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Abstract. The unitary operations which can be generated on many particle
states in non-relativistic quantum mechanics are discussed. These operations
depend on an arbitrary external field which is in the experimenter's control,
whereas the pairwise potential of interaction between the particles is fixed. The
various kinds of systems of N identical particles interacting via the potentials

^/= Σrfcjw(r/cj) are studied. For every system in question, the semigroup
kj

spanned by evolution transformations is proved to contain all the unitary
operators in the Hubert space of states. In particular, it is shown that the
natural evolution operation can be reversed by a certain prescribed sequence of
maneouvres involving only external fields.

1. Introduction

In quantum theories some non-obvious truths concerning the mathematical
formalism are usually taken for granted. Thus, pure states are represented by
vectors in a Hubert space ffl. Observables are self-adjoint operators. However,
some questions concerning the "economy" of the mathematical language arise. Is
every vector ψe 2tf indeed necessary to describe some physical state which can be
effectively created? Moreover, can one prove that to every self-adjoint operator
there corresponds some effective measuring prescription? Is'nt it so, to the
contrary, that physically essential observables are only the customarily considered
quantities like energy, momentum, spin etc.? A similar question can be raised
about the dynamical aspect of the theory. Evolution transformations of a quantum
system are represented by unitary operators. However, can all the unitary
operators be interpreted as the dynamical operations?

In spite of their apparent obviousness these questions are non trivial even in
the one particle theory [1, 2]. They become more important in the theory of
composite systems, due to interrelations with the Einstein-Podolsky-Rosen para-
dox and the corresponding distinction between the states of the first and the
second kind [3]. The arguments concerning the particle production and the joint
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probability distribution show the necessity of the second kind states (symmetrized
or antisymmetrized tensor products of one-particle states) in the theory of
indistinguishable particles [4, 5]. However, a question arises again, are all such
states physically meaningful? Consistently, what is the set of physically meaningful
observables? The answer to this problems happens to be conditioned by
dynamics: it requires the knowledge of operations which are dynamically
achievable [1, 6, 7].

For the Schrodinger particle some of the above questions were raised by Lamb
[1]. He has proved that the evolution transformations allow one to produce an
arbitrary wave function out of any given initial state. A stronger hypothesis was
already formulated by von Neumann [8]. He expressed the belief that every
unitary operator is a dynamical transformation. The question about the achiev-
able operations was studied first by Lubkin for spin systems [7]. The particular
spin transformations of practical relevance were considered by Haeberlen and
Waugh [9]. The dynamical operations ("global mobility") of the single
Schrodinger particle have been then determined by Mielnik by showing that all
the unitary operators are achievable [2].

In the case of many particle systems the problem of mobility is more
complicated and wasn't yet solved. Here, the dynamical operations might a priori
be restricted by the fact that we have only the freedom to maneouvre with external
potentials, while the mutual interaction potential Vτ is given and is not changed by
the experimenter's intervention. In spite of this we shall show that for a wide class
of potentials Vt the corresponding many particle system (gas) has a curious
property, which to some extend contradicts the intuitions about the loss of
information during the time evolution. As it turns out, for the finite particle gasses
there exists a prescription of maneouvring external fields which permits one to
invert any finite time evolution process, forcing the gas micro-configuration to
return to its initial state. This prescription is state independent and therefore can
be used without knowing what the initial state was. The existence of such
prescription is subsequently shown to posses further dynamical consequences, for
it implies the operational achievability of any unitary transformation in the
corresponding Hubert space.

2. Mobility

Below we consider the system of N < oo identical nonrelativistic spinless particles.
The Hubert space &C is the symmetrized (or antisymmetrized) tensor product of N
one-particle spaces. The Hamiltonians will be assumed in the form H = T

+ vι + vev where τ= Σ Pk/2 is the kinetic energy, Vτ = £ v(rkj), rkj = \qk - q.\, is the
k kj

fixed potential of mutual interaction, Vex = Σ V(q^ is the potential energy in an
k

external field1. To avoid mathematical difficulties we restrict ourselves to such

1 We use the following abbreviations :

= Σ , Σ = Σ,Σ = ΣΣ
v = l fe fc=l k,j l^k<j^
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interactions F/? that D^nJ^F^DC^IR3*) and the operators Vl and H0 = T+ Vl

are essentially self adjoint on C^(IR3]V). The Hamiltonians H = H0 + Vex, which are
essentially self-adjoint on C^(1R3]V), will be considered and called admissible.

