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Abstract. The notion of Feynman amplitude associated with a graph G in
perturbative quantum field theory admits a generalized version in which each
vertex v of G is associated with a general (non-perturbative) nv-pomt function
Hnv, nv denoting the number of lines which are incident to v in G. In the case
where no ultraviolet divergence occurs, this has been performed directly in
complex momentum space through Bros-Lassalle's G-convolution procedure.

Note for the Reader

The general introduction of this work and the necessary mathematical material
have been published in Commun. Math. Phys. Vol. 72, pp. 175-205. We now
present our result on the convergence of renormalized G-convolution. In Sect. 2, a
definition of our generalized renormalized integrand RG is given: this definition
closely follows Zimmermann's algorithm [7] and involves a sum of counterterms
which are associated with all the G-forests: a G-forest is a subset of "non-
overlapping" subgraphs of G.

In Sect. 3, we introduce the notion of "complete forest with respect to a nested
set of subspaces of E™" (this is also an extension of a notion defined in [7]). This
notion allows to write new expressions of RG which are used in the following
Sect. 4. The latter contains the proof of our main theorem: RG satisfies Weinberg's
convergence criterion, and thus the renormalized integral H(

G
en\K) is a well-

defined function in the Euclidean region.

2. A Generalization of Zimmermann's Renormalized Integrand

G2.1. The Unrenormalized Integrand I(

Let us consider a general connected graph G with n external lines and m inde-
pendent loops. Let 5£ denote the set of internal lines of G, Jf the set of its vertices,
X the set of its external lines: | X \ = n. Each internal line is considered as oriented
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it means that a sign εiv is prescribed for each couple (ie&, ueΛO, which is + 1
or — 1 according to whether the line i points towards the vertex v or not.

With each external line of G, we associate an "Euclidean" r- vector K j β E r ,
which is also represented1 as:

Ks = Pj + ίQ°> PjeW-1, β?eR,(/e*) (2.1)

and whose norm is \\Kj\\ = [<PJ.,PJ.> + (β°)2]1/2: each vector Kj represents the
external momentum which is carried by the line y, and these vectors satisfy the
total energy-momentum conservation relation : £ Kj = 0

We denote by Ke£r

($- 1} the set: ^

K = {Kjete-i + m9jeX9 ΣK.-O} (2.2)
JeX

Definition 2a

i) For every vertex v of G5 we call Xv the set of the lines of G which are incident to υ,
ana call their number nv = \Xv\.

If αeXv, it coincides either with an internal line ie J5f or with an external line
jeX we shall then write : α = α(i) or α(/).

With each vertex ι;, we associate a set of r-momenta:

*" = {*:;;; αe*,; 1^ = 0} (2 3)
αejfy

which varies in the Euclidean space Sv with dimension r(nv — 1).
ii) With each internal line ze S7, we associate an r-momentum /. which varies in
the (r-dimensional) euclidean space $ . .
iii) A set of independent "internal" (or "integration") Euclidean r-momenta of
G is defined as a set of r-vectors

which satisfies the following property.
For every vertex vtJV (resp. internal line ieJSf) there exists a /meαr mapping

λ^resp. λ.) from the space _^^fc) - ̂ "^ x £ }̂ onto ^(resp. ff.) such that the
corresponding substitutions:

(K,k)£ K°(K,k) (2.4)

) (2.5)

be solutions of the following system :

- Vαe A; : ̂ (X, fc) = X ., if α - 0(7 ) (2.6)

is an external line, i.Q.jeX

1 This representation is inessential in the present work, but refers to the usual complex four-momen-
tum Minkowskian space Cr in which Er is imbedded: analytic continuation problems in Cr will be
considered in a further work.
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KΌ

Λ(i)(K, k) = εiΰl.(K, k), if α = α(i) is an internal line, i.e. iε&\ (2.7)

Σ«ϊ(^fc) = 0 (see (2.3)).
aeXυ

Definition 2b. With G we shall associate a function IG(K, k) on ̂  fc) by the follow-
ing procedure :
i) With each vertex v of G we associate a general ny-point function defined on the
primitive analyticity domain of Q.F.T. (see introduction) contained in c1*^-1)
and denoted by H(nv\Kv). With each line i of G we associate a general 2-point
function H(^(ty defined on the corresponding primitive analyticity domain
contained in Cr. Here we shall only consider the restrictions2 of the above functions
H(£\Kυ) and H$(/£) to the Euclidean regions δ^δ^ the latter being respectively
realized as the following subspaces of Cr(nv~ 1} and Cr.

g. = {J.ECr : Im Γ. = 0 Re /? - 0} (2.8)

This is meaningful since, as it is known [2, 3], the Euclidean region δ v (resp. δ^
is contained inside the primitive domain of analyticity of H(riv\Kv) (resp. H(

(Z\l.)).
We shall put:

(λ*HM)(K9 k) = H(n»\Kv(K, k)) (2.9)

(A*H|2>)(X,fc) = H|2>(/ ί(X,k)) (2.10)

We moreover define the completely amputated general n^-point functions by:

H(nv\Kv) = H(nv\Kv) x Π [/42)Ov?Q]- x (2.11)

where εα is equal to + 1 if α = α(j') with 7 e X, and εα = είυ if α = α(i) with i

We then also put : (Λ* #<"»>) (̂ C, /c) - ̂ (Πυ) (^y(K, /c) ) (2. 1 2)

ii) We assume that for each vertex i e^Γ (resp. line I'eJSP), there exists a class of
μv / μ,\

functions ^ I resp. £ j to which H(nv} (resp. #(2)) belongs; in the following
(r(nυ- 1) V f /

