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Exponential Decay in the Stark Effect
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Abstract. Let H = — A + V + Fxί with F(x1? Xj_) analytic in the first variable
and F(xx + iα, xj bounded and decreasing to zero as x —> oo for each α e CRL Let ι̂
be an eigenvector of — A -f V with negative eigenvalue. Among our results we
show that for F =fc 0, (ψ, e~ ltHφ) decays exponentially at a rate governed by the
positions of the resonances of H. This exponential decay is in marked contrast
to "conventional" atomic resonances for which power law decay is the rule.

I. Introduction

The phenomenon of exponential decay associated with resonances is well known in
quantum mechanics. Arguments which predict this phenomenon can be found in
almost any elementary quantum mechanics text (see, for example, [1]). One
imagines (for example) a Hamiltonian of the form H0 = - A + V to be weakly
perturbed by an operator W which causes an eigenvalue E0 of H0 to disappear into
the continuum of H = HQ + W. If we prepare our system at t = 0 in a state ψQ with
HQ\I/Q = E0ψ0, non-rigorous arguments indicate [1, 2] that under rather general
conditions, after a very short time one has

where Er = E0 + ΔE — ίΓ/2. (Here we have assumed (I/O, ψ0) = 1.) ΔE is the energy
shift due to W which can be computed approximately using Rayleigh-Schrόdinger
perturbation theory and Γ is the transition rate given by Fermi's Golden Rule [1].

The validity of an equation such as (1.1) has been discussed briefly by Simon [3]
in the dilation-analytic framework. Simon considers Hamiltonians H which are
bounded below. In this case he concludes that the best one could hope for is an
approximate validity when t is not too large (nor too small). The reason for the
restriction to times which are not too large is easy to understand from the following
well known argument: Suppose that a bound of the form

\(^e-*Hψv)\^Ce-*M (1.2)

were true for some α > 0 and all t ̂  0 (and thus by the self-adjointness of H for all
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teR). It would then follow by Fourier transformation that the spectral measure
d(ψQ, EH(ς)ψQ) was absolutely continuous with Radon- Nikodym derivative/^)
analytic in the strip {z : |Imz| < α}. Since such an / cannot vanish on a set of
positive measure we must conclude σ(H) = R.

We consider the Stark effect Hamiltonian in L2((R3):

The assumptions we make about V are stated precisely at the beginning of Sect. II.
They are satisfied, for example, if V is translation analytic [4], and for all aeR,

V(xί -f ia, xλ) is bounded and lim | V(xί 4- ia, x±)| = 0. Unfortunately they are not
x -> oo

satisfied for the Coulomb potential. However as noted in [4] they are satisfied if the

Coulomb potential - is replaced by p * -, where p is a Gaussian charge distribution.

Under our assumptions for F > 0, H has purely absolutely continuous spectrum
filling all of R and thus the objections to a bound of the form (1.2) are no longer valid.
In Section II we show that the resonances of H in the lower half-plane can be
numbered so that their widths Γj = — 2Im Ej satisfy 0 < 7\ ^ Γ2 ̂  * Γ; g and
that for translation entire vectors ψ and φ satisfying certain domain conditions we
have the expansion (as t -> oo)

The constants Cj are computed in terms of the projections onto resonance
eigenfunctions.

In Section III we discuss the connection between the translation and dilation
analytic frameworks.

It is a pleasure to thank Martin Klaus for useful conversations.
Before we begin it seems fitting to say something about the connection of our

results with the Lax- Phillips theory of scattering [5] where local exponential decay
results have been known for some time (see [6] and [7] and references given there).
On a fundamental level the Stark operator and the operators considered by Lax and
Phillips are very similar. As shown in [8], for a large class of V, — A + V + Fx1 is

unitarily equivalent to —i — (x) / if F =/= 0 and this is also true of the generators of the
ax

Lax-Phillips unitary propagators. On the other hand we do not see how to fit the
Stark operator into the Lax- Phillips theory although this may be more a function of
our ignorance than the unsuitability of their framework.