We would like to describe the behaviour of the system in arbitrary time-
dependent external fields (global mobility) [2]. Mathematically this corresponds
to the semigroup of transformations Q) spanned by all the unitary operators
exp{ — itH}, ί^05 where H are the admissible Hamiltonians with fixed H0. We
shall take Q) to be closed in the strong operator topology. The resulting evolution
operations are constructed below by iterated limiting transitions in sequences of
"elementary" dynamical transformations. Such constructions cannot be con-
sidered practical receipts. However, due to metrizability of the strong operator
topology on the operator unit ball in the separable Hubert space (see e.g. [10])
every element of Q), which is achieved by any iterated limiting transition is as well
achievable by a single sequence of simple evolution operations. Thus, in the whole
rest of the paper we shall take the effective physical sense of 3) for granted.

One of the most obvious strong limits of the evolution operations are the
"shock transformations" [1,2,9]:

s-lim exp - it H0 + V - exp { - iaVex} (1)

well defined for any bounded Vex. Since any other Vex can be approximated by
bounded functions (see the Trotter-Kato and the spectral theorems [11]), therefore
exp{iαFex} belongs to Q) for arbitrary Vex and αeR

Another class, the "dilatation transformations" is obtained as follows. The
identity :

exp {A} exp {B} exp {-A}= exp {B + \_A, B] + \ \_A, [A, £]]+...} (2)

applied for B^-itlT+Vj-^—^Qk} and ^ = ̂ Σ^k yields:

(3)\
Now, putting in (3) α— — β/t and taking the limit ί->0 one obtains:

ΣG^ + fcpjle®, βe R. (4)
k }

The operators Δβ have been named "dilatations" because of the property [11, 12] :

The dilatations allow one to show dynamical achievability of the "pure kinetic"
part of evolution exp{ — iγT}, y^O. With this aim consider the operators:

(6)
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Putting in (6) t = ye2β one has:

s-limlΓ'=exp{-z>T}e®, y^O, (7)
β-> — 00

provided that Vτ fulfils the following condition :

sir.r.\im(T + e2βVI(eβqί,...,e
βqN)) = T, (8)

j8-> - oo

where the limit is taken in the strong resolvent sense [11].
The semigroup spanned by exp{ — z'yT}, y^O, and the shock transformations

exp{iaVex}, αeIR, contains all the operators of the form expίiα^^4(/c)l, αeIR,
1 k }

where ,4 is an arbitrary one-particle observable (self-adjoint operator in the one-
particle Hubert space) [2,6, 13]. As a consequence, the operators exp{ryT} are
included in ® for all yeR

This allows one to construct the "pure interaction" part of evolution
exp{ — iγVj}, y^O, with the use of the Lie-Trotter formula [11] :

s-lim

(9)

In general, the self-adjoint operator A will be called achievable if all the
transformations exp{ — iaA}, α^O, belong to 3) [7]. The admissible Hamiltonian
HO = T+VI will be called decomposable if T and F7 are achievable. The sufficient
condition on decomposability of H0 can be given as follows :

Lemma 1. Let HQ = T+Vj, Vj=Σv(rkj\ be admissible and let there exist such
kj

numbers α>0, b^O and p> —3/2, that

\v(r}\^brp for re(0,α). (10)

Then H0 is decomposable.

Proof. We show that (8) holds. Because of essential self-adjointness of T on
C^(IR3]V) it is sufficient to prove [11] that for every

lim e2β\\VI(eβqv...,e
βqN)ψ\\=Q. (11)

β-+ -oo

But:

l / 2

(12)
o

for some constants A, B depending on φ. Using (10) one has for β^l

—^V. QED (13)
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The study of 2 happens to be related to the problem of the effective "time-
inversion" : Is it possible to generate operationally the transformations inverse to
the natural evolution?

3. Operational Invertibility of Evolution : Elastic Interactions

If the evolution exp { — ίtH} can be operationally inverted and therefore, — H is
achievable, we shall say that H is inυertible. One has :

Lemma 2. Let for an admissible external field the Hamίltonίan HQ + Vex be
inυertίble. Then every admissible Hamiltonian H0 + Vex is also inυertible.

Proof. The lemma follows from achievability of — (Vex~ Vex) [see shock transfor-
mations (1)] and the Lie-Trotter formula:

QED (14)

The simplest application of this lemma is found for the systems with the elastic
interactions, where the inversion of the free evolution can be shown by the direct
computation.

Lemma 3. // Vj= ^Z(4k-g/)2, then H0 = T+VI is inυertible.
2fc, j

Proof. The case α = 0 follows immediately from [2]. Assume αΦθ. Since Vj fulfils
the condition (8) the results of Sect. 2 hold. Our aim is to show that 2 contains
exp{ — iyVj} for any real y, not only for y^O [see (9)]. Note, that ® contains the
following transformations :

Z =expj-i?£ίί), αeR, (15)
I Z k J

k,j

which act on qk,pk, k=ί,2,...,N, according to the prescriptions:

Z"Γ*)Z-« = | •** ) (16)
W
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Now let:

(17)

The operators A'a are elements of 3> for any y>0. The direct calculations based
on (16) prove that:

Wa. (18)
/V W

This implies the operator identity Ay

a = eic"W~y [2], and so 3) includs

The transformations which invert the free evolution can be composed by
means of the Lie-Trotter formula:

. QED (19)

The calculations of Lemma 3 can be done due to the particular shape of the
interaction potentials. However, the mechanism responsible for the inversion
works also for more general interactions. This can be seen by applying abstract
methods based on the recurrence property.

4. Recurrence Theorem

The quantum analogue of the classical recurrence theorem of Poincare has been
formulated by Bocchieri and Loinger [14]. It concerns trajectories in the state
space. However, one can obtain also an operator form of the recurrence theorem.
Here the Lubkin's observation is relevant [7]. One has:

Lemma 4. Let the self-adjoint operator A has purely discrete spectrum. Then the
closure in the strong operator topology of the semigroup {Us = exp{ i sA} :s^0}
contains the whole group {Vs :selR}.

Proof. It is sufficient to prove that {Us: 5^0} is a relatively compact set [7]. This
can be done with the use of the Ascoli theorem [15]. Since the unitary operators
are equicontinuous (as the linear ones) we need only to show that for every ipejίf

the set jtfψ={Usψ :s^0} is relatively compact. But Usψ= £exp{is/tm}cmtpm,
m

where λm are eigenvalues of A and ιpm - its eigenvectors, and so, s/ψ is relatively
compact indeed [16]. QED

Lemma 4 is applicable for Hamiltonians with purely discrete spectrum. The
assumptions guaranteeing discreteness of the spectrum of Hamiltonian can be
found in [11]. Basing on these results one has the following recurrence theorem:
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Theorem 1. Let H=T + Vj+Vex, where Vj = £(1^ + v2)(rkj). If

(a) ^eL^IR^ + L^R3), v2eLfoc(lR3) and v2(r)^ -ar2-b,

(b) VI2 + VexεLϊoc(K*N), VI2 + Vex^O and VI2 + Vex->co, where VI2= £U2(rk,),
kj

then

(1) H0 and H are admissible,
(2) for any f>0 one can choose such a sequence of time moments ίk>0,

/c = l ,2, . . . , that the evolution transformations Qxp{ — itkH} approximate the oper-
ator exp{ίfH). Thus, H is invertible.

Theorem 1 means that a wide class of systems has the recurrence property, at
least if "trapped" in a sufficiently strong attractive external field. Consequently,
Lemma 2 allows one to reduce the study of mobility to the description of the
group spanned by the evolution operations (motion group) [2, 6, 7].

5. Motion Group: Homogeneous Interaction Potentials

Note, that for decomposable and invertible dynamics the closure M of the motion
group is the same as the closure Jί of the group spanned by all the operators

expl/αFj} and expίzα]Γ,4(/c)j, where αeIR and A are one-particle observables (see
I k J „

Sect. 2). Below, we consider Jί for interaction potentials homogeneous in the
particle distance :

Lemma 5. Let Vj — a^r^ where αφO, p φ O and p> — 2. Then J4 contains all the
kj

unitary operators on ffi .

Proof. Because of the Lie-Trotter formulas we can restrict ourselves to calculating

the Lie algebra ζ£ spanned by iVT and i^A(k) [2, 6, 7, 13]. First we consider the
k

special case of the elastic interactions :

Case p = 2. Since ΐ £ £ (fkq] = (iβa) IVj-(N- 1)£^ is in jSf, then

]])e^. (20)

Taking for A and B symmetric polynomials of qv, pv, v=l,2,3, one can obtain
arbitrary skew-symmetric polynomial of 6N variables q^, pi invariant under the
permutations of the indices (1,...,N). The skew-adjoint closures of some of these
polynomials form a dense subset in the space of the skew-adjoint operators in ffl
[13]. Therefore, every unitary operator (as generated by a skew-adjoint operator)
belongs to Jί.
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Case p φ — 1. It is sufficient to show that Jt contains exp ίiα £ r\\. First we prove

that if zΣ r kj e j 5 f > then ilX+2eJ^. Let's denote fk = f(qk\ fk>v = 8fk/dqv

k and
kj k,j

calculate the following commutators :

(21)

*" V"1 / v > v \ ' X""1 / f f \ ί v v\

ϊ L(OkPl + Plβkl lL(fk~//)(<?k- <ίj)

• to* ~ ̂ ) W7 2 + (P - 2) teϊ - ^)2 r£ r 4)} e ̂ . (22)

Moreover, jSf includs i ̂  (/k — fj) (gk — gj)rkj~
2, as a linear combination of elements

kj

of the type (21) and (22). From this follows that also i £ r^2 belongs to jSf, for r^
k,j

is equal to a linear combination of polynomials of the form (fk — fj) (gk — g^. By

induction one obtains that i £ rj^ 2w, n = 1,2,..., are in 52. Let's now take s > 0, e.g.
k,j

s = p if p>0 and s = p + 2 i f — 2<p<0. One has:

Z k

(23)

and by induction: z'Σ rkje^ for n=l,2, .... Thus, ̂  includs exp ίiα Σ rk5

Since the function rs, s>0, distinguishes the points of [0, oo), then, by the Stone-
Weierstrass theorem, the algebra generated by rs is dense in the space of all the

continuous functions F(r). Therefore, M contains all the operators exp ίiα ̂  F(rkj)\.
\ kj

In particular, expίz'α^r^
I k,j

Case p = — 1 (Coulomb potential). It is now sufficient to show that i £ rkj belongs
kj

to ^f. The above discussion [see (21), (22)] applied to p= — 1 yields:



k,j
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Then:

9 Σ (4kPk + PAl' Σ {rkj*(<?k - 4 } ) 2 r k j l ]
k k i

On the other hand, the particular case of (21) for / — qv implies that 5£ contains

i Σ ((ll~~^Vj)2rkj3 Therefore one can repeat the calculations, starting in (21) out of

ql — q^r^j3 instead of i ]Γ r^1 and obtain:

(25)

Hence, i£ rΛj. belongs to <g as the linear combination of (24) and (25). QED

6. Mobility Theorem: Modified Homogeneous Potentials

We can collect our results to the following "mobility theorem":

Theorem 2. Let Vj = a^r^j9 where p^Q, p> — 3/2 and aή=Qif — 3/2 <p ^2 or α>0

if p>2. Then the mobility semigroup & contains all the unitary operators.

This theorem can be generalized to the class of modified homogeneous
potentials of the form rpw(r). Namely:

Theorem 3. Let HQ — T-\-a^r^j\v(rkj\ αΦO, pφO, p> —3/2, be an admissible and

decomposable Hamiltonian. If there exist constants b^O, c>0, ε>0 such that at
least one of the following conditions holds:

(a) |w(r)— l |<Ξfcr ε for re(0,c),
(b) \w(r)-l\^br~ε for re(c, oo) and |w(r)- l|rp+1eL2(0,c),

then & contains all the unitary operators.

Proof. We shall show, that

stτ.r.lime~βpΔβVIA_β = a £ rp

kj, (26)
kj

where /?-» — oo if (a) holds, or j8-> + oo, if (b) holds. Then, exp ί — iaa £ rj^.l belong

to ^ and the theorem follows from Lemma 5.
One has the following sufficient condition on (26):

) (27)
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for any A>0 (compare the proof of Lemma 1). It is easy to check, that (a) or (b)
yields (27). QED

7. General Remarks

A particular implication of our theorems is the existence of an operational "time-
inversion", which might seem paradoxal. It is usually taken for granted that since
the exact knowledge of many particle microstate is impossible, hence one can
manipulate the thermodynamical magnitudes only. This point of view has been
questioned in discussion about the foundations of statistical physics. One of
familiar objections is called the Loschmidt-Zermelo paradox [17]. The known
Boltzmann's answer to that paradox was based on two assumptions: 1) the
practical impossibility of changing at the moment the velocities of all the particles
and 2) a very long recurrence-time in the case of large particle number. However,
some limitations of these arguments have been experimentally seen for spin
systems. It turns out that spin system, in a way, can be forced "to go back in time"
recovering its initial microstate (spin echo) [9]. Waugh expressed the opinion that
a similar effect might be provoked also in general particle gasses [9]. What we
have shown in our work is precisely the consistency of this conjecture with the
dynamical laws of nonrelativistic quantum mechanics. The obtained here dynami-
cal reversibility is not like the Loschmidt's time inversion, i.e. the inversion of
particle momenta, which is an anti-symplectic mapping of the phase space and
cannot be a dynamical transformation. The corresponding operation in quantum
mechanics (the complex conjugation of wave functions) is anti-linear. What shows
our study is the existence of a different kind of "put-back" operation. It consists in
a certain prescription of maneuvering the external fields. The resulting transfor-
mation of states is unitary and is inverse to the natural evolution. As a
consequence, the past state of the system can be reconstructed without the
knowledge of the initial state. The required information is only the interaction
potential and the number of particles involved.

The relation to thermodynamics is worth mentioning. Our results hold for
arbitrary finite number N of particles, but nothing is said about the limit N-+CO.
Even for finite N the recurrence-time is enormously long. The greater N, the more
difficult the operation might become. Moreover, the system considered is open, as
Hamiltonians with time-dependent external fields are involved. Therefore, the
operational invertibility does not mean the breaking of the thermodynamical laws,
though, perhaps, it prevents their too universal interpretation.

Acknowledgments. The author is indebted to Dr. B. Mielnik for his interest in this work and to Prof. C.
Piron for the illuminating discussion of the spin echo effect.
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