μv and μ. will be always considered as integers.
From (2.12) (resp. from (2.10) and Lemma (1.3) it then follows that

H(nυ\Kv(K,k))) (resp.H[2)(/.(K,fe)) belongs to the class Affi (resp. A™) with cor-
responding asymptotic coefficients:

αt,(S) - 0 if S c Ker λv (resp. α .(S) - 0 if S <=. Ker λ.) (2.13)

αw(S) = ̂  if S φ Ker /ly (resp. α.(S) - μf if 5 9^ Ker λ) (2.14)

iii) We define the function IG on_^^ fc) called the unrenormalized integrand by the
following products:

IG(K9 k)=Y\ Hn»(Kv(K, k)) Π H$(lt(K, k)) (2.15)

2 In the following we shall only consider these restrictions and omit for simplicity the subscript
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We show the following properties:

Lemma 2.1
a) Hn»(Kv(K,k}) (resp. H(2\lt(K,k)) belongs to a class */(%•*»•<*» (resp. s/§ ***ω*)
of admissible Weinberg functions. The set σv (resp. σ.) is the set ofsubspaces S c E™
satisfying : S φ Ker/l^ (resp. S φ Ker /I), αr, α. are defined through formulae (2.13),
(2.14) and:

ω, = {Sct*^ :Sφ Kεrλvπ(S)εσv}

(resp. ωt = {S^ S(Kίk} : S φ Ker λ. π(S)eσJ )

b) IG(K9k) belongs to a class J^G^^G) of admissible Weinberg functions. The

admissible couple (ωG, σG) in$r

(^k} is given by:

σ β = ( f ] σ t ) (2.16a)
ie^f

ωc = {S c ̂ Λ : S φ Ker A,.VieJS?, π(S)eσG} (2.16b)

The asymptotic coefficient for each subspace S c $r£k) is:

MS)= Σ μυ+ Σ μ/ (2-17)
Set Ker Aυ

We remark that in (2.16a, b) the property S φ Ker λ.Vie^ automatically implies
(in view of (2.3) (2.7)) S φ Ker ̂  Vt?G^Γ.

Proof
a) is a direct application of Lemma 1.7 to the case of the mappings λυ and λ..
b) By taking the result of a) into account and applying proposition 1.3.b. and d.
to the product (2.15), the result is obtained.

In perturbation theory, Zimmermann [7, 9] has proved that for a Feynman
graph Bogoliubov-Parasiuk-Hepp's method of renormalization in configuration
space can be worked out in momentum space independently of any ultraviolet
regularization. Let us denote by RG the renormalized Zimmermann integrand
associated with a Feynman graph G, and HG the corresponding finite part of the
Feynman amplitude such that :

..dkm (2.18)

The function #£ is defined by Zimmermann's method as a rational function of the
internal and external momenta which is obtained by subtracting appropriate
counterterms from the integrand IG of the divergent Feynman graph.

In the present work we shall extend Zimmermann's prescription of renormali-
zation to the case of a general integrand IG defined by (2.15), and we shall show that
in the Euclidean region $r£Γ^ a certain "renormalized convolution product"
HG can be defined through an integral of the form:

HG(K)= J RG(K,k)dkl...dkn, (2.19)

where RG is a functional of the H(nv} and H[2) obtained by the following procedure.



(/-Convolution of TV-Point Functions 211

2.2 Admissible Sets of Momenta for G and its Subgraphs

Let us recall some usual notions in the matter. A graph G is called one-particle
irreducible or "proper" if it is connected and cannot be separated in two parts by
cutting a single line. A graph y is a subgraph of a graph G, written γ a G, if the

vertices of γ form a subset Λ"y of the set Jf of vertices of G and if all the lines of y
are lines of G ending to vertices of y; moreover some of the internal lines of G may
be cut to form external lines of y. Two graphs yi , y2 are called nonoverlapping
if3 either yί n y2 = 0 or γ1 <= y2 or y2 c y1 .

A G forest U is a set of non trivial nonoverlapping one-particle irreducible
subgraphs of a graph G. U may also be the empty set. AG forest U is called full if
Ge [7; if G^ (7 then (7 is called a normal forest. If y is any subgraph of U then £/(y)
denotes the set of all y'e (7 with y' c γ (in particular [/(G) = [/). In the following,
all the momenta which we introduce belong to the Euclidean space Er = (Rr~ * + z(R.

Definition 2c
i) For any subgraph y of G, we denote by Jf ' y the set of vertices of y, by & (resp.
Jίy) the set of internal (resp. external) lines of y JfΊ (resp. <J ŷ) is a subset of
Jf (resp. JSf ). We also call n = \ Xy \ the number of external lines of y, and m(y)
the number of independent loops of y (note that m(G) = m,nG = n, J\^G = jV
etc...).
ii) With y, one can always associate two sets of variables, Ky and ky, which play
the same role as the variables K and k for G(KG = K, kG = fc).

— Ky is the set of "external" r-momenta of y, namely:

Ky = {KJ;; eX y ; Σ«J = °} (2 2°)
J6ΪV

it varies in a space ^J^y 1}.

— kγ = (k\ , . . . , k^(y)} is a set of independent "internal" (or "integration")
r-momenta of y; varies in a space EffiJ.

The choice of the variables ky contains a large arbitrariness, but satisfies the
following requirement.