II. Asymptotics of (ψ9 e~ίtH φ)

We begin by stating our conditions on V. Let H0=~A+Fx1 in L2(IR3),

a). V(x) is a real measurable function such that for almost all %, V(z, x±) is an
entire function of z and the operator VZ(H0 + ΐ)~ ί is compact and analytic for
all zeC.
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b). For each a e U and β > 0 there is a p e (3/2, oo) and two functions V1 and V2 with

Via=V* + V2, V1 eL*(R3), || V2 1| ̂  < ε

c). H = HQ + V has purely continuous spectrum.

We remark that a) is just the statement that V is "translation analytic"
in C as defined in [4]. Also for purposes of orientation it is useful to note that if
V(z, x±) is entire for each XL with V(xί + ia9 xj bounded and decreasing to zero as
x = (x1? xj -> oo for all αe R, then a), b), and c) are all satisfied. (The last condition is

d
satisfied because the Cauchy formula implies - — V ( x 1 , x J L ) is bounded and

ox^
decreases to zero as |xj -> oo uniformly in x±, and this implies absence of bound
states [4].)

We summarize the relevant results from [4]. Define H(λ) = H0 + Vλ + Fλ. Then
the family of operators {H(λ) : λeC} is type A analytic in the sense of Kato [9]. The
spectrum of H(λ) is as follows. We have σess . (H(λ)) c {R + iF(lm λ) and for F > 0,
I m A < 0 we have σ(H(λ))^ {z :0>lmz^F(lmλ)}. The spectrum of H(λ) in
{z : 0 > Im z > F(Im A)} consists of discrete eigenvalues of finite algebraic multip-
licity. These eigenvalues do not depend on λ as long as the line U + iF (Im λ) does not

intersect them. We call all eigenvalues in U σdisc (H(λ)) resonances of H. It is
Im λ < 0

shown in [10] that if V is both translation analytic and dilation analytic the
resonances defined in [4] and [10] coincide.

The following estimate is useful in controlling any local singularities which V
may have.

Lemma 2.1 Suppose f and g are in ί/(R3) with p > 3. Then there is a constant C
independent of F so that

Γ^3^ (2.1)

||p|7r1 + 3/p (2.2)

Proof. The basic technique is that used by Kato [11] to prove that certain
multiplication operators are smooth with respect to — A. We use the formula [4]

to reduce expressions involving HQ to those involving only — A. Thus for example

\\fe™°g\\ = \\fe-»*g\\. (2.4)

We then use (following Kato [11]) the fact that

0||pt-3" (2.5)
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This gives (for y > 0)

1 3Ίl/UMIp (2-6)
A similar result clearly holds if y < 0 so that (2.2) is proved. To establish (2.1) we write

|| /(H0 -E + iγΓ T - || f(HQ-E + iyΓl(H0 -E-iyΓ l f \ \
1

2|y|
- E-'yΓ 1 /! (2.7)

The proof is therefore complete.
The crucial estimate for our result is the following.

Proposition 2.2. Suppose f and g are bounded and have compact support in K!3. Then
for F ̂  0

lim || /(//„-£- iy)"1 < ? | 1 = 0
E^ ± oo

uniformly for γ in compacts o/IR\{0}.

Proof. We write (for y > 0)

- £ + z>Γ ̂  = ϊ (/^H°^" yte~ iEtdt = ] F(t)e~ ίEtdt
o o

0 ε

The first term has norm ^ || / 1| ̂  || g \\ xε while the second can be integrated by parts
to give

oo ι oc

J F(t)e~ ίEtdt =-iE~ ^(φ- ίEε + — J F'(t)e~iEtdt

ε l^ ε

We write F(f) using Eqn. (2.3) as

F(t) = feίtFxί/2e~ ίtAeίtFXί/2ge~ ^^2i^

and note that F'(i) is an integral operator with kernel

If y ̂  δ > 0, then the Hubert-Schmidt norm of — F(t) is bounded by
at

C(δ)ΓΊ/2e-δt/2
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Thus for each ε > 0,

This is easily seen to give the result.
We remark that a similar technique can be used to prove the same result

uniformly for y in (0, oo) or (— oo, 0). Thus for y > 0 one uses Eqn. (2.5) to show that
ε oo

|| \F(t)e~iEtdt + J F(t)e~ίEtdt ||->0 as ε j O uniformly in y for 7 > 0 and then inte-
0 l/ε

l/ε

grates j F(t)e~iEtdt by parts as above. We will have no need for this result however.

Proposition 2.3. Suppose W is a measurable function such that for each ε > 0 there
exist W± and W2 with W=W1 + W2 and P^eLp(R3) with oo > p > 3/2 while
\\W2\\^<ε.Then

lim \\\W\ll2(HQ-E-iyΓ^\W\il2\\ = lim \\\W\1/2(H0-E-iy)~ ^l = 0
E —>• ± oo £ - + ± o o

uniformly for y in compacts o/(R\{0}.

Proof. If / and g are in Lq with q > 3, a simple approximation argument shows that

lim || f(HQ — E — iy)~ίg\\ = 0 with the stated uniformity. In addition Eqn. (2.3)
E^ ± oo

shows that lim || f(H0 — E — iy)~ 1 || =0 with the same uniformity. Using the fact

that \W\lι\W^l2 + \W2\
w and that I Λ I ^ | / 2 | , \g,\ ^ \g2\ => |Λ(// 0 -

E—iy) 1 g f 1 1 | ^ || f2(H0 — E — iy) 1 g 2 \ \ we easily derive the stated result.

Theorem 2.4. Suppose F > 0 and that V satisfies the conditions α), b\ and c) stated
at the beginning of this section. Then if a > 0 is given, there exists an N(a) > 0 so that
H(—2ia) has no eigenvalues in Ba = {z :0^ Imz ̂  — aF, |Rez|^N(α)} and in
addition for any b > a we have

sup \\(z-H(-ib)Γί\\ <oo
zeBa

where Ba = Bau {z : 0 g Im z <Ξ α}.

Proof. Write V_ ib = AB where A = \V_ ib\
112 and B = \ V_ ίb|

1/2 sgnV, ib. Let H0(y) =
- A + Fxί + Fy, R0 = (z - H0( - ib))~ i,R = (z-H(- ib))~ l Choose N(a) so that
|| BR0A || g 1/2 for z E Ba n {z : | Re z | ̂  N(a) } = Ca. This is possible by proposition
(2.3). Then in Cfl, the Neumann series

00

Σ R0
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converges since we have

Σ R0(VR0γ = R0 + R0A(fι (BROA)"}BRO
n = 0 \n=Q /

Thus in C we have

Since || R0 \\ ̂  ((b - a)F)~ 1 and || .R0,4 1| || BR0 \\ is bounded in Ca by proposition
2.3, we have

The bound sup ||(z — H(— ib))~ 1 1| < oo follows from the analyticity of
zeBa\Ca

(z — H( — ib))~ 1 in the upper half plane and on the real axis.

Theorem 2.4 implies that if {Ej}™= t is a sequence of different resonances in the

lower half plane then Im E . -> — oo . We number the points of U tfdisc (H( — id)} so
α> 0

that

0 > Im E! ί> Im E2 - ^ Im Ej. ^

For EjE crdisc (H(— la)} we write

where ε is small enough so Ej is the only point of σ(H(— ia}} in |z — E^ l ^ ε.
Our main result is

Theorem 2.5. Suppose ψ, φ, /ί0ι//, αnJ //oΦ αr^ <?wίire vectors for the translation group
U(b) (U(b)f(x) = f(x1 + b, x±) = fb(x)). Then given α > 0 we ήαtκ?/or ί ̂  0

~ ίtH

φ) =

|r(ί)| rg const exp ί (α + ε) ).

for some ε > O.Here a > α/2F. The quantities C} = (ψ^, Pj (z) φz) are independent ofz as
long as F Im z < Im E..

Remark. If ψ0 is a negative eigenvalue of — A + V where V satisfies the assumptions
of Theorem 2.5, then ^ is a translation entire vector. In addition, by the Combes-
Thomas argument [12] (Ψ0)z is in the domain of e*Xl for small |α| so H0φ0 is also
translation entire. Thus Theorem 2.5 holds for φ = φ = ψ0.



Exponential Decay 203

Proof. Let F(z) = (φ, (z — H)~ 1 φ) for Im z > 0. F has a meromorphic continuation
to C which we again denote by F(z). For Imz > — aF this continuation is given
explicitly by F(z) = (φia , (z - H( - ia) ) ~ l φ _ ia ). Similarly let G(z) - (̂ , (z - H) - 1 φ)
for ϊm z < 0. G has a meromorphic continuation to C which we again denote by G(z).
For Im z < aF this continuation is given explicitly by G(z) = (φ _ ia , (z — H(ia)} ~ 1 (/> ia ) .

Let

β(A) = lim ( - ~ \φ, l(λ + iε - H)~ * - (λ - iε - H)- *] φ), Ae R
e i o V 2πί/

= -(2πiΓ1(F(A)~G(λ)) (2.8)

We have by the spectral theorem,

(ψ,e-
itHφ) = ] Q(λ)e-itλdλ (2.9)

— oo

The function Q has a meromorphic continuation to C given by

Q(z)=-(2πiΓ1(F(z)-G(z))

which by assumption c) of the beginning of this section and proposition 2.4 is
analytic in a (possibly narrow) strip |Imz| < δ.

We use the identity (for large |£| and 0 g y < a)

(E - iy -H(- ia)Γ '-(E- ίy)~ l+(E- iyΓ2H( - ia)

+ (E- iyΓ 2H(-ia)(E - iy - H(-ia)~ lH(-ia]

in the expression F(z) = (\l/ia, (z — H(— ia))~ 1 φ_ /α) and find

for EeίR and |E| large, uniformly for y in compacts of (— δ, a). Similarly

uniformly for 7 in compacts of (— (5, α). Thus for large \E\ and y in closed intervals
of (-<5,α)

Q(E-iy) = 0(\E\~2) (2.10)

We can therefore shift the contour of integration from the real axis in the integral
of Eqn. (2.9) downward to a line parallel to the real axis picking up contributions
from poles in the standard way.

We find

oo oo
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where ε is chosen so that all Ek with - Im Ek > α/2 also satisfy — Im Ek > .

Since Q(λ - z(α + ε)/2) is in L1 by the estimate (2.10), the result follows.

III. Dilation Analytic Potentials

If V is only assumed to be dilation analytic with V(θ)(— A + 1)~ 1 compact and
analytic in a strip |Im Θ\ < <90, it can be shown that [10,13] the functions F and G
defined in the proof of Theorem 2.5, have meromorphic continuations to C. (Here, of
course, φ and ψ must be dilation analytic vectors.) However because

lim || (— Δe~ 2lφ + Fx-^e10 — E + iy)~ 1 1 | = oo
E^ + oc

for any Θ e(0, π/3) and y G R (see [10]), a proof following that given for Theorem 2.4
that Q(z) is L1 along lines parallel to the real axis must surely fail. We still believe,
however, that a result analogous to Theorem 2.5 holds for the Coulomb potential.

Suppose that V satisfies the assumption of Theorem 2.5 and in addition is
dilation analytic with V(Θ)(— A 4-1)~ 1 compact and analytic in a strip
|Im Θ\ < Θ0. Suppose φ is a negative eigenvalue of — A + V with non-degenerate
eigenvalue £(0). Then the functions F and G can also be written for any Θ with
0 < Θ < Max {6>0, π/3}

F(z) = (ψ(- iΘ\ (z - H(iθ)Γ

G(z) = (ψ(iΘ), (z-H(- iΘ)Γ 1Ψ(ιΘ))

for all zeC. Here \l/(Θ)(x) = e3Θ/2ιl/(eΘx) for ΘeU. Clearly then

where Pj(iΘ) is the spectral projection of #(ί<9) corresponding to the eigenvalue Ejf

For F small, there is one and only one eigenvalue Ej of H(ίΘ) close to £(0) and

lim (φ(-iΘ\ P> (ίΘ)ψ(ίΘ)) = (ψ, ψ)
F-*O °

(see [10] for a proof). We presume (but do not know how to prove that if F is small
we can write

(\l/9 e~ ίtHφ) = (ψ, \l/)e~ ίtEjo + r(ί, F)

where |r(ί, F)| can be made arbitrarily small uniformly in ί > 0 if F is chosen small
enough. This would be an interesting result.
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