . (2.3)

Then for small positive λ, —d2/dx2 + λV has exactly one eigenvalue, e(λ\ of energy
below — λ2D2JA and for λ small and positive:

(2.4)

where In2(x) = In [In (x)] and

00 1 1

C=\e-yy-1dy+\y-1{e-y-l)dy-\n2-\ J Y(x)dx
1 0 - 1

- i ί (V(x) + \x\-1)dx. (2.5)
1

We begin the proof of the theorem by noting that (2.4) is equivalent to
e(λ)=-toc(λ)-]2 with

a{λ) = λ\n{λ-1)-λ\Ώ2(λ-1) + λC + λl\nλ-ίγHn2(λ-1) + O{λ[\n{λ-1)Yί) (2.6)

and this is what we will prove.
Following the basic scheme of [43], we isolate a rank one divergent piece of the

Birman-Schwinger kernel; the particular decomposition is taken from [14] and is
better suited to long range interactions than the one in [43]. Define V(x)1/2

= \V(x)1/2\sgn(V(x)) and let Pα,βα be the operators with integral kernels

a

2 , ' (2.7)

Qa(x,y)= -\V{x)mle-«\χ-y\-e-«We-aW-]\V{y)\m . (2.8)

Then oΓ^Pi + β J is the operator - Vm{-d2ldx2+ a2)~1\V\112 and so the
Birman-Schwinger principle (see [37]) asserts that — d2/dx2 + λV(x) has eigenval-
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ue — α2 if and only if Pα + β α has eigenvalue oiλ~ι or equivalently if and only if
1 ~λoc~1(Pa + QJ is not invertible.

Lemma 2.2. Let Qa have the integral kernel (2.8) with V(x) replaced by — \x\~x.
Then

llβj^illβj=ii>i. (2.9)

Remark. The equality | | β j = 2 improves the estimate H6JI = ]/3 which we
obtained in [11] by more straightforward calculation.

Proof. Since \\Qaφ\\ ^Dγ\\Qa\φ\ ||, the first half of (2.9) is trivial. Now α " 1 ^
= |xΓ1 / 2(/ί0 + α2)~1 |Λ:Γ1 / 2 where h0 is .~d2/dx2 with a Dirichlet boundary
condition at x = 0. Thus by the self-adjointness of Qa and the Birman-Schwinger
principle

\\oί~ίQJ=sup{λ~1\ho-λ\x\~1 has eigenvalue -α 2 } .

But the eigenvalues of h0 — λ\x\ ~x are — (4n2)~ 1λ2 by the analysis of Hydrogen. So

| | α - 1 β J | = s u P { ( 2 π Γ 1 α - 1 | n = l,2,...} = i α - 1 . D

Lemma 2.2 implies that so long as AD1/2α<l,

= ( l - λ α - 1 j 2 α ) ( l ^ A α - 1 ( l - λ α - 1 α β Γ 1 P f l t ) (2.10)

is non-invertible if and only if the last factor in (2.10) is non-invertible. Since Pa is
rank 1, the condition for this is

a = λΊτ(Pu(l-λa-1Q0)-ί (2.11)

or

α = ATr(Pα) + A2α-1 TrίP.ρj + ̂ α ^ T r ί P ^ ί l - A α ^ β J - 1 ) . (2.12)

Lemma 2.3.

(i) Tr(Pα) = l n α - 1 + C + O(αδ)> (δ>0) (2.13)

with C given by (2.5).

(ii) Tr(|PJ) = O(lnα- 1 ) . (2.14)

Proof. We prove (2.13). (2.14) follows by replacing V by \V\.

Tr(Pα)=-i I e-2^xW{x)dx =
— oo

where
1 1

/ = - | J e-2a^V{x)dx= -\ j V(x)dx
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///= fe-2αl*l|χ|-1<Zx= J e'yy~1dy
1 2α

1 0

Consulting (2.5), we have proven (2.13). •

Lemma 2.4.

Tr(P α β α )^D 2 . (2.15)

Proof. Using (2.2) and then scaling

|Tr (PaQa)\ S ^ 2 j dx f dyx" V~ 1e-α*β-α*[>--αl*-*l -£Γα|χlέΓαM]
4 o o

= DfJx- 1 e- 2 x dxf3;- 1 ( l-e" 2 y )^. (2.16)
0 0

Using

(2.17)

(2.15) results.

Remark. By using (2.17) we give up a little bit. The right side of (2.16) is exactly
D2(π2/12);see[ll].

Proof of Theorem 2.1. Clearly, by Lemma 2.4

and by using Lemma 2.2 which implies ||Qα(l — AQαα~ 1)~11| is bounded in the
region λ/cc small,

by Lemma 2.3. [Actually, Tr {PjQl) is finite and this term is O(λ3/a2) in the regions
λ/α~l/lnα~1.] Thus, by (2.12) and Lemma 2.2:

α = A(ln aΓ' + C + O(uδ)) + 0{λ2/u) + 0{λ3 In (α" x)/α2) .

The simple estimate — d2/dx2 + λV^ —cλ gives — α 2 ^ — cλ or α^const | / I while
a crude trial wave function ψ= \ίλe~λ^ gives α^const λQnλ'1)112. Using these
estimates, the above equation implies

for small λ and positive constants cί and c2. Thus

μ - 1 ) ] - 1 . (2.18)
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Taking ln's twice

In (x~1=\nλ-1-\n2(χ-1 + O(l\n{a-1)']-1) , (2.19)

(α- 1 )/ lnμ- 1 ) ] 2 ) (2.20)

(2.18)-(2.20) imply (2.6). Q

Remark. Klaus [28] has noted that r~1 falloff is the slowest where the ground and
excited states are distinguished in one dimension: for

is unitary equivalent to:

If V(x)~ — C\x\~δ at infinity, we pick oί = (2-δ)~1 and, using the fact that x~δ is
p2-bounded if (and only if) δ< 1, we see that h(λ)λ~2cί converges in norm resolvent
sense to p2 - C\x\"δ. Thus, if 0 < δ < 1,

for all eigenvalues.
We are now ready for the main result of this section:

Theorem 2.5. Let Em(B) be the ground state energy of (2.1) restricted to Lz = m.
Then for m ̂  0:

( 2 2 1 )
- + 2 ( C m - l + l n 2 ) In I - ) | + 0 ( 1 ) ,

where Cm is the constant C in (2.5) with the potential

00

V (x)— — ίm\\~ι [ tmp~Ht4-x2)~ll2dt (27T\
0

Remarks. 1) Cm is evaluated explicitly in [11] its value is

where yE is Euler's constant and qm = m~1 +qm_1; qo = O.
2) Notice that for B large our expansion suggests

E0<E1<E2<...

although since (2.21) is not claimed to be uniform in m this cannot be concluded
rigorously from Theorem 2.5. However, we will prove this for all B in Sect. 4.

Proof. Let H(B,λ) be the object obtained from (2.1) by replacing — ί/r by —λ/r,
and let εm(£, λ) be its ground state energy when restricted to Lz = m. Then since the



536 J. E. Avron, J. W. Herbst, and B. Simon

scaling p^>γ~1p, r-^γr is unitarily implementable H(B,λ) and γ~2H(γ2B,γλ) are
unitarily equivalent. Thus

so taking y = (2/£)1 / 2, λ=l

Em(B) = y - 2εm(2, y) y = (2/B)112

Now

(2.23)

with

Λ o = 7 T Γ 2 + x + / 2 .0 dx2 dy2

On Lz = m, /i0 has simple spectrum at 2|m|, 2|m| + 4,.... Let Φm(x, y) be the ground
state of h0 Γ (Lz = m), and let

(Pm/) (x,),, z) = ΦM(x, 3̂ ) J Φw(x', y)/(x', J', z)dx'dy' .

Let Hm(2 ?0)-H(2,0)r(L z = m)? ΛOfM = Λo \(Lz = m). Then for m^O

where

dz2

d2

The Birman-Schwinger kernels,

for H(2, y)|(Lz = m) is a sum of two terms the r~ 1/2Bar~1/2 term has a nice limit as
αJ,0 since

(H(2, o) - 2) r (l - ^ f
so that

and

^ f ̂ "

, o)+1) r (l -

,0) + 1 ) " V- 1

which is finite by standard results [36].
The r~1/2A0[r~1/2 term can be analyzed exactly as we analyzed the one

dimensional case. In computing Tr(Pα), the potential that enters will be

Vm{z)= J \Φm(x,y)\2(x2 + y2 + z2
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which, given the explicit formula for Φm, is given by (2.21). Vm obeys (2.2), (2.3) with
D1 = l and ε = 2. α(y), defined by 2 — α(y)2 = εw(2, y), still obeys an implicit equation

α = y l n α - 1 + Cmy + O ( y [ l n α - 1 ] - 1 ) .

/2\ 1 / 2

The r~ll2Bmr~112 terms first contribute at order y2. Noting that with γ= — '

\BJ
B

2"

we obtain (2.21) from (2.4). Q

3. GKS Inequalities and Wave Function Collapse

One of our main goals in the next two sections is the proof that Lz = 0 for the
ground state of Hydrogen in a magnetic field. In the absence of a magnetic field,
such a result is very general: the ground state for an arbitrary potential is strictly
positive [37], hence it must be Lz = 0 if the potential is azimuthally symmetric. The
magnetic field destroys the positivity of the integral kernel of e~tH on which the
general result depends and so the result becomes non-trivial. Indeed, Lavine and
O'Carroll [30] proved the existence of spherically symmetric potentials, V, so that
with a given by (1.1), ( — iV — α)2 + Fhas aground state with Lz + 0. In [9], we gave
further examples and a picture of why this can happen. Since this picture is also the
key to solving the problem for hydrogen, we next describe it in. some detail.

For simplicity, add an εz2 term to H0(B) = ( — iV—a)2, i.e. consider H0(B)
= H0(B))εz2. Then, for J3φO, H0{B) has purely point spectrum and its ground
state is infinitely degenerated having states with Lz = 0,1,... (if J3>0). If the
potential F^O lives in the region where the state with LZ = 2Ί lives, then clearly
H0{B) + V will have a ground state with Lz = 27. This leads to the natural
conjecture (made already by Lavine and O'Carroll [30]) that if V is spherically
symmetric and monotone increasing in \r\, then H0(B) + V will have a ground state
with Lz = 0. This is what we will prove in the next section.

Now consider a potential F(ρ, z) which is azimuthilly symmetric. By making a
cylindrical coordinate expansion one sees that:

Proposition 3.1. The ground state energy, Em(B0,V), of {-ίV-\B0(z x r )) 2 + V
restricted to Lz = m, is identical to the ground state energy of

-Δ + \B2ρ2 + m2ρ-2-mB0 + V (3.1)

since the ground state of (3.1) has Lz = 0.
One advantage of this reduction is that m can now be varied continuously.

Imagine adding an εz2 term to stabilize the problem by forcing a discrete ground
state then

^ 2 ( - 2 ) - B 0 (3.2)
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with < > the expectation value in the ground state. When F = 0, this derivative is
zero for m > 0. Thus the monotonicity of Em in m (m ̂  0) will follow from the fact
that <ρ~2> increases when V is added, i.e., that the wave function gets "pulled-in"
by an attractive potential. In this section, as a warm-up, we prove the following:

dW
Theorem 3.2. Let V,W be even functions on (— oo, oo) so that —— Ξ>0 for x ^ 0. Let

Ωv, (respectively Ωv+W) be the normalized ground state eigenfunctions for

— Γ T + ^ respectively ——j + F + W) (we suppose such exist). Then for any a
dx \ dx J

5 \ΩV + W(x)\2dx^ J \Ωv(x)\2dx . (3.3)
— a —a

Remarks. 1) Independently of us and using very different methods, this result was
proven by Rosner et al. [39] we discuss this further at the conclusion of this
section.

2) It is natural to use the language of path integrals to describe the proof below
but since the correlation inequalities are proven via a lattice approximation which
is equivalent to a Trotter product approximation we avoid that language.

We require the following result of Ginibre [18] which generalizes inequalities
of Griffiths et al. (GKS inequalities).

Lemma 3.3. Let A consist of those functions, &, of the form (g = <ge +
 <£0 with Ήe

even, ^ 0 odd and both Ήe and ^ 0 monotone increasing on (0, oo). Given positive, even
functions f1,...,fm on R and Jtj^0 (i,j= 1,...,), define a probability measure dv on
Rmby

)dxt (3.4)

with N a normalization factor. (Below N denotes a suitable, but changing
normalization factor.) Then for any g,hesrf and i,j

j g(x^h(x^dy^[\ g{xj)dv~] [J h(xJ)dv'] .

Proof of Theorem 3.2. Let Ωv+λW be the ground state for — —-̂  + F + λW and let
ax

h= — χ (_α α ), the negative of the characteristic function of ( — a,a). Notice that
hestf. Define

r W = \Ωv + λw,hΩv+λW) .

Clearly, we want to show that F is monotone non-increasing in λ. Write Hλ = — —
ax

Fτ(λ) = {e~THλxp, he-T

with ψ(x) = e~χ2. Since lim Fτ(λ) = F(λ), we need only show that Fτ(λ) is

monotone non-increasing. Next let
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where H0=-d2/dx2, V(λ)=V+λW, and N is the numerator with h = l. By the
Trotter product formula, lim Fτ n(λ) = Fτ(λ\ so we only need to show that

But Fτ n is of the form j hdv with v obeying (3.4) where m = 2n+l, and the /J(x )
are products of three kinds of factors: (i) i/ 's for z=l,2n + l ; (ii) e~

(V+λWHx)

for i=l, . . . ,m, n + 2, . . . ,2n+l (iii) Gaussians from the kernel of £~ s / / o

= ce-aX2e-ay2e+2aXy^ τ h e e-ax2 a n d e-«y2 a r e o b S O rbed into /'s and the e2axy

into the e^JίjXiXj. Clearly the /J's are even. Moreover, dFτ Jdλ is a sum of terms of
the form

- {[ J W{x^h{xn)dv^ - [ j h{xn)dv-] [J

so by Ginibre's lemma, dF/dΛ, ̂  0. •

Ginibre's result is pro wen for more general conditions than ft even what he
really requires is that fi(x) = ai(x)ebί(x) with α even and positive and bt odd and
monotone increasing on [0, oo) (see [45]). Thus, the above proof shows that:

Theorem 3.4. Equation (3.3) remains true for V= V0 + Ve, W= W0+We (Vo9 Wo odd,
etc.) so long as:

(i) Wo and We are monotone increasing on [0, oo).
(ii) — Vo and ~V0—W0 are monotone increasing on [0, oo).

Remarks. 1) By symmetry, we can replace all monotone increasing for odd parts
by monotone decreasing.

2) It is clear that an analogous result is also true for the Gibb's state

using the same technique.
3) One might think intuitively that no restrictions on V are needed for (3.3) to

hold if, say Wo = 0 and We is monotone on [0, oo). Here is a counterexample to this
construction which we owe to Joel Feldman: Let

V(x) = A -

= -π2 -2<x<-ί

W{x)=-A - 1 < X < 1

=o N^i.
In the limit as A-> oo, the ground state of ——~ + V will lie entirely to the left of 0

dx
2 d2

so> ί \ψv\
2dx=l while for — -Ί~^ + V+W, the wave function will be non-

_ 2 dx

2

vanishing in all of ( — 2,3), so j \ψv + w\
2dx<l. Thus by an approximation

2 2 " 2

argument j \ψv\
2dx> j \ψv+w\

2dx for all large enough A.
-2 -2
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In June of 1977, one of us (B.S.) lectured at CERN on Theorem 3.2 and
remarked that he knew of no "elementary" proof of the result. Within several
hours, Martin supplied such a proof which we now give with his kind permission.
We note that this methods are sufficiently one dimensional that if appears unlikely
that one can prove the results of the next section with them. We also note that
Martin's proof is a close relative of the proof that Rosner et al. [39] (see also
Leung and Rosner [31] and Rosner and Quigg [38]) subsequently found of the
result (they were unaware of our or Martin's work) their proof is essentially a
"differential" version of Martin's. For yet another proof and a discussion of what
happens for excited states, see [48].

Alternate Proof of Theorem 3.2 (Martin [33]). Let g = Ωv + w, u = Ωv and add
constants to V, W so that both ground state energies are zero. By a limiting
argument we can also suppose that dW/dx>0 on (0, oo) so that there is a unique
x o > 0 with W(x)<0 on (0,x0) and W(x)>0 on (x0, oo). Let h(x) = u(x)gf (x)
-g\x)u{x). By symmetry u'(0) = g'(0) = 0, so h(0) = h(ao) = 0. Since

h'(x)=W(x)u(x)g(x)

we have that hf(x)<0 on (0,x0) and hf(x)>0 on (x0, oo). Thus h(x)<0 on (0, oo) so
that iίu(yo) = g(yo)9 then g'(yo)<u'(yo). This implies there is a unique such point y0

and g(x)>u(x) on (0,y0), g(x)<u(x) on (y0, oo). Thus F(y) = J \_\g{x)\2-\h{x)\2^dx is
o

increasing on (0,j;0), decreasing on (y0, oo). Since F(0) = F(oo) = 0, F(a)>0 for all
a. •

4. FKG Inequalities, Wave Function Collaps and L z = 0 in Hydrogen

In this section, we will need the following version of the FKG (for Fortuin, Kastely
and Ginibre [17]) inequalities. We use the notation

and (IR+)° for the interior of this set and let J* consist of the bounded functions on

(!R+)° which are monotone non-decreasing in each x for x l 9 . . . , x f _ l 5 xi+1,...,xm

fixed

Proposition 4.1. Let dμv...,dμm be arbitrary (positive) measures on 1R+ with
μ.({0}) = 0, and let F be positive and C2 in (JR™)° with

d2lnF/δxidxj^0, xe(Wl)°, i+j . (4.1)

Suppose N = j Fdμx.. Λμm < oo and define

dv(x) = N-1F(x1,...,xm)dμ1(x1)...dμm(xm).

Then if fig eSί

\fgdv^\fdv\gdv. (4.2)

Remarks. 1) The condition d2lnF/dxidxj^0i i+j is equivalent to the FKG
condition F(x v y)F(x A y) ̂  F(x)F(y). This result appears in the unpublished
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Princeton senior thesis of Sax [40] and in a recent review article of Kemperman
[26]. A direct proof of the FKG inequalities which does not go through the FKG
condition has been found by Battle and Rosen [13]. Our proof of the equivalence
to the FKG condition can be found in [45].

2) Proposition 4.1 can be reduced to the FKG inequalities on IRm by the device
of introducing a C°° function φε on R with values in [ε, co) and such that
lim φε(x) = x for all x > 0 and φ'ε(x) ̂  0. Defining

FB(x) = F(φft(x1)9...,φε(xJ)

produces a positive C2 function on IRm satisfying d2lnF/dxiδxj^0, iΦj, all xeW1.
Then by replacing dμpz) by χ[n-1 n]{x)dμj(x) and suitably redefining / and g on all
of IRm to be monotone non-decreasing in each variable, we can use the usual FKG
inequalities. We then first let β JO and then n->oo.

3) The condition that F be positive (and not just non-negative) is essential. We
give the following example (shown to us by Brydges) to warn the reader: Let
dμj = e~xjdxpj=l92 and F(xvx2) = (xί—x2)

2. Then

but by explicit computation

J x1x2dv — J xxdv J x2dv = — 1/2 .

(See [26] for further discussion.)

Let <ί(IRm) be the family of all real valued measurable functions f(xι,...,xm)
= /(|x1|,-..,|λ;m|) defined everywhere in IRm except perhaps on the hyperplanes
Xj = 0. Let ^+(IRm) be those / in <̂ (IRW) such that on (R+)°, / is monotone non-
decreasing in each xf when the others are held fixed.

We prove the following preliminary version of a theorem we will use to show
that the ground state of Hydrogen has Lz = 0 in a homogeneous magnetic field:

Proposition 4.2. Suppose VeS{β^\ continuous on IRV, bounded below, C2 in (IR+)°
with

d2V/δxiδxj^0, i φ j , XG(IRV

+)° . (4.3)

Suppose W and —G are in <f+(IR
v) with G bounded and W continuous and bounded

below on IRm. For ε>0 let

(4.4)
H(V+W)=-A + V+ττr ' ' l 9

Then for any β>0

t r ( G £ - / w + > n ) ( t r £ Γ / ^ ^ (4.5)

Proof. Equation (4.5) is equivalent to

where N(V) = tre ^ ( F ) . As usual we make a discrete approximation in the path
integral for the trace. This is justified by a probability argument using the
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continuity of V and W and their boundedness below. We omit the proof. It is thus
sufficient to show that for all n

ί exp ( - - Σ W(*d) Gixjdv ^ J exp f - £ £ W(xj) dv J G{^)dv , (4.6)

where

{ ^ ( f VW + έfrA-m^n Σ l*,-xl+il4 Π ̂
i = l / i = l J i = l

and x w + 1 = x 1 . If we write (x ί) λ = x ί λ, f = l , . . . , n ; Λ = l , . . . , v and
x = ( x 1 1 , x 1 2 , . . . , x n l , . . . , x n v ) then

where

F(x) = exp ( Σ J i < / Ax i Ax j A) Jijλ ^ 0

We convert the integrals in Eq. (4.6) which are over IR"V to integrals over.IR",! by
replacing dv with the measure

dμ(x) = N~'Fdx^l,..., \xJ)K(x)ΠgJλ(\Xjλ\)dx3λ ,

where

F(x) = £ exp Σ Jίjλxiλxjλσiλσjλ .
σ β v = ± 1

Since Eq. (4.3) implies

we must only prove the same inequality for F. Let

/ ( σ ) e x P ( Σ Jijλxiλxjλσiλ<Tjλ)
σ«y = ±

Then

d2

dxiλdxjλ Sxiλdxjλ \ dxiλ ) \ dxjy

3(σ)> ,

where the pk(σ) are polynomials of second degree in the σίλ's with non-negative
coefficients (if XGIR+V) Thus by Griffith's first and second inequalities

d2

Since -expl--{W(xlί9...9xu)+... + W(xnl,...9xJηa.nd -G(x l j L,...,x l v) are

in ^+(1R"V), the result follows. Π
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It is not obvious how to prove Proposition 4.2 for singular V and W because a
regularization must be found which preserves the inequalities in Eq. (4.3). Thus we
present an approximation argument.

The following result will prove useful. Its proof can be found in [49].

Lemma 4.3. Suppose {Hn}™= 1 is a sequence of self-adjoint operators converging to H
in strong resolvent sense. Suppose K is a self-adjoint operator bounded from below
such that for each n, Hn^.K. Then

a) if K has compact resolvent, Hn-+H in norm resolvent sense;
b) if e~βκ/2 is trace class, then e~βHn converges to e~βH in trace norm.
In the next theorem, when we say that distributional derivatives d2V/dxidxJ^0

for xe(]Rv

+)0 and iή=j we mean that given any non-negative 0eC^(IRv

+)0) we have

J {d2φ/dxidxj)Vdvx ^ 0 i Φj .

V will be in L{o C(1RV) so that the above integral makes sense.

Theorem 4.4. Suppose V{x)=V{\x1\, ...,\xv\\ W(x)=W(\xί\, ...,\xv\) and
a) Vand W can each be written as a sum oftwo functions fγ andf2 with^ e LP(W)

with p = l if v = l, co>p>l if v = 2, p = v/2 if v^3 and f2 bounded below and in

b) The distributional derivatives of V satisfy — V(x)^0, xe(IRv

+)0, iφy.
OXflXj

c) ^ ( )

Then for any bounded G with -G in <f+(IRv), Eq:(4.5) holds.

Proof. We approximate V and W by functions satisfying the conditions of Prop-
osition (4.2) and then prove convergence of the traces using Lemma 4.3.

Let j be a non-negative C°° function in <f(IRv) with \jdx = l and suppy' in
the unit ball. Letjδ(x)=j(x/δ). With e = (l, 1,..., 1) let Vε(x) = V{x + εe) and

If we take δ<ε then for xe(IRv

+)0 the function

Φx(y) =jδ(
χ+£e - y) =Jδ(y -χ-ze)

is in C^((IRv

+)°) and thus

V(γ\= v (\γ I |γ h
yδ\X)— y2δ,δ\\XV> '••' \Xv\)

satisfies the conditions of Proposition (4.2). To approximate W we define

Wδ(x) = 2> f jδ(y)W{x + y)dy, Wδ(x)=Wδ{\Xl\,...,\xv\).

Then Wδ is in S+{W) and continuous.

We first show that if χN is the indicator function of {x: χ.\ ̂  N all /} where
^U then

O. (4.7)
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For V we have (if δ < 1)

>0 as (5|0. For W we have

^4* J jό(y)\\(Wχ2N)(-+y)-Wχ2N\\1dy
yelR +

->0 as δ[0 because of the continuity of translations on ZΛ

We will show that e~tHiVό)Λ+e~tH{V) which implies the strong resolvent
convergence of H(Vδ) to H(V). Vδ+Wδ is handled similarly. We then apply
Lemma 4.3 to get convergence of the relevant traces. We use the Feynman-Kac
formula and break up V into V1 and V2 and correspondingly write

-tS(Vί)δ(ω(s))ds

•dψuviy". (4.9)

Here dμx(ω) is Wiener measure on paths ω with ω(0) = x and we have used the
Schwarz innequality to get from (4.8) to (4.9) coupled with {V2)d^ — α. Thus taking
the sup over φ's with \\φ\\ = 1 we have

( F l ) ό ) ) M II (4.10)

By arguments identical to those used to prove (4.7) we have ||(F1)<5 — FJI^-^0 and
this gives, by standard arguments, the norm resolvent convergence of — Δ+2(V1)δ

and -Δ + Vx+{Vi)δ t o -A + 2VV Thus e-
tH(Vδ)-e-tH(Vl + iV2)δ)-*0 in norm.

In treating the quantity (φ,(e~tH{Vl + {V2)δ) — e~tH(V))ψ) we again use the
Schwartz inequality and find

lUe~tH(Vί+(V2)δ) __ e~tH(V)\ || 2

As proved in [50], if Un^Q, U^O and Un-+U in Ljoc, then -Δ + Un-^-Δ + U

in the strong resolvent sense. Thus e~ ί i / ( F l + ( F 2 ) ί i ) ^ Γ ί H ( F ) and hence

implies H(Vδ)-+H(V) in the strong resolvent sense. To
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apply Lemma 4.3 note that

^ -\Δ + φ | 2 - const =K. Π

Theorem 4.4 is not quite suitable for our purposes because of the m2ρ~2 term
in Eq. (3.1) which has the property that d2ρ~2/dxίdx2 = 8ρ~ 6x 1x 2 ^ 0 in IR+, where

ρ = ]/xl + x2. There are two ways out of this difficulty. The first (sketched by one of
us at Oberwolfach in 1977) uses the fact that if V= F(ρ, \z\) we really have a two-

d2 -
variable problem and only the derivatives —-̂ — should enter. In fact after a

δρdz
suitable (unitary) coordinate change the operator ( — W— j>B0(z xr)) 2 + V(ρ, \z\)
restricted to Lz = m can be written (after subtracting a constant)

where — d2/dρ2 has Dirichlet boundary conditions at 0 (for \m\ > 0) and we work in
the half-space ρ^O, z e R

We will instead prove a new result. We restrict ourselves to R 3 and for the

purposes of the following theorem use the notations: ρ = ρ(x) = ]/x\ + x\,
Q = (X1,X2,0), Ω = {xeR 3 :ρ>0,x 3 >0}, ^ = set of all almost everywhere defined
functions / with / real, measurable and only a function of ρ and |x3|. We define
i+ =set of all / in $ such that for xeΩ, f(x) is monotone non-decreasing in each
of the variables ρ and x3 for the other held fixed. 2

For a function /eLj^IR 3 ) we say that the distributional derivatives ^ 0For a function / e L j ^ I R ) we say that the distributional derivatives
for xeΩ if for every non-negative Φ<ΞCQ(Ω) we have oρdx3

dx3

Note that a formal integration by parts gives

7)-—d 3x and that

Theorem 4.5. Suppose V and W are in $ and
a) V and W can each be written as a sum of functions f1 and f2 with fx eL3 / 2(IR3)

and f2 bounded below and in L^JR3).
b) The distributional derivatives of V satisfy

ζψ^ϊO for
ρdx3

c) Wei+.

Then for any bounded G with —G in £+, Eq. (4.5) holds.
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We begin the proof of Theoem 4.5 by first proving the analog of Proposition
4.2. We thus assume that V and W are continuous and bounded below and V is C2

in Ω. We must prove Eq. (4.6). We write x ^ ^ c o s θ ^ s i n θ ^ ) and convert (4.6)
from an integral over 1R3" to an integral over (IR+)" by replacing dv with the
measure [on (IR+)"]

dμ(ρl9zl9..., ρn, zn) = N~ ιK,K

where

and

σi=±ί [ 0 i

exp(Σ

By assumption d2lnKί/dρidzi^0 in (IR2")0 with d2lnK1/dρidρj = d2]nK1/dzidzj

= d2lnK1/dzidρ. = 0. It suffices to prove that the mixed second partial derivatives
of lnK2 are non-negative. By symmetry, the d2/dρidzj derivatives are zero while

d2\nK2/dρidρj = J.. ( c o s ί θ ^ - θj)} + ̂  JikJj€ρkρ€A{i9 k;j9£),

where

A(i, k j , 0 = <cos(θ l- θk)cos(θj- θ,)} - <cos(0,- Θk)) <cos(θ j - θ,)>

and < > = N ~1 j exp / £ J. .ρ .ρ. cos (θ - θ ^ Π dθf s i n c e t h e Jij= J

; i ̂  °> bY t h e

GKS inequalities for plane rotors (proved by Ginibre [18]), A(ί,k;j^)^0 and
<cos(^-^.)>^0. Thus d2lnK2/dρidρj^0. The proof that d2lnK2/dzidzj^0 in
IR4" is as in the proof of Proposition 4.2.

We now proceed to approximate V and W by smooth functions. Let
V(x)= 7(ρ,x3), Ϊ 7 W = W^to^3). Choose ^O in C^(IR) such that supp £(-1,1)
and $j(x)dx = l. Setjδ(x)=j(x/δ). For 0<δ<ε let

K,.W = ί7W,(x3 -y,)h{Q + Φ\y, +*)dλ (4.12)

and define V8tδ{x)= Ve,δ(x19x2, |x3 |), 7,(x) = 7Mf,(x).
We define FP̂  ̂ (x) in the same way:

K δ(χ) = ί Λ ( ^ ( « ) ^( te + ε ) ^ ' *3 " a + ε)^λ Jα (4.13)

andWi(x)=WkM f,(x1,x2 |x3 |).
If v= Vγ + F2 with FiεL 3 / 2 (R 3 ), F2eLίo C(R3) and bounded below, we define (FJ^
and (V2)δ as above. Similarly for W. It is easy to check that

and that (V2)δ-> V2, {W2)δ^ W2 in L^ C(R3) with (V2)δ ^ - const, (W2)δ ^ - const. In
addition, Vδ and Wδ are continuous with F5eC2(iQ). From (4.13) it is clear that
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Wδei+. To see more clearly the structure of Vδ we make a change of variable and
rewrite (4.12):

K3^)-ίJs(Hξ/Q + s))jδ(x,+8-y3)V(ξ,y3)jdy3 (4.14)

from which the smoothness of Vδ is clear. Introducing the function

φx{ξ,y3) = ξ~ 2jδ(\n(ξ/ρ + ε))jδ(x3 -y3 + e)(2π)" '

we see that

where φx(y) = φx(ξ,y3) with the identification ζ = {y\ + y2

2)
112. For each xeΩ,

ΦXECQ(Ω) (if <5<ε) and a bit of algebra shows that

d2Fε>δ(x)/dρdx3 = (ρ + ε)" ' J V(y)/- Vy

so that for
Thus using the convergence argument given in the proof of Theorem 4.4,

Theoem4.5 follows. •
We now get back to Hydrogen-like atoms in constant field. All potentials V

which occur in our discussion will be assumed to obey the regularity property a) of
Theorem 4.5. We also write V(x)=V(ρ, \z\) for a function in &.

Theorem4.6. Let V(ρ, \z\)e$+. Let a be given by Eq. (1.1) and let Em be the ground
state energy of{ — W— a)2 + V(ρ, \z\) restricted to LΣ = m. Then

£ o g £ 1 g . . . ^ £ m g . . . , (4.15)

If either F(ρ, |z |)<0=limF(ρ, |z|) or V(ρ,\z\)-*ao at infinity, then the inequalities in
(4.15) are strict. In particular, for hydrogen, Lz = 0 in the ground state.

Remarks. 1) If ( — W— a)2+ V(ρ, \z\) has no ground state when restricted to
Lz = m, Em is by definition the lowest point in the spectrum.

2) If V< 0 = Jim F(ρ, \z\) it follows from [9] that Em is an eigenvalue. If V^ oo

at infinity the spectrum of (( — iV— a)2 + V(ρ, |z|)) \{Lz-=m) is discrete.

Proof. By a monotone convergence argument Eq.(4.5) holds when V in Eq. (4.4) is
replaced with m2/ρ2 + B\ρ2jA — mBQ and W is replaced with V. [One needs to cutoff
the 1/ρ2 term since it is not in L^^IR3).] We then (again by a monotone
convergence argument) replace ε|x|2 with εz2. We next take the limit β->oo and
find

0 , (4.16)

where < }λV is expectation in the ground state of
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and G is a bounded function with — G in S+. By Eq.(3.2). to prove Eq.(4.15) we
need only show that

and this follows from (4.16) by first cutting off ρ~2.
To get strict inequality, we argue as follows. If F->oo, Em is certainly discrete

and if V<0, then by [9], Em< infσ e s s(iί) for all m so Em is discrete. Thus, in either
case, Em is analytic in m for m in (0, oo). Thus, if Em = Em_ 1? since dEJdm^O, we
conclude that Em is constant. This violates the fact that lim Em = oo if F-> oo and

s(H) if V^O. Π

The above argument compares V = 0 and V rather than looking at the
derivative with respect to λ for < }λv. To look at this derivative, we only need that
V obey the hypotheses of Theorem 4.5.

Theorem 4.7. Let Em(λ) denote the ground state energy of (3.1) with V replaced by
XV. Suppose that

d2V(ρM)/dρd\z\S0, all ρ, \z\. (4.17)

Then Em(λ) — Em_ί(λ) increases as λ does.
To apply this, it is useful to note that

Lemma 4.8. IfVis a function, f ofr = (ρ2 + z2)112 and f is monotone in r and concave
(/ '^0 ,/ "^0) , then (4.17) holds. In particular, (4.17) holds for 7(ρ,|z|)= -r~\

Proof A straightforward differentiation. •

Given the scaling relation, (2.22).

Corollary4.9. For hydrogen, B~ι[Em{B) — Em_1{B)'\ decreases as B increases.

Let E(B)= min Em(B) be the ground state energy. Let
ϊϊl

e(B) = \B\-E(B)

be the binding energy. In [9], we gave Lieb's proof of his result that

(to be contrasted with E(B)^E(B = 0), [44]) for arbitrary potentials. Here we
strengthen this for monotone potentials:

Theorem 4.10. IfV(ρ,\z\) is monotone increasing, then e(B) is increasing in \B\.

Proof By Theorem4.6, e(B) = B-Em:= 0(B). Thus

in the region B^.0. As, in the proof of Theorem 4.6,
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SO

5. Borel Summability

Our goal in this section is to prove:

Theorem5.1. Let E be an eigenvalue of —Δ — \r\~ι which is non-degenerate on a
subspace of fixed Lz = m. Let E(B) be the energy level of( •— IV— \B x r)2 — \r\ ~x near
E for B small and real. Then for each δ>0, there is an Rδ > 0 so that

(1) E(B) has an analytic continuation to {B\O<\B\<Rδ;\argB\<π — δ}=Dδ.

(2) Let a2n be the Rayleigh-Schrόdinger coefficients for E(B). Then for some A and

alln:

E(B) + mB- £ a2kB
2k (5.1)

k=0

for all Be Dδ.

Remarks. 1) It is proven in [9, Sect. 6] that there is a unique eigenvalue E(B) of
H(B) near E for B small and real.

2) This result is also true so long as any degeneracies are removed to order B2

(and this is presumably true for all levels in hydrogen). Since this proof in quite a
bit more complicated and its analog in the Strak problem is described elsewhere
[23], we restrict ourselves to the non-degenerate case.

3) If |r|~x is replaced by V(\r\), the result holds true so long as V is dilation

analytic in # , 2 . If F e ^ α , the result is true with π — δ replaced by — + α — δ.
2

4) We will see shortly that this result cannot hold [both analyticity and the
bound (5.1)] in a (multivalued) sector of opening angle more than π.

The importance of (5.1) comes from Watson's theorem [37,41]which, given the
fact that E(B) + mB has perturbation series i n £ 2 , implies:

Theorem 5.2. Under the hypotheses of Theorem 5. ί, the Borel transform
00 a

f(B)= Σ 2" B2n is analytic in the whole plane with two cuts (iB0, oo) and

(—oo, —iB0) removed. Moreover,for B small and real

oo

E(B) =-mB+ J f(xB)e ~ xdx.
o

Remarks. 1) The analytic structure is somewhat reminiscent of that in the Stark
problem; see [23].

2) If the sector in Theorem 5.1 were π + ε, then f(B) would be entire. In fact,
there is considerable evidence, both numerical and (non-rigorous) theoretical that
the nearest singularity is on the imaginary axis with £ 0 = π/4;see [5,6].

Proof of Theorem 5.1. The necessary stability part of the proof is already contained
in [9, Sect. 6] which we use freely. E(B) = E(B) — mB is an eigenvalue of the
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operator

H(B)=-A-\r\-1+lB2ρ2. (5.2)

Direct use of Theorem 6.2 on H(B) implies analyticity in opening angle — — δ. We

use the idea [42] of scaling some of the argument of B onto |r| ~ x. We therefore
consider the operator

Hω(B)=-e-2iωA-e~ίω\r\-1+le2iωB2ρ2.

Let B = \B\eiφ and take 0 < ω. We would like to know when E(B) is an eigenvalue of
Hω(B). We want to be sure that the point £ < 0 stays out of the sector formed by
the lines {e~2iωp2\p2 ^0} and {e2ίωB2ρ2\ρ2 ^0}. To keep the first line away from E,
we need

The second line must stay away from the negative axis and in the positive direction
cannot swing past the opposite direction to the first line, so :

— π < 2ω + 2φ< π — 2ω.

By varying ω, we see that one can have

By also taking ω < 0 w e can get

—π<φ<π

and thus in the standard way (independence of eigenvalue on ω) [42,1], E(B) is
analytic in Dδ by the stabilty result, Theorem 6.2 of [9].

We describe how to get the bound (5.1) in the region |arg# |< — — δ. By using

Hω, we can get (5.1) in any Rδ. There is a standard way of proving bounds of the
type (5.1) (see [37], Sect. XI.4): it reduces the bound to proving that

| |(Ho + 5 2 ^ - A ) - 1 [ V F ( i ί o - / l ) - 1 ] " Ω | | ^ C 2 n + 1 ( 2 n ) ! (5.3)

for small B and λ with \λ-E\=ε. Here W=ρ2/4, H0=-A-r~1 and Ω is the
vector with H0Ω = EΩ. By the stability result, (Ho + B2W-λ)~x is bounded in the
region in question. Now write

7 = 1

and notice that | | e α k l ( # 0 - λ)~ le~a^ || is uniformly bounded for |α| ̂ <S by results of
Combes and Thomas [15] and that by results of the same authors | | ^ ' r Ώ | | < oo.
Obviously, \\We-δ^n\\^C0n

2 so the left side of (5.3) is bounded by D2n+1n2n.
We make a remark on the proof of stability needed above when H(B) is

replaced by HJB): Let Hω0{B) = Hω(B) + e~iω\r\-\ Then following [9] one only
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needs to show that as J3->0

| r r 1 ( z - H ω f O ( B ) ) - 1 - ^ | r Γ 1 ( z - H < D f O ( O ) ) - 1 (5.4)

uniformly in z for z near E. By a quadratic estimate one can show that
( — A-\-l)(z — Hω0(B)~1 is uniformly bounded for z in this region as B-+0 so we
need only prove (5.4) when |r|~x is replaced by φ(x) with φeC^(IR3). Now

Thus we need only show

</>(xXz-£ωsO(0)ry

is a bounded operator. But the x-space kernel of this operator is bounded by

e-y\χ-y\

where γ>0. Using \y\2^2(|x|2 + | x - y | 2 ) the result follows. •

Part B: Multielectron Atoms

6. Dilation Analyticity

In this section, we discuss dilation analyticity for systems of electrons interacting
with an infinitely heavy nucleus. In particular, we will show that the Hamiltonian
for such a system has empty singular continuous spectrum. We begin by
mentioning what is true in the one electron case, correcting an error in [9].

Let B point in the z-direction. Then the scaled Hamiltonian is, for θ real.

U{θ)HU{θ)-1 = -e-2ΘΔΛ-e2θ^Q2 + V{eθr)-BLz. (6.1)

In [9], we showed that for Lz-fixed and V axially symmetric and dilation analytic,
this operator could be reasonably defined for |Im0| < J and its essential spectrum
is for Lz = m:

0 {(2n + l)fl0 + e~2θλ\λe [0, oo)}. (6.2)
n = max(0, — m)

In the usual way [1] this implies that σsc(H\ the singular continuous spectrum, is
empty and on each fixed Lz-subspace, the only accumulation points of the point
spectrum of H could be {(2π+ 1)J5O}.

The error in Theorem 4.7 of [9] involved two connected mistatements. First,
we stated something about the spectrum of U(Θ)HU(Θ)~1 without the restriction

Lz = m. Of course, (if (0) - z)~1 = 0 &H(θ)ί (Lz = m)] - z)~λ formally but unless
m = — oo

one has a bound on \\([H(θ)\{Lz = m)] — z)~ί\\ uniform in m, one does not know
that zφσ(H(θ)) just because, zφσ(H(θ)l(Lz = m)) for all m. Indeed, it might be false
that the spectrum of H(θ) is just (J σ(H(θ) ϊ (Lz = m)) for example, it is not hard to

m

see that the numerical range of H(θ) is all of (C if Imβ + 0. Secondly, we stated



552 J. E. Avron, J. W. Herbst, and B. Simon

something about accumulation points of the point spectrum of H(θ) when all we
can safely discuss is accumulation points of the point spectrum of H(θ) ί (Lz = m).
We can talk about σsc{H\ since for self-adjoint H,σsc{H)=[j σsc(Ht(Lz = m)).

m

With the above in mind, we will discuss dilation analyticity for atoms in
magnetic fields by restricting to Lz = m subspaces. For this to work, it will be
important that the linear term in B multiply the total Lz and thus that the
charge/mass ratio of all the finite mass particles be identical. For neutral systems
with all masses finite and center of mass motion removed it might well be possible
to discuss dilation analyticity on the whole space without restricting to (Lz = m)
and thus without any restrictions on charge/mass ratios.

Theorem 6.1. Let V^r) (Orgi<j':grc) be potentials on IR3 which are azίmuthally
symmetric and dilation analytic in the usual operator theory sense [1, 37], say
VijiθX-Δ + iy1 compact for all \Imθ\<θ0. Let

H(θ)= t(-ίe-θVj-±B(zxeθrj))2+ £ Vij(e\ri-rj})+ £ FOi(e%).(6.3)

Fix Lz = m. Then, there is a countable closed set, Σm, so that for \lmθ\
<Min{π/4,θ0}

σess(H(θ) Γ(Lz = m))Q {x + e~ 2θλ\xeΣn9 λe [0, oo)}.

In particular,
(a) The closure of the point spectrum of H(θ = 0) Γ (Lz = m) is countable.
(b) H(θ = 0) has empty singular continuous spectrum.

Proof Clearly, on the subspace with Lz = m:

H(θ) = H(θ)-mB

with

H(θ)= Σ K-e-2θAi) + ie2θB2

ρn+ £ V^θ).

We will find a countably closed set Σ so that

σ,JH{θ))={x + e-2θλ\xeΣ9λe[09oo)} (6.4)

(no restriction to Lz = m) from which the results follow.
Let D = {C1, ...,Ck} be a cluster decomposition and let HD(Θ) be H(θ) with

intercluster potentials dropped. If Hc.(θ) is the internal Hamiltonian of cluster C
and ζl9..., Ck-i a r e intercluster coordinates, one see that

k

k

with dp bj>0. In the usual way [37], using either a Weinberg-van Winter analysis
or the Zhislin-Enss method, one sees that

= U {*i + + xk + »\*teσdiβc(ΛCi(θ)) μeσ(RD(θ))},
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where Hc.(θ) = hCi(θ)®I and hc.(θ) acts on the Hubert space of internal coordinates
for cluster Q. But for suitable positive numbers ωv ...,ωk_ί

j (ni + i)ωi + e-2σλ\nie{OΛ

so (6.4) holds with

ί *"*
Σ-j*!+...+** + X fa + i

By a standard inductive argument [12], I" is closed and countable. Q

7. Stability and Borel Summability

We begin by extending the stability criterion of [9, Sect. 6] to multiparticle
systems.

Theorem 7.1. Let {Vij}0^i<j<nbe real valued functions in L2 + L™. Let

H(B) =Σ(-^j- A / + Σ Vij(ri ~r) + Σ Voι(rd > (7-1)

where Aj = ^Bz xr^ . Let E<Σ = mϊσess(H(0)) be a discrete eigenvalue of H(0) of
multiplicity m. Then for any B sufficiently small, there are precisely m eigenvalues
(counting multiplicity) of H(B) near E and they converge to E. More precisely, there
is anεo>O and a Bo>0 so that for \B\<Bo the spectrum of H(B) inside \z — E\<ε0

consists of eigenvalues of combined multiplicity m, and these eigenvalues converge to
E as B-^0.

Proof We freely use the machinery of Weinberg-van Winter equations [37]. We
claim that

s-limD{B,z) = D{z)9 (7.2)
JB—• 0

lim||/(β,z)-/(z)| | = 0 (7.3)

uniformly for z in compacts of (C\[Σ, oo) with D and / respectively the discon-
nected and connected operators occurring in the Weinberg equations for H(B) and

We claim that (7.2) and (7.3) for an n-particle system imply ( z -

-Λ(z — if(O))"1 uniformly on compacts of (C\[infσ(H(0))? oo). To see this write

(z-H( J B))- 1 =(l-7(β 5 z))- 1 Z)(β ? z). (7.4)

Choosing a contour Γ in the region C\[inf σ(H(0)\ oo) such that 1 — I(z) is
invertible on Γ, we know by 7.2 that for sufficiently small B, D(B, z) is analytic
inside Γ so

Γ

, z)(ί - I(B, z))- 'D{B, z)dz. (7.5)
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Since I(B, z) >I(z) uniformly for zeΓ we see that

^ μ ) d z ^ ^ O . (7.6)
Γ Γ

If K = {φ, )ψ then integrating over a subset ΓQΓ

[KD(B,z)dz=[(D*(B,z)ψ,.)dzψ.

But D(B,z) is a sum of resolvents [35] and thus D(B,z)* = D(B,z) converges
strongly to D(z). Hence

KD(B, z)dz -i^U [ KD(z)dz.

Approximating I(z)(l — I(z))~1 by constant finite rank operators locally on Γ we
see from (7.6) that

ί 1 d z = 0. (7.7)
Γ

The projection (2πί}~* f (z — H(B))~xdz has norm 1 or norm 0 thus for sufficiently
r

small B, H(B) has no spectrum inside Γ. Since (7.3) and (7.4) imply strong
convergence of (z — HiB))'1 to (z — ί/(0)) - 1 for all but a discrete set inside Γ [the
points where 1 — I(z) is not invertible], our claim follows.

Since we know (7.2) for one-particle systems (Lemma 6.4 of [9]) we can
inductively suppose strong convergence of the resolvents of subsystems on
<E\[Σ, oo). Because of the tensor product structure of the HD's, we get strong
convergence of their resolvents and so since D(B, z) is a sum of such resolvents
[35], (7.2) follows inductively. This also implies a uniform bound on ||/(J5,z)|| on
compact subsets of C\[Γ, oo) (for sufficiently small B) and thus by Vitali's theorem
it suffices to prove (7.3) in an open subset of this region. Taking Re z very negative,
we can consider (7.3) in the region where the perturbation series converges. It thus
suffices to consider individual diagrams and by a limiting argument we may
assume V^eC^. We must thus show that for a connected diagram

i 2 ι j (7.8)

with H0(B)= Σ(P; — A7 )
2, Vj= —iVp and where ack = (ίkjk). By writing the differ-

j

ence of the two sides of (7.8) as a telescoping sum it suffices to show that

| | K J z - H 0 ( β ) ) - ^ . . 7 β J [ ( z - / ί 0 ( B ) ) - 1 - ( z + J)- 1 ]7 β i + 1 (z + J ) - 1 . . . | | (7.9)

converges to zero. But the factor in brackets is

-(z-H 0 {B)Γ ' (2Σ(p.- A,) A, + Σ|A/)(z + Δ)~ι.
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Let ρ(fc) denote the ρ for rik — rjk where r 0 = 0. By the connectedness hypothesis

k

Thus the components of A;- can be written as linear combinations of the
components of the ρ(Λ)'s with an explicit factor of B out in front. We use the fact
that (z — H0(B))~1(pj — Aj) is bounded and commute the ρ(fc)'s past resolvents
{z — Hςfβ))"1 and (z + zl)" 1 until they reach their corresponding Fαk's. In this way
we see that (7.9) is bounded by (const)|J5|. This proves (7.3). •

Given (7.2) and (7.3) the theorem follows as in [9] by an argument similar to
that directly below (7.4): Choosing small contours Γ to the right and left of £, we
see that there is an ε > 0 so that given any δ>0

if B is sufficiently small. We can and do choose ε so that 1 — I(z) is invertible on
\z-E\=ε. Then as in (7.7)

(iπiY1 J (z-#(£)Γ Mz-^βπz'Γ 1 f (z - if(0))" * dz
|z-E|=ε |z-E| = ε

and this proves stability (and hence our theorem).
We want to make two comments on an extension of Theorem 7.1 which we will

make use of in Sect. 9: If instead of considering the operator of Eq. (7.1) as an
operator on L2(R3") we instead use the Hubert space Jf appropriate to n spin \
electrons

J T = Λ M ( L 2 ( I R 3 ) ( X ) ( C 2 )

the theorem still holds. Here Λn(K) is the antisymmetric subspace of the rc-fold
tensor product of the Hubert space K. Here we assume Vίj(r) = \r\~1 and
VOi(r) = — n\r\ ~ *. The spectrum of H(B) on 3tf is of course in general different from
its spectrum on L2(IR3n) but because D(B,z) and I(B, z) commute with per-
mutations the proof is essentially the same. One can still consider individual
diagrams for Rez very negative, because the norm of an operator on J f is no
greater than the norm of the same operator restricted to an invariant subspace.

The second extension is the following: On L2(R3λί) we have [44] mϊσ{H(B))
^infσ(Jΐ(0)), however this is in general false on Jf. If we replace L2(R3") in
Theorem 7.1 by Jf and E of the theorem is infσ(iϊ(0)) then we claim that
inf σ(H{B)) is among the m eigenvalues of H(B) which are close to E. This follows as
in the argument below Eq. (7.4). We know that H(B) is bounded below uniformly
in B thus we need only- choose Γ to be a large circle in the region
(C\[infσ(Ή(0)), oo); for small enough B, H(B) has no spectrum inside Γ.

Given the stability result, the proof of Borel summability is now easy: using the
dilation analyticity ideas of the last section and a mild extension of the above
argument, we get analyticity in a region identical to that in Sect. 5. The proof of the
n! bound uses ideas in the Combes-Thomas method that easily extend to n-boάy.
While the results extend to arbitrary dilation analytic potentials, for simplicity we
state it for atoms:

Theorem 7.2. Let E be a discrete eigenvalue of (7.1) for B = 0 and Vij(r) = \r\~1

(1 ^ i <j rg ή), VOi(r) = — Z\r\ ~1. Suppose that on Lz = m,E is simple. Then for B, small
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and positive, the eigenvalue E(B) of Hm(B) = H(B) \Lz — m is analytic in

U {B||argB|<π-5;0<|B|<.Rί}.
<5>O

Moreover, the Borel transform of the Rayleigh-Schrόdίnger series is analytic in
{z\zφ[ίB0, ΪOO) or (—loo, — IBQ]}, and for B small and positive, the Borel sum is
precisely E(B).

8. The Falloff of Eigenfunctions

In this section we want to prove:

Theorem 8.1. Let HJB) be the Hamiltonian of (7.1) with VijeL2 + L^). Let
Σ = inϊσQSS(Hm(B)) and let ψ with Lzψ = mψ obey HJB)ψ = Eψ with E<Σ. Then for
any ε, there is a Cε with

where r{ = (ρ. cos 0., ρ. sin θ, zt).

Remarks. 1) See [37] for references on this general subject of falloff; recent papers
include [3, 16, 2].

2) The ρ-dependence in (8.1) is presumably optimal (modulo ε) but the zf

dependence can probably be improved [16, 2].

Lemma 8.2. e x p ( ( l - ε ) | / 2 " - £ QX2]1 / 2)t/;eZA

Proof A standard application of the Combes-Thomas method [15]. •

Lemma 8.3. Let H(B) be H(B) with the BLZ term dropped and let
H0(B) = H(B)-ΣVίr Then for any f p>ί and q = p/p~l:

\e-tH(B)f\^[e-tHo(B)\f\y/q[e-t HO(B) + PΣVIJ |/|]1/P. (8.2)

Proof e~tHo(B) generates a path integral which is Brownian in the z-variables and
the oscillator process in the ρ-variables. (8.2) is just Holder's inequality for the
Feynman-Kac formula (see [24,45, 16]). Π

Lemma 8.4. e-
t[&oiB)+pΣV^ maps L2 to L 0 0 .

Proof From the Feynman-Kac formula we see that

where the last inequality is Holder's inequality on path space and £ is the number
of potentials Vtj. Now use

where A=A± + A3 and Δ3 is the 3-dimensional Laplacian. Thus the result follows
from e-«-Δ + ̂ :L2(R3)^L™(JR?) when VeL2 + L™. This is a result of Herbst and
Sloan [24]. See also [45]. •
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Lemma 8.5. Let f be a function of r obeying

exp((l -ε) γϊ^E Q>?]1/2)/eL2.

Let ψt = e~tHoiB)f Then for large enough ί, ψt obeys (8.1).

Proof Let K ^ ρ J ; zf, zj) be the integral kernel of ^~^ o ( β ) . By Mehler's formula

((3.6) of [9]) and the fact that lim [cosh(ωή — l]/sin/ι(ωί) = 1 we can choose t so

that

t% (8.3)

for some a > 0. Next notice that

1/2

is dominated by

so that

\ψt\^Sdρ'dz'K(Q9Q';z9z')\f\

constexp - -
V Z

and thus by the Schwarz inequality we immediately conclude (8.1). •

Proof of Theorem 8.1. We have e~tH{B)ψ = e~taψ so that by Lemma 8.3

By Lemma 8.4

which by Lemmas 8.2 and 8.5 gives Eq. (8.1) for large enough t, since q can be
taken arbitrarily close to 1. •

9. Negative Ions

Many atoms do not have stable negative ions. For example, of the 72 elements
listed in [25], 18, including all the noble gases are in this class [and it is claimed
that most of those not listed (rare earths) probably have no stable negative ions].
Moreover, it is a rigorous theorem [46,4] that the purely Coulombic Hamiltonian
for negative ions has at most a finite number of bound states. It is thus somewhat
surprising that negative ions in a non-zero constant magnetic field always have an
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infinity of bound states. As we will explain the binding energy for small fields goes
as B3 and so it is unlikely that these states can be seen with currently available
laboratory fields. However they may have astrophysical significance.

The physics behind this phenomenon was discussed by us in [8] : The extra
electron moves in a Landau orbit and thus is pinned down in two dimensions.
Binding is thus a one-dimensional phenomenon. The net attraction of the neutral
atom on the extra electron is greater than that of imperfect shielding because there
is an induced polarization of the atom by this extra electron. The importance of
polarization has also been recently noted by Larsen [29]. With induced polariza-
tion in mind we gave a heuristic argument why the binding should be O(B3) for B
small. We imagine the extra electron feeling a polarization potential Vpol(r)~ — r~4

near infinity. (One can calculate an induced dipole moment D~r/r 3 using
perturbation theory.) Thus when it is in a Landau orbit in the directions
orthogonal to the field, the effective one dimensional potential is

W(z) = $Vpol(r)\φ(Q)\2d2ρ

with φ the Landau orbital. Weak coupling one dimensional theory [43] says that
the binding energy for small W is 0{{\Wdz)2). But §Vpol(r)dz~ — ρ~3 at infinity
and by scaling J ρ~3\φ\2d2ρ is O(B3/2) for B small. Thus we obtain the O(B3)

estimate on binding.
In our next theorem we will be dealing with the two operators

H(B)= £(-/V.-l/2£zxr/+ £ |r -r Γ'-(n-1) £ Ir Γ1 (9.1)

which is the Hamiltonian of an ion with nuclear charge n—ί and n electrons and

Hn -\B)= " Σ ( - ί Vj -1/252 x r / + £ |r£ - r | - 1 - (n -1) *£ 1̂ 1 ^9.2)

which is the Hamiltonian of a neutral atom with n — 1 electrons. Unless otherwise
stated H(B) will be considered as an operator in

the physical subspace of wave functions which are antisymmetric under simul-
taneous interchange of space and spin variables. Similarly Hn~ι{B) will be
considered as an operator in 3#>n

a~
1= Λ " " 1 ^ 2

Let £(0) be the ground state energy of Hn~x

and JΓ the space of ground states:

n - l

Before the Pauli principle is accomodated, i.e., on (X) (L2(IR3)(x)C2), Hn~\B)

commutes with a "physical" symmetry group SO (3) xSn_ί xSU(2) x 5 n _ 1 corre-
sponding to space rotations, permutations of spatial coordinates, electron spin
rotations, and permutations of electron spin coordinates. Because there is no spin
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dependence, this is a subgroup of an even larger group commuting with Hn~ x(5),
SO (3) x Sn __! x SU (2n — 2) = $ incorporating arbitrary unitary maps in spin space.
A group theoretic analysis [52] shows that if & acts irreducibly on an eigenspace,
then SO (3) x SU(2) (space plus spin rotations) acts irreducibly on the correspond-
ing subspace of 3fn

a~
ι. (Moreover, the representation of Sn_1 = coordinate

permutations, determines the total electron spin, S.)
Thus if all degeneracies are due to ^-symmetries a single L and single S will

enter (and each only once) in the natural decomposition of JΓ induced by the
action of the symmetry group SO(3) x SU(2):

•*"= θ ^LS (9-3)
{L,S)eJί

into subspaces jfLiS of definite total orbital angular momentum L and spin
angular momentum S. This "typical" situation should be borne in mind in looking
at the next theorem.

Theorem 9.1. Let Lo be the largest L appearing in the decomposition (9.3)
and suppose there is a unique So with (L0,S0)eJi and that
dimjfL O f So=(2L o + l)(2So + l). Let Hm(B) = H(B)\ L z = m . Then for any m ^ L 0 + l
there is a b(m)>0 so that for 0<B<b(m), Hm(B) has an eigenvalue Em(B) satisfying

Em(B)<Σ(B)-cmB3 (9.4)

with Σ(B) the bottom of the continuum of H(B) and cm > 0.

Theorem 9.2. Fix B>0. Let H(B\ Hm(B) and Σ(B) be as in Theorem 9.1. Then there
is an integer M(B)>0 so that for all m^M(B), Hm(B) has an eigenvalue Em(B)
satisfying

Em(B)<Σ(B)~c(B)m-3 (9.5)

for some c(B) > 0.

Remarks. 1) We believe that the m~3 behavior in (9.5) is optimal. If the ion with
5 = 0 is not bound and Lo = 0 we also believe that the B3 behavior in (9.4) is
optimal.

2) The addition of a term — 2B S to H(B) reflecting the interaction of the
electron spins with the magnetic field should not change the results (9.4) or (9.5).

3) Note that Theorem 9.2 says that every once negatively charged ion has an
infinite number of bound states below the physical continuum if B > 0.

Proof of Theorem 9Λ. By the extension of Theorem 7.1 remarked upon in Sect. 7,
Hn~1(B) has exactly q = dimjΓ eigenvalues (counting multiplicity) near E(0) for
small B and at least one of these equals

Let Jί(B) be the subspace of these q eigenvectors of Hn~1(B). Since
n - l

Hn-1(B) = Hn-1(0)-BL2 + l/4B2 £ ρ2

p first order perturbation theory [51, p.

443] shows that if e(B) is one of these q eigenvalues with eigenvector belonging to a
subspace with Lz = λ, then e{B) = E{0)-Bλ + O{B2) so that for small £ > 0 , E{B)
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occurs on the subspace of highest Lz which intersects J f (#). Since the highest Lz

occuring in c€ is Lo, and since the orthogonal projection P(B) onto Jf (J5)
converges in norm to the corresponding projection P(0) onto J Γ , for B > 0 E(B)
will occur on the subspace with LZ = LO.

Let Pj project on {ψ:Lzψ = Loψ} and similarity let P 2 projection
{ψ :Szψ = S0\p} where Sz is the total z-component of spin of the n—ί electrons. By
assumption P1P2P(0) is one dimensional so that for small B>0, P1P2P(B) is one
dimensional. Let

and define

η(B) = P(B)η(0)/\\P(B)η(0)\\.

Then for small B > 0 we have

(H"-1(B)-£(B))ι/(B) = 0, (Lz-Lo)η(B) = 0. (9.6)

We will need additional properties of η(B) for small B. Let

P(B,γ)=U(γ)P(B)U(-γ)

with U(y) multiplication by exp( — iy ]/r2 + ... + r2_ 1 +1). By arguments of
Combes and Thomas [15] combined with the stability arguments of Sect. 7, P(B, y)
is analytic in γ in a disk of radius 2δ0 > 0 independent of 5 for 5 small and as J3->0,

y)-^Up(0,y) (|y|<2<50). Thus as 5 ^ 0

P(B, iγ)η(O) = l/(iy)ί/(B) (ίj(B), l / ( - iy)ί/(0))-> t/(iy)ί(O) (η(0), U{- i

Dividing by (η(B\ U(-ίy)η(0)) we obtain (for 0<y<2δ0)

lim||C7(iy)(ι/(B)-ι/(0))||=0 (9.7)
B->0

and by a simple argument
In- 1

lim

In particular for B small

Σ ^ = 0. (9.8)

|| £/(ί<50) ί/(B) || ύ constant. (9.9)

To prove (9.4) we will use a trial vector Ψ(B) constructed as follows:

ψ(B) = PaΦ(B), (9.10)

where Φ(B)eJίf = (g) (L2(R3)(χ)(C2) and Pa projects onto Jfa= ΛM(L2(IR3)(χ)(C2).

The vector Φ(B) is given by

Φ(B)(r1,s1;...,rn,sn) = η(B)(rvs1;...,in_1,sn_1)fm(rn)[
f = i (9.H)
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where Sj is the spin coordinate of the / h electron, ζ(s) is an arbitrary normalized
spin wave function for the nih electron, and

where φm is the normalized ground state of

with energy B and izφm = mφm. Here of course ζ = ( r x ( - i V)) z. The function g is
given by

^(r)=-j8^)sgnz(l + | r | 2 Γ 1 , (9.13)

where y(z) is an even C00 function, 1 in a neighborhood of oo and 0 in a
neighborhood of 0 with O^y ^ 1. The parameters α and β will be chosen so that β
is positive with order of magnitude 1 while α is a constant times B3/2. They are
specified precisely in Eq. (9.48).

In (9.11), the ηfζ factor arises because we are putting the extra electron into a
Landau orbit in the magnetic field in the xy plane and a weak coupling state in the
z-direction. The factor (l+(Σzj)d) represents an ad-hoc modification of η to give η
a dipole moment.

We will make use of the explicit form of φm(B, ρ):

+^2ρme-BQ2^ (9.14)

which leads to the estimate

^ const £fc In β " 1 , fc = m + l . (9.15)

We also have

ί\Φm(B,Q)\2Q-kd2Q = O{Bkl2)9 k<2m + 2. (9.16)

We note for future reference that

Σ(B) = inf σess(H(B)) - E(B) + B (9.17)

and that

(9.18)

We will always take m ^ 1. We first calculate || Ψ(B)\\2. We denote by Sn the group
of permutations of {1,...,«} and by 7^ the obvious permutation operator on

corresponding to βe5 n . We have

Q
QeSn

) - ί / 2 X (~1)QTQΦ(B)
QeSn

2 ( ) Φ
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so that

%TQΦ(B)).
Qf*n

We claim that if Q(n) + n

(Φ{B\ TQΦ{B)) = O(aBm+ x) = O(B5/2 + m) = 0(BΊ/2),

where we are using m ̂  1 and α = (const)53 / 2. To see this we look at a typical term:

r 1 , s 1 ; . . . ; r π _ 2 , 5 ^
dr1...drn (9.19)

^constα^1}^)^,^;...;^^^

•dr^.Jr^ (9.20)

where we have used (9.14). Using the Schwarz inequality we have

In the last inequality we have used (9.9). In addition

||Φ(B)||2 = :

with

Ή - l

J ' = l

\\fmg\V

= aβ2O(B3/2), (9.22)

where we have used (9.15) with m ^ 1. We thus have

. (9.23)

A similar analysis of the exchange terms in (Ψ(B\(H(B)-E(B)-B)Ψ(B)) using
(9.9) yields

(Ψ(B), (H(B) -B- E(B))Ψ(B)) = n~ 1/2(Φ(B\ (H(B) -B- E(B))Φ{B)) + O(BΊ/2),

(9.24)

where on the right hand side of (9.24) H(B) is considered as an operator in Jf. Thus
combining (9.23) and (9.24) we see that it suffices to show that

(Φ(B), (H(B) -B- E(B))Φ(B)) <-dmB3 (9.25)

for some dm > 0 and B > 0 and sufficiently small. We calculate the left hand side of
(9.25) using the operator relation

-fAf=-±(Δf2+f2Δ)HVf)2
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with / = 1 + £ zA g(rn) and where the Laplacian and gradient include all
V/=i /

variables except zn. We obtain

(Φ(B\(H(B)-B-E(B))Φ(B)) =

where we have used

with

7 = 1

(9.26)

1 1

We calculate

= α2 1 + th
/ = i

WLύ-

Σzj

We have already estimated ||/mgf||2 in (9.22)

Using (9.15) with m ^ l and α = O(β3 / 2) we have

\fm

, (H(B)- E(B)-B)Φ(B)) = a2+ aβ2B3'2γm + (Φ(B), WΦ(B))

and thus

We now estimate (Φ(B), WΦ(B)):

(Φ(B), WΦ(B)) = IX{B, m) + I2(B, m) + I3(B, m),

where

(9.27)

(9.28)

(9.29)

(9.30)

(9.31)

(9.32)

I. (9.33)

Here 1^(5)^!, . . . , r n _ 1 ) | indicates the norm in the spin variables and

(9.34)
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where

λB(rn-l) = idrl~ drn-2 Σ

w
And

/n-1 \

I 3 ( B , m ) = —2βoc$dr1 ...drn_1dr\η(B)(r1, . . . , r n _ 1 ) \ 2 Σ z j ^ ( r i > . . . , r n _ 1 ? r )
V/=i /

We want to show that Ix and I2 are negligible. Since || | r 1 — r | ~ 1 ( — A1 + 1)" 1 ! !
^ const, the integral

(x(n— 1) j dr1drλB(r1)(\γ1—r\~1 — \γ\~1)\φm(B,Q)\2e~2a\z]i (9.36)

is less than

(const)α J dr\r\~1\φm(B,Q)\2 = (xO(Bm+1)

= O(BΊ/2) (9.37)

so that in (9.33) we need only consider the region | r | ^ l . Similarly

^α(n-l) J

rgφ-1) J ir1

^ (const)α J d r e - ' IΊ^IψJB, ρ)|2 = O(aBm+') = O(B7 / 2). (9.38)

In the second line above < , )• indicates inner product in the spin variables. Thus
in (9.33) we need only consider the region |r| ^ 1, | r j ^ ^|r|. In this region we use a
multipole expansion of |r t — r|~1 — \r\~i:

k 4π { —
| r i _ r | _ | r | = Σ Σ Y^θ^φJYMφ^/lrΓ

+ O ( | r i r
i / | r r 2 ) . (9.39)

An important fact is that for />0 (and /<2m + 2 so that the integral converges)

UΦMQψYMΦM-'-'dr^O. (9.40)

This follows from \Pί(cosθ)\t\~e~1dz = 0 which in turn can be seen from the fact
that a) by a change of variable \Pe(cosθ)\τ\~e~1dz = cρ~ί and
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Thus (32 + d2)cρ~* = 0 which implies c = 0 or { = 0. We use (9.39) with k = 3. Noting
that the dipole term vanishes we have:

+ (const)α

ί ί
| r 1 f < l /

\*\φm(B, ρ)|

,ρ)l2 |rΓ5

r|

(9.41)

r|

In the / = 2,3 terms we first add back in the regions |r| < 1, | r j < | | r | and |r 1 | > ^|r|.
This contributes O(B112) as in (9.37) and (9.38). Then we use (9.40) to replace e~ 2 α | z |

by g - 2 φ l _ i . The estimate | e ~ 2 α | z | - 1 ^ 2 α | z | then gives

/^(cons^α 2 Σ

+ (const) α J

Using (9.15) and (9.16) we find

A similar but simpler analysis of I2 gives I2 = O(BΊ/2) so that

(Φ(B), WΦ{B)) = 73(5, m) + O(5 7 / 2 In B " x ) .

(9.42)

(9.43)

(9.44)

We now estimate J3, given by (9.35). As above in the term corresponding to
Ir̂  —rl" 1 —Irl"1 the contribution from I r ^ ^ l r l is O(BV2). In the region |r7 | < ^|r|
we use

The estimates (9.15) and (9.16) show that | r // | r | 3 contributes O(B 7 / 2 lnB" 1 ). We
are thus left with r7- r/|r|3 in the region | r ; |< f | r | . Adding back in the region
\Tj\ > ^|r| again contributes O(BΊ/2). For the same reason we can replace γ(z) by 1 so
that

j=i

•n-ί

= -2βa

Using αrgconstB3 1 2 and m ^ l it is easy to show that (9.45)

where λm depends only on m. In addition, by (9.7)
ι - l • w - 1

and thus for small B > 0

(Φ(£), WΦ(£)) < - 4βaB3l2λm, (9.46)
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where 1 =
'n-l

Σ *j

2

λm. (9.46) and (9.31) imply that for small B>0
V/=i

(H{B)- E(B)- B)Φ{B))^a2 + ocβ2B3l2ym-2βaB3/2λm. (9.47)

We now choose

β=λjym ( 9

a = {λ2J2Ίm)B3<2.

The result is

(Φ(B), (H(B) - E(B) - B)Φ(B)) ^ - (λ2J2ym)2B3 (9.49)

which is (9.25). This completes the proof. •

Remark. We have not really exploited the freedom of the choice of spinor function
ζ in (9.11) or the choice of total S""1 of the n— 1 electron wave function. If 5 0 φ 0
we can obtain (by taking suitable linear combinations of states with Sn

z~
1=S0 and

ζ spin down and S"~1 = So — 1 and ζ spin up) bound states with total S = So ± \ and
so two bound states for each value of Lz in the regimes where we found one. In
particular if So = ̂  (e.g. hydrogen) we get both triplet (,S= 1) and singlet states.

Proof of Theorem 9.2. Let us first assume that Hn~ ι(B) has a ground state which as
before we call η(B). We use the same trial wave function (9.10) as in the proof of
Theorem 9.1. Again the parameters α and β will be chosen so that β is a positive
constant and α is a constant times m~3/2. They are specified precisely in Eq. (9.70).
The analysis of

(Ψ(B\(H(B)-B-E(B))Ψ(B))/(Ψ(Bl Ψ(B))

is based in part on the estimates (m large, k> 0, λ > 0)

S l (9.50)

y(λ)>0 (9.51)

which replace (9.15) and (9.16). To understand (9.50) and (9.51) consider the
measure

Writing ρ2tn+1

e-
Be2l2 = e~h{Q) we see that h has a minimum when ρ = ρm,

ρm=]/(2m+l)/B. (9.52)

If we use the approximation h(ρ)^h(ρm) + ̂ h"(ρm)(ρ-ρm)2 and Stirling's formula,
we find

n

For our purposes the estimate

Kρ)^h{ρm)Λ-\(ρ-Qm)2{mϊoh"{.
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is sufficient. It leads to

ρ\φm(B,Q)\2S(const)e-^-^2.

This and the simple estimate j ρ~k\φm(B, Q)\2d2ρ^(const)m/m! for large m suffice

to establish (9.50) and (9.51)/"
We now estimate each of the terms encountered in the proof of Theorem 9.1.

When convenient we will use β = O(l), oc = 0(m~3/2). The exchange terms typified
by (9.19) are small because of the falloff of η(B) proved in Theorem 8.1. In fact
because of (9.51)

(9.19) = O(ot exp( - m(const)).

From (9.50) it follows that

and thus

Jm

n - 1

Σ-
7 = 1

(9.53)

(9.54)

(9.55)

(9.56)

It is clear from (9.56) and the exponential decrease of the exchange terms that it
suffices to show

(Φ(B\(H(B)-E{B)-B)Φ(B))^-d1m-3 (9.57)

for some d1 >0. From (9.53) and (9.55) we have

— Φ(B)

and thus looking at (9.26) and using (9.53) and (9.54)

(Φ(B\{H(B)-B-E(B))Φ(B))^a2 + β2am-3l2

Cl + (Φ(B), WΦ(B)) + 0{

(9.58)

2). (9.59)

In estimating the contributions of I^B.m) and I2(B,m) we use the same technique
as in Theorem 9.1. The contribution from \r1\> l/2|r| is θ(^~m ( c o n s t )) because of the

2
e-constρ2 d e c r e a s e ofη(B). We find

4π

+ (const)α j άrJ

0(oc2m-ll2

O(m~7 / 2).

I2 | r | " (9.60)
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Similarly we have

I2 == 0{β2am-3) = O(m-g/2). (9.61)

The dipole contribution to I 3 is

D(m)=-2βa ηiB)^•

and an easy estimate gives

|/3-β|^(const)αJ(l + | r | 2 Γ ^

The error made in replacing y(z)(l + | r | 2 ) ~ ^ ~ 2 α | z | by | r |~ 2 in (9.62) can be
estimated by (9.50) with the result

~ 4 ) , (9.64)

where

d(m)=-2β(x η(B) $\τ\-5\z\\φm(B,Q)\2dr (9.65)

and combining (9.60) through (9,65) gives

), WΦ(B)) = d[m) + O(m-Ίl2). (9.66)

Now $\z\\rΓ5\φJB,Q)\2dr = c$ρ-3\φm(B,Q)\2d2ρ. Using the ideas leading to (9.50)
and (9.51) it is easy to show

= U (9.67)

where ρm= γ(2m + l)/B> Thus for large enough m

d{m)<-2βay1m-312,

where γί>0 and hence for large m

(Φ(fl), WΦ{B))g - 2βayίm~3/2 + 0{m~112). (9.68)

Combining (9.59) and (9.68) gives

(Φ{Bl{H(B)-B-E(B))Φ{B)) = (x2^(β2cί-2βγί)(xm-3l2 + O(m-ΊI2). (9.69)

We choose

a^iylβc^m'312 (9.70)
and find

{Φ(B\ {H{B) -B- E(B)) Φ(B)) = - (y2/2c1)
2m"3 + 0{m~112). (9.71)

This is (9.57) and thus the proof is complete except for the existence of a ground
state η(B) for Hn~1(B). This existence can be shown by an induction argument: To
show that the system with nuclear charge n— 1 and 1 electron has a ground state
we refer to [9]. Once it has been established that a system of nuclear charge n— 1
and k— 1 electrons (for some k with 1 <k<n— 1) has a ground state η'(B) we use a



Atoms in Magnetic Field. Ill 569

trial wave function

to show that the system of nuclear charge n— 1 and k electrons has a ground state.
As above we take m large, show exchange terms are exponentially small and find
that the important contribution to the negative of the trial binding energy is

a2+a\drdr1..Λrk__1\η'(B)(xv...,xk_ι)\2

- 1 / 2 ) . (9.72)

Here we have used ||*/'(£)|| = 1. Using the structure of the measure \φm(B,Q)\2d2ρ it
is easy to show

j - 1 / 2 ) . (9.73)

We note that

j V 2 α | z | - — - ά.7. = \p-2^\*\ -1 ή7 (974)

For large αρm

so that by choosing α = (const)ρ~1/2, we find

(9.72)<-(const)ρ- 1 .

This completes the proof. •

Remark. In [8] we remarked in a footnote that a crucial element in the proof that
H e " has a bound state for B>0 was the fact that HQ develops a quadrupole
moment when B>0 (and small). Although the existence of this quadrupole
moment is proved in Appendix 1 our original calculations were in error and thus
this quadrupole moment plays no role in our proof of binding.

Appendix 1

Quadrupole Moments1

In our preliminary work on negative ions, we considered quadrupole moments of
atoms in magnetic fields. While these are no longer necessary for our arguments
there, we feel one of our results on that subject is worth reporting:

Theorem A.I. // the ground state of an atom in zero magnetic field has L = 0, then
for all small field the atom has a non-zero quadrupole moment, i.e., with ρ2 = Σρf,
z2 = Σz2

<(ρ 2 -2z 2 )>ΦO.

Remarks. If L φ 0, then modulo a miraculous cancellation, there is a quadrupole
moment at 5 = 0 and thus by continuity one for small B.

1 We thank M. Aizenman for contributing to the proof of Theorem A.I
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Proof. For all small B, the ground state will have Lz = 0. For Lz = 0, we can write
the Hamiltonian as H(B2,B2) where

For all small λ, μ, the ground state will have Lz = 0. Thus for small B2, we can think
of turning on the perturbation in two steps: first take λ to B2, and then μ to B2.
H(B2,0) will still have an Lz = 0 ground state so

By concavity of the ground state energy in μ, with λ fixed,

<.(ρ2-2z2)\μ

is strictly monotone decreasing, i.e.

<(ρ 2 -2z 2 )> β 2 > β 2 <0. •

Appendix 2

Quasimomentum Dependence in the Q = 0 Sector

Consider a Hamiltonian of π-particles of charges ep j = 1,..., n in a magnetic field:

H= Σ (2mjr
1(-Nj-eμ/2BxτJ))2+ Σ ^.-r. ) .

7 = 1 i = j

In [10], we noted that H commutes with the quasimomentum

k = p τ + l / 2 B x R ,

where p Γ = Σ(~~^j) ^s ^ n e t°tal "momentum" and
j

R= Σ efi
i=l

n

is the center of charge. We also noted that so long as the total charge Q = Σ ei
i = 1

was zero, the components of k commuted with each other, so diagonalizing k we
obtain direct integral decompositions (on constant fibre, 2tf)

H = $H(k)d3k; k=$kd3k.

Our purpose here is to note a very simple formula for the k dependence of H(k).

Theorem A.2. HQs) = H(0)+ — - (^- xB R where M = Σ™i-
2M \M J ^

Remarks. 1) Since x. = rt — rn(i = 1, ...,n— 1) commutes with k, we can choose Jf to
be functions of the x . Notice that since Q = 0

n - l

R=Σ CiX{
i= 1

so R is a function on ffl.
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2) Physically, if we think of moving from k = 0 to k = k0, as boosting to a
velocity V = ko/M, then the formula for H(k0) has a very pleasing interpretation:
kl/2M = 1/2MV2 is the CM kinetic energy and - £e f(V x B) r. is just the potential
of an electric field VxB that the Lorentz force law says is the effect of adding a
constant to the velocities. Despite this attractive picture, we caution the reader

n

that k/M is not the center of mass velocity, i.e., if ρ = Σ m r /M, then i\_H, Q] is not
i = 1i = 1i = 1

a constant of the motion, and, in particular, it is not k/M. (Neither is k/M the
center of charge velocity.)

Proof. Let

Then [kyjQ,] = ~iδβ and thus eiα'β translates k by α, i.e.

β / α ' ρ k e " i α ' ρ = k - α .

Thus, if Λ(k) represents the fiber of A at k:

α). (A.I)

But

Thus, if Uj = p, - 2/1/2B x r,)

= H + (2M)-1α2-(M)~1α (k-BxR).

Now take k = 0 and α= - k 0 in (A.I) and obtain

1 k 2 - M - 1 k o . ( B x R ) . D
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