For every vertex v£<Λfy (resp. internal line z'e JS?y), there exists a linear mapping

Ij; (resp. I?) from [̂̂ "̂  x £^(

}

y) to ^ (resp. δ f) such that the corresponding
substitutions:

be solutions of the following system:

- Σ W>*y) = 0 (see (2.3))
αεXy

)> (2.21)

3 The intersection of graphs is understood as being taken on the set of vertices and on the set of
internal and external lines.
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if α = α(i) is an internal line of y(ieJSfy).

ιyv (fV ί y\ i^y /Ό OO\

if α = α(j) is an external line of γ(jeXy).
Note that X° = λv, If, /If = 1 (see definition 2.a.)

iii) It has been shown by Zimmermann [7] through a constructive procedure that
it is possible to define simultaneously for all subgraphs 7 of G (including G) the
variables (Ky, fey) and the corresponding mappings X?, λy in such a way that the
following properties hold:

—for every couple (7,7') with 7' c 7 (where 7 can be G itself), there exists a
linear mapping j8J, from δr$~1} x £™(

}

y) to Sr^',~1} x E™ '̂* which has the follow-
ing form:

y ^K^XΠXΛfc 7 ) (2.23)
y" ky'=ky'(ky) (2.24)

— V (7, 7', y") with 7" c y' c 7, one has:

βy _ /?y o βy /9 9SΪ
"y" — Ky" "y' .̂̂  J^

The important point here is that kγ is a function of fey but does not depend on
Ky. Following the terminology of [7], we say that such a set of variables {(Ky,ky),
Vy c G} is an admissible set of basic momenta. The choice of this set still contains a
large arbitrariness. Such a choice will play a crucial role in the definition of RG

and in the proof of the convergence of the integral (2.19). We shall suppose that
we have chosen once for all a certain admissible set in the following sections 3
and 4; (for a proof of the fact that HG is independent of the choice of any admissible
set of basic momenta see [12]).

Definition 2d
i) For every 7 c G, the mapping β^ allows to reexpress (Ky, ky) as a function of
(K\ k) through the linear substitution ky = ky(k) (see (2.24)). (K\ k) varies in a space

?,k) "~ (K?) (

Then with every couple 7, y' such that y' c 7, we can associate a linear mapping
t o ; / which is defined as follows:

'
(K\ fc)<-> (Xy/ - Ky'(Xy, F(/c)), /c) (2.26)

In (2.26) the substitutions are those defined by βy

y,, and β^ (see (2.23), (2.24)).
It is easy to check that due to formula (2.25), the set {sy

y, V7,7 ; c= G} satisfy the
similar property:

if 7" c y c 7 : sj,, = s^ o sj, (2.27)

ii) With each mapping P (resp. Ij) introduced in Definition 2b ii), we can associate
a mapping λy

v (resp. λ.) from/^ >Λ) to ̂  y (resp. <f .) through the following formulae:

(K\ k)^Kv = KV(K\ ky(k)) (2.28a)

(K\ k) -A K1 = ΐ(Ky, /cy(/c)), (2.28b)

In (2.28a) (2.28b), the substitutions are those defined by λy, Ij, βγ.
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Remark. We can verify the following relation between the above mappings :

V μ ^ y and jz^μλ} = λ»sl (2.29)

Definition 2e. Being given the sets of functions H(nv\ H(2} of Definition 2b, we
shall now associate with them for every subgraph y of G a function Iγ(Ky, k) on

^[κ.y k) which is similar to IG (see formula (2.15)).
We put:

By writing:

H(nv\Kv(K\k\k)} =

and

x Π tfί2WWy(/c))) (2.30)

and applying Lemma 1.7 to the mappings λ],λy

υ, we deduce from the assumption
^ βv βι

H(tlv}E Σ and H 2)eΣ the following lemma whose proof is exactly similar to
r(nv-l) r

that of Lemma 2.1. (one now applies Proposition 1.3.b. and d. to the product (2.30)).

Lemma 2.2. For every y c G, the corresponding function Iy(Ky, k) belongs to the
llows:

(2.31)

(2.32)

π(Sy)eσy} (2.33)

(2.34)

2 J. Γ/ιe Renormalized Integrand RG

Definition 2f We first need to recall the following notions which are relative to
forests of subgraphs in G.
i) If y is an element of a given forest £/(G), we shall introduce the set Jίy(U) =
[ya 1 g a ̂  cy] of all subgraphs yαe U(γ) which are maximal in y. We also consider
the associated "reduced graph" γ of y, which is obtained from y by contracting
each yα to a single vertex in 7. (see [7] ) . We then call m(y) the number of independent
loops of y. In view of the definition of m(y] (see Definition 2b)), we obviously have:

class &/(%fy''

a) σr = (

where

σ/ = {Sc

b)ω, = [

c) VS r c

«y(Sy) =

α>v) w/ticA

ΓK)

^(fc) ' ̂  ̂
o j@rNγ

v ίK"v

is determined c

Ker λ#

k):Sγφ Ker /IJ

(̂K v,*)' oπe ^α5-'

Σ î+ Σ μ,

Σ m(ya) (2.35)

l^α^c

Note that the definition of γ depends on the forest U = U(G). When several forests
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U are involved, we shall use the more precise notation y(U) in order to avoid any
ambiguous meaning (it will be the case in section 3).
ii) With the reduced graph G (resp. γ) of G (resp. γ) in the given forest U(G\ we
associate the following functions I^(U} (resp. I y ( U } ) :

Iό(ϋ)(K,k)= Π H*>(Kv(K,k) Π H^(lt(K9k)) (2.36)

(resp. : I-(υ)(K\ k) = [Ί H"»(K"(K\ k\k}) Π #gW» fc W) (2 37)
veΛ'γ ίe&γ

Here we have used the notations \&- = &y\ (J £ Ίa , ΛΛ, = Λ^y \ (J ^yα .
yαe^y(ί7) VaeΛtγ(U)

By applying again Lemma 1.7 and Proposition 1.3b and d, we then obtain a pro-
perty which is analogous to Lemmas 2.1 and 2.2.

Lemma 2.3. Let y be the reduced graph ofy in a forest U(G). Then the corresponding
function I^υ}(K\ k) belongs to the class ja^σ*'ωiJ) which is defined as follows:

a) S = ( Π *?) (2 38a)
ί6^γ

where σj, are defined by (2.32)

b) ω. = {Sy c ̂ >t) :Sy ̂  Ker λj' Viε^. ^e^} (2.38b)

c) VSyc^Λ one has:

^(sy)= Σ ^+ Σ μa (2-39)
ie^y; i e ;̂

Sv(^KerA^ Sγζ£Ker λΎ

υ

Definition 2g
i) The sets [μυ veJ/'} and {μ. zeJSf} being given, we associate with every sub-
graph y of G the following number which we call the "dimension ofy" (relative to
the latter sets):

d(y}= Σ ^ + Σ^ + ™ω (2.40)
j e^y ίejgfy

If we similarly put :

d(y)= Σ ^ + Σ ^ + Mv) (2-41)
ue^y ie^f^;

for the reduced graph 7 of y (relative to a certain forest U(G) containing y), we have
the obvious relation :

Σ d(ya) (2.42)

1 ̂  α ̂  cy

ii) For every function F(K\k) on ^y

y

fc), (ίd(y)F)(Ky,fe) will denote the Taylor
expansion of F of degree d(y) with respect to Ky at Ky = 0 (this function is intrin-
sically defined: see Sect. 1.3). Of course this definition only holds if d(y) ^ 0 which
is not necessarily the case (if this is the case y is called a "renormalization part" as
in [7] ). If d(y) < 0 we put by definition td(γ}F = 0.

Remark. The mapping (K\ k) -> (K\kJ = ky(k)) defined by (2.24) commutes with
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the operation td(y\ namely if F(K\ k) = F(K\ ky(k)\ then

Definition 2h. We propose the following generalisation of Zimmermann's
renormalized integrand. Let ̂  be the set of all the forests of G. Then we put:

RG(K,k) = ΣFv(K,k) (2.43)
C/e^

where :

V (7e^ :Fϋ(K, k} = Y(

G\K, k) if U is normal |

= ( ~ ίd(G)) Y(G\K> k) if U is full J (2 44)

The function Y^\K9 k) and all the auxiliary functions Y^\Ky, k) corresponding to
every ye U are recursively defined as follows:

k). (2.45)

In (2.45), /- is the function introduced by (2.37), and s* is a short notation for
(Syα)*5 namely the inverse image operation induced by the linear mapping sy

γa

defined through (2.26) (Definition 2d (i)). (Indeed, - td(ya}Yya is a function of

(Kya, k) s* denotes the substitution : (K\ k) = (Ky«(Ky, fe), k) .
To see that (2.44) actually provides a complete recursive definition of Fv,

it is sufficient to notice that if γ is a minimal subgraph of U(i.e. cγ = 0), then :

So the recursion works by inclusion (of subgraphs) inside the forest, starting
from the minimal subgraphs and ending at y = G .

Remarks
i) Due to the definition of td(y]\ if γ is not a renormalization part (d(γ) < 0), it
yields no contribution to the formulae (2.43), (2.44), (2.45).
ii) Formulae (2.43), (2.44), (2.45) are the exact analogs of Zimmermann's integrand
RC (see [7]) although in the latter the sets of variables (Ky,ky) instead of (Ky,k)
had been used in the corresponding expressions (namely for the operations s and
ίd(y)) however, our last remark at the end of Definition 2g, shows that this slight
change in the presentation causes no perturbation in the algorithm which defines

RG(oτRF

G).
From the analyticity of Hnv,H\2} in the regions Sv,St (Definition 2bi) we can

now derive the following property:

Lemma 2.3. RG(K, k) is a (real) analytic function on £.(^}

k} This comes from the
fact that all the operations (including the linear mappings s* and the Taylor expan-
sions td(ya)) involved in the above definition ofRG preserve the analyticity property.

The above analyticity property allows us to take E™ as an integration contour
(inside the analyticity domain of RG(K, k)). In order to show that the Renormalized
Convolution product defined by (2.19) makes sense, we now have to prove the
absolute convergence of this integral this will be possible if we ensure that the
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conditions of the Power Counting Theorem of Weinberg (Lemma 1 .2.) are satisfied
this is the scope of the two next sections.

3. The "Complete Forest" Formula for RG with Respect to a Nested Set ̂  of
Subspaces of EΓ<"

As a first step towards the proof of the integrability of the function RG(K, fe) with
respect to k it is necessary to transform the original expression of RG (see Defini-
tion 2h) and establish some combinatorial results which are similar to those of [7]
and make an essential use of the notion of "complete forest". Here however, we
need to introduce the notion of complete forest not only with respect to a given
subspace S of E^(as in [7] ), but more generally with respect to an arbitrary nested
set of subspaces of E™ .

Definitions 3a (see also [7] )
1. An internal line i of y is called constant (resp. variable) in a subspace S c EJ1™
relatively to y, if the corresponding subspace {Ky = 0, keS} of /*$ k) is contained
(r/esp. is not contained) in Ker λ? (see Definition 2dii.).
2. A G-forest U is called complete with respect to a subspace S of E™ if:
i) GeU
ii) For every ye U the internal lines of the reduced graph y(U) are either all variable
in S relatively to y or all constant in S relatively to y.
3. For a G-forest U which is complete with respect to S one defines two sets of
subgraphs WS(U) and BS(U) by the following conditions:

a) WS(U) is the set of all ye U for which all the lines in ̂ y(U} are constant in S
relatively to y.

b) BS(U) is the set of all τe U satisfying:

τφWs(U); 3yeWs(U} such that τeJϊγ(U)

Lemma 3.1. Let U be a complete forest with respect to a subspace S <= E™ and
let ye WS(U\ and μeJί^U}. Then the following properties hold:
a) sv

μ({(Kvk)ι Ky = 0, keS}) = { ( K μ k ) ; K » = 0, /ceS}
b) A line ie^μ is constant in S relatively to μ, if and only if it is constant in S relatively
to y.

Proof. According to (2.20) we have :
Kμ={K^9jeXμι £ K£ = 0}. Now the equations which define sγ

μ (see (2.23),
./eXμ

(2.24), (2.26)) have to satisfy the system (2.21), (2.22) which implies (since

— < j
, - ± ι

But since yeWs(U\ we have: lj(Ky;k7(k)) = 0 for Ky - 0, keS, and this entails:

Vje Xμ Kμj(K\ ky(k)) = 0 for KJ = 0, fceS, which proves a).
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Moreover, let us apply relation 2.29):

\/ίe^μ λfos^ )J. Then from the above result α) we deduce that:

V/eJ2?μ, λ f ( { ( K μ , k ) ; K» = 0, keS}) = λ\(K\k)\ K? = 0, kεS})

and this entails b). q.e.d.
One can state the following property of RG, which is similar to the one proved for

R£in[7].

Lemma 3.2. Being given a subspace S, RG admits the following corresponding
expression:

u
in which the sum extends to all the forests which are complete with respect to S and
where

Xff = (l-1*W)γV s) (3.2)

7^/>S) and the following auxiliary functions Yy are defined recursively (for every
yc=.G)by

Yy = I-y Π tf/Λ (3.3)
yaeMγ(U)

and

4 = - td(^ if

We omit the proof of this lemma which goes exactly as that of [7] for R^ indeed,
it will be generalized in Proposition 3.1 below.

Definition 3b. Let U be a complete forest with respect to an arbitrary subspace
S c= E .̂ For a given graph ye U we define the integer M(S\y) by:

r Σ m(μ(U)) (3.5)
μel/(y)

With m(μ(U)) given by Definition 2fi).
In (3.5) the summation extends over all μeU such that μc: γ and μφW(U)\

so two cases occur:

— if yφ W(U\ then : M(%) - rm(y(U)} + Σ M(S)W (3-6)
γαeMγ(U)

— if re W(U\ then : M(S)(y) =- ^ M(S)(yβ) (3.7)

Remark. It can easily be seen that the dimension h(S) oϊS satisfies the inequality:

M(S\G) ^ h(S) (3.8)

Definitions 3c
1. We now consider an arbitrary set of subspaces S0) c= Er™j = 1 ... L which
satisfy: 5(1) c S<2) c . . . c S(L). We denote by J^ this nested set of subspaces.
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2. Let ̂ (5(J)) be the set of all the complete forests of G with respect to the subspace

Following Definition 3a.3, we can associate with such a forest U
the sets of subgraphs WS(j\U\ BS(j\U)ι for simplicity we shall put: WS(J\U) =
W(j\U\ BS(j\U) = B(j\U); all these sets are subsets of [7.

Starting from any forest l/(1)et/(S(1)), it will be possible to associate with it a
unique minimal forest which contains it and which is complete simultaneously
with respect to all subspaces S(j)e^: this will be achieved by a recursion procedure
which makes use of successive completions as follows:

Let U(j} be a forest which is complete with respect to all subspaces S(l\ such
that / rg j. By using the prescription of [7]4, we construct the completion forest
U(j+ 1} of U(j) with respect to S(j+ 1} through the following formula :

(3.9)

We recall briefly the definition of j t f ( j + 1)(LΓ(J)) as given in [7]. We consider the set
W(j+1\UU)) of subgraphs in U ω such that at least one line in ̂ (C/ω) is constant
in S(j+1) relatively to y; for every subgraph yeW(j+l\U(j}\ we then call s(γ, t/(j))

the subset of all lines in ̂ (l/0)) which are constant in 5α+1); the set j/°'+1)(L7α))
is then defined by:

(.+ 1) (τ^G;τφUU}'^yeW(j+1\U(j)) such that τ is a connected
** J (U J > ~ j component of y\s(y, £/ω) (3.10)

Note that if U(j} belongs to W(S(j+ 1}), then ̂ (j+ ^(U^) is empty.

Lemma 3.3. Let U(j} belong to all sets W(S(l}\ with l^j. Then the forest U(j+i}

(see (3.9)), the set j/°'+1)(t/ω) (see (3.10)) and the various sets
satisfy the following properties:

i) U(j+ 1}e^(S(/)), for every I ̂  j + 1

moreover

WU+ί\uu+1))= W(j+ί\Uϋ))^ WU\UU)) (3.11)

ii) jsΛ (j+ "(U®) c: B(j+ 1}(ϊ7α+ 1}), (3.12)

iii) V / ^7, W(l\U(j+ 1}) - j/α+ 1 } ( U ( j } ) u W(l\U(j}) (3.13)

Proof
a) The fact that U(j+ 1} is a forest has been proved in [7] .
Let ye U(j+ 1}; three cases are possible:

yεW(j+1\U(j}\ yeUU)\W(j+ί\U(j}\

By construction if yeU(j}\W(j + l\U(j}), all the lines in ^- are variable in S(j+l\
if yeW(j+1\U(j}\ all the lines in &-y(U(J + »} are constant (since in φ, L/α))); if
yej/(J'+1)(t/a)) there exists a y'e ί^(J'+1)(C/ω) such that yeJ?γ,(U(j+1}), and all the
lines in &-,uϋ + 1}) are variable in S0"^ 1} relatively to /; but the argument of Lemma

4 See in [7] Lemmas (4.1) ... (4.5)
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3.1 then shows that all these lines are variable relatively to y. All these remarks show
that l/α+1)e^(Sα+1)), with the associated sets:

wu+ D([/o + D) = w(j+1\UU)) and 5°'+1)((7α+l)) containing ^(j+1\U(j}). The
inclusion W(j+1}(U(j}) c= W(j\U(j}) is trivial since for every y£W(j\U(j\ every line
in 5?y(l7t/)) is variable in Sω and therefore in S(j+ 1}, so that y<βW(j+ ^ [/<•»).
b) Let us now study the forest t7°'+1) with respect to any subspace S(l\ with

IiyeU(J\ then all the lines in &f(υ(J+»} belong to J^-(t/0)), and since
they are either all constant in S(l\ or all variable in S(/).

If 7ej/(7+1)(L/0)), let y'εW(j+1\U(j}) such that ye^r((7α+1)). The inclusion
S(l)aS(j+ί} implies that every line in J^/([70 + 1)) is constant in S(l}. Now since
J^-,(t/0 + 1))cJ^-,([/0)) and that t/ωe^(S(/)), we deduce that all lines in &nuu^
are constant in S(l} (relatively to y'). But JSf-(l/(J + 1) c=^f_ / ( E / ϋ ) (by construction),
and then in view of Lemma 3.1, all the lines in ^γ(UU + D} are constant in S(l\ also

relatively to y. So we have proved that U(j+1}e(%(S(l}) and at the same time that
j/<J+ι\UU))cz W(l\U(j+1}). We have moreover proved (see the beginning of the
above argument) that:
if yeU(j\ then yeW(l\U(j+1}) if and only if yεW(l\V(j}).

Adding up these results yield Eq. (3.13). q.e.d.
Through an obvious recursion we obtain the following more general statement:

Lemma 3.4. Let 3F be the set of nested subspaces as defined in 3c.l. Given an index
j(l^j^L) and a forest U(j)εW(S(l}\ V / ^j, one can construct a forest U(L} given by:

L-l \

y ^(«+ !)([/(«)) (3.14)

where each U(m+1) (resp. ^{m + 1\U(m}) is defined recursively by (3.9) (resp. 3.10).
L/(L) is called the completion forest ofU(j} with respect to &* and satisfies the follow-
ing properties :

)), (3.15)

/ L - l \

= ί \J j/(m+1\U(m))\vW(l\U(j}} (3.16)
\ m = j /

Remark. We note that in general the sets <$/(m+1\U(m})m=j ... L- 1 in (3.14)
are non empty; so there are in general several forests U(j}E%(S(l})(l^j) which
admit the same completion forest t/(L)e^(S(/)); /^ L. This enables us to classify
all the forests l7(1)e^(S(1)) into equivalence classes defined as follows:

A class Cv is the set of all forests U(1}e%(S(1}) which have the same completion
forest ̂  with respect to ̂  . The precise construction of such classes will be given
in Lemma 3.7.

Lemma 3.5. For some j^L, let U(j}e^(S(l)),^l^j, and let U be the completion
forest ofU(j} with respect to ̂  , then:

(3.17)
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Proof. From Lemma 3.4 we have:

/L-l \

ί/= ι/ωuf (J j/(m+1)([/(m)) ) (3.14)
\ m = j /

and
L-l

(J j/(m + 1)((7(m)) satisfies (3.16).
m = j

Let ye£/0 ); in view of (3.14) yeC7; if y ̂  G, there exist subgraphs μεU(j} and
τe(7 such that ye^(L/(j)), ye^τ(t7), 7 c τ c μ. Necessarily if τ ̂  μ then:

L-l

τe|J j/<m+1>(£/(m)). (3.18)
m=j

Two cases are possible: a) yeB(l\U(j)).
Then 7^(/)(t/ω), and in view of (3.14) and (3.16), this implies (since yeU(j));

yφW(l\U\ By assumption, μeW(l\U(j)) and so either τ - μeW(l\U(j)) or τ f μ,
L-l

with τe y j/(m+ 1}(l/(m)) in both cases, (3.16) entails that τe W(l\U). We conclude
m=j

that ye£(/)(£7).
b) y^^ίl/^). If yεW(l\Ό(j}\ formula (3.16) entails that yeW(l\U) so y^β(Z)(L7).
If yφW(l\U(j\ necessarily μφ W(l\U(j}) and that means &β(uω) contains only
variable lines in S(l} and consequently in S(L} due to the construction of [/, this
entails that there cannot be any τ ̂  μ, with y cτ c μ and τe PF(/)((7); so finally

Definition 3d. Let J^ = {S(j); 1 ̂ j ̂  L} be a nested set of subspaces of Ej^, as
deifined in 3cl.
1. A forest U of G is called complete with respect to ̂  if it is complete with respect
to each subspace S(j} in 3F , namely:

V/, l^j^

Following Definition 3a.3, we can associate with such a forest (7, the sets of sub-
graphs WSU\U\ BSU\U) (for every j ^ L) : for simplicity we shall put: WSU\U) =
W(j\U\ BSU\U) = B(j\U); all these sets are subsets of U.
2. If U is complete with respect to ϊF, we call &*(U) the set of all subgraphs y
in U which belong to at least one set B(j\U) (for some integer 7' ̂  L); namely:

&*(U)= (J BU\U) (3.19)

l^j^L

Lemma 3.6. Let ̂  be a nested set {S(ί); ί^i^L} and U be a complete forest
with respect to ̂  .
i) Let ye U if there is some integer i ̂  Lsuch that ye W(l\U\ then:

ii) Ifye^(U) and if i is the minimal integer (i ^L) such that yeB(l}(U), then:

V / ^ i , yφW(l\U]

V / < i , yεW(l\U).
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Proof
i) If yeW(i\U),y has only constant lines on S(i\ and since S(l} <= S(/) for every
l^ί,y also has only constant lines on all these subspaces S(/); this proves i).
ii) Let γεB(ί\U); then γφW®(U) and in view of i), yφW(l\U) for every / ; > i .
Moreover there exists a graph γ in W(I)([7) such that y be a maximal subgraph of
/in (7 but in view of i), we also have :

V / < ΐ , y'eW^ίl/). (3.20)

Then if i is the smallest integer such that γεB(l\U), y cannot have variable lines in
S(l} such that / < i (indeed if it were the case, one would have yεB(l\U) in view of
(3.20). So necessarily ye W(l\U), for every l<i.

Definitions 3e. Let & = {S(0\ S(1) . . . , S(L) S(0) cz S(1) c . . . c S(L)} and for every 7
(0 g j ^ L), let us put: ̂  - (S°, ... ,Sj}. (̂ L = #"). We call Φ^) the set of all
forests which are complete with respect to the nested set 2F .. It is natural to say
that any full forest is complete with respect to the nested set « 0̂ = {S(0)}, since
such a forest contains G and has (in a trivial way) all its lines constant in {S(0)}
so the set of full forests of G is identical with ^(« 0̂), and we have the following
obvious inclusion relations :

For any given forest [/ in (̂J )̂ and every j (0 ̂ 7 ̂  L) we define C^} as the class
of all forests U 0) in ̂ (J .̂) whose completion forest with respect to J^ (in the sense
of Lemma 3.4) is equal to U.

It is clear that C(^ reduces to {U} and that the following inclusion relations
hold:

C(L~ 1} c cz Γω cz cz C(0)L^^ ( ^ . . . c z o ^ c z . . . ^ ^ ^ .

We shall now completely characterize the classes C$ which are associated with (7,
by means of the following sets :

&*J(U)= U B(l\U).

Lemma 3.7. Let U in ̂ (^}. Then for every integer], with 1 ̂ 7 ̂  L, the correspond-
ing class C$ is the set of all forests U^ which satisfy the inclusion relations:

(I7\j^(l7))u«^(l7) cz l/ω cz U (3.21a)

The class C(^ is the set of all forests I/(0) which satisfy the inclusion relations:

U. (3.21b)

Proof
1. For a fixed; (O^; g L),let U ω be a given forest in C^. Then let {U(m)'J g m ̂  L}
be the increasing sequence of forests associated with t/0) through Lemma 3.4:
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and

/ L - l \

[ / = £ 7 < L > = £ / < / > u ( (J )^(" + l)([7(«)). (3.22)
\ m = j /

Then by applying Lemmas 3.3 and 3.5 to each forest V(m\ we can write for

j ̂  m ̂  L :

j/(w + 1)((7(m)) c= BOn + D^ίm + D) = B(w + 1)(i7), (3.23)

and from (3.22) and (3.23) we obtain :

L-l L

£/ω =U\\J ^(m+1\U(m)) => U\ (j £(w)(t/(m)) => U\a*(U) (3.24)
m = j m=j+l

Moreover, by applying Lemma 3.5 to £70) we also obtain

V / ̂  j : B(l\U) = B(l\U(j)) c U® c t/ (3.25)

From (3.24) and (3.25), we deduce that U(j} satisfies the inclusion relations (3.21. a)

if 1 g; g L (resp. (3.21. b) if; - 0).
2. We shall prove that conversely, if U(j} satisfies the inclusion relations (3.21. a)
(resp. (3.21.b) then U(j}eC(^\ This statement holds trivially for; = L (since neces-
sarily U(L) = U); let us make the recursive assumption that it holds for j = J -f 1,
and prove it for j = J.

Being given forest ί/(J) which satisfies (3.21.a) (resp. (3.21.b)), we put:

(3.26)

then the latter clearly satisfies the inclusion relations :

c: U (3.27)

and from our recursive assumption : L/(

Then by applying Lemma 3.5 to U(J+ 1} and using (3.26) we can write:

J Γ J ( J + 1 ) \ β ( J + l ) ( j j ( J + !))<_ J J ( J ) ς

But in view of Lemma 3.3., this shows that U(J+ 1} is the completion forest of
£/(J) with respect to S(J + 1).

It remains to show that for every / ̂  J, U(J} is necessarily complete with respect

toS ( Z>.
Since all the graphs y of U(j) belong to U(j + ί) these graphs can always be

classified as follows, with respect to a given subspace S(l\l ^ J) :
a) y<βW(l\U(J + 1}): this implies y$W(J + 1\U(J+1}}so there is no maximal

subgraph ya of y in U(J + 1} which belongs to β(J + 1)(L7(J+1)), namely to B(J+1\U)
thus in view of (3.26), every maximal subgraph of y in U(J + 1} must belong to U(J}

and therefore we have :y(U(J)) = y(U(J+1)). But since y£W(l\U(J+1}) we can con-
clude that all the lines in ^f(y([/(J)))(rr:c^(_([7(J + 1))))are variable in S(l} (relatively to y\

b) yeW(l\U(J + 1)) : we shall prove that every line i in <£(y(U(J)r is constant in
S(l) relatively to y. Let τ be the (unique) subgraph in U(J + 1} such that i e ̂  (τ(U(J + 1}) .
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Then either τ = y, and then i is constant in S(l} relatively to y, or τ c y, with τ ̂  y in
the latter case, τ belongs to U(J + ί}\U(J\ namely to the set j/(jr + 1)(£/(7)) (since
£/G/ + I) js {he completion of (7(JΓ) with respect to S(J + 1) by Lemma 3.3, τ is thus a
maximal subgraph of y in L/(J+1). Moreover, from Lemma 3.5 applied to t/(J + 1)

and relation (3.21. a) satisfied by U(J) (for; = J\ we obtain:

and since τ^ ί/ω

Since ye FF(/)(L7α + 1}), we then deduce that τe H/(/)(ί7(J+ *>), and that the line i is
constant in S(l\ relatively to τ and also (due to Lemma 3.1) relatively to y .

So we have proved that (7(J) is complete with respect to each subspace S(l\
with / ̂  J namely l/^eΦ^ ). Since £/(J + 1} is the completion forest of ί/(J) with
respect to S(J + 1\ and that C/(J + 1)eC^+1), we have thus proved that t/^eC^.

To end our recursion argument, we just remark that in the last step (from
j = 1 to j = 0), only the first part of the above argument is applied (namely L7(1) is
the completion of U(0} with respect to S(1)). q.e.d.

The purpose of the end of this section is to prove the following property for the
renormalized integrand jRG .

Proposition 3.1. Given any nested set $* = {S0) 1 ̂ j ^ L} there exists a corres-
ponding expression of RG which is defined as follows :

RG(K,k)= Σ *u(K,k) (3.28)

Each term Xv (for U £<%(&)) is given by :

1^(1-^))^) (3.29)

and Ϋ ( ς } is defined together with the set of auxiliary functions { Ϋ0

U} V y e U} by the
following recursion formula:

ϊy-im Π tf/TyΓ (3 3°)
γaeJίv(V)

where :
7("> = (l-ί^">) ]ϊγaε<g*(V) (3.31)

/(^)=_^α) χγaφ<g*(v) (3.32)

To prove this proposition we need some auxiliary definitions and properties.

Definition 3f. Given a forest Ue^f(^) we consider a forest [7(0) c U. Let ye(7;
i) a subgraph μet/(y)n [/(0) is called maximal with respect to L/(0) if there is no
μe C7(y)n t/(0) (μ ̂  y) such that μe L/(μ).
ii) we define the following subset of U(γ) :

j/°(y) = {μe [/(y) : μ maximal with respect to U(0)} (3.33)

iii) With y we associate the following function:

iγ>u(0\K?k)= Π Hn»(K\k] Π Hf\K\k) (3.34)
'V) ie^f y\ u ̂ μ

y) μeF°(y)
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We state the following:

Lemma 3.8

b) for every y e L7(0) : F°(y) - ^y(l/(0)) (3.36a)

(3 36b)

a) From Definition (2.37) of 7-(L7) and (3.34) of I(">u(0)) and taking into account
Property (2.29) we obtain :

'w, Π ί*/^(0)>= Π H*>(K\k) Π

Π Γ Π ^(^fc) Π ^(2)(^/c)i- π Rnv

Jίγ(U} \ve^μ\^J^μ iejSPy\u^Pμ/ ι>e,/ry\(u ΛV)
/(θ) Lμ'eF°(μ) μ'eV°(μ) J y'eF°(y)

f] Hl^/^ ̂ ^fc); q.e.d.

(b) Property (3.36.a) is trivially verified from Definitions 2f.i) and 3f.ii). If 7eL/ ( 0 )

then by comparison of Definition 3f.iii) of /^'u(0)) with Definition (2.36) of /-(t/(0)) and
taking into account 3.36.a we verify 3.36.b.

Definition 3.8. For every subset J c &^(U) we write:

17 = Jv(U\^(U))v(^\J)

and define the forest [/$> c [7 by:

(3.37)

Remark. From Lemma 3.7 when J varies in ̂ (U) U(^ varies in C^ that means :
the sets J are in one to one correspondence with the forests (7(0) which constitute
the class

Lemma 3.9.
a) The function Ϋ(^ defined by (3. 30) (when γ = G) satisfies :

y(C/)= Σ y<W) (338)

Jc

y^'J)Vye(7(G) is given by the recurrent formula :

γ(u,j) _ r Π s* f (J) F(t/'J) (3 39)J y ~ 7 y(t/) 11 ^aJγa

Iγa {3.3?)
γaeJίγ(U)

with f£ = - td(ya) if γae(U\0*(U))v J\

\J J (3 4°)

summation in (3.38) runs overall subsets J o
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b) Let Um = U(0\J) be defined by (3.37) then :

(3.41a)

Here the function 7^(0)) corresponds toy as a subgraph of the forest (7(0)(G) and it is
given by Definition (2.45).

Proof
a) Let us consider formula (3.30) for y = G :

v(U) __ τ(U) T~Γ ~Gsfc 7(17) Λ7(U) /"> JO\

If we work out the factors (1 - tά(μ}) occurring for each μe U(G) such that μe0S*(U)9

then formula (3.42) yields Eqs. (3.38), (3.39), (3.40).
b) To prove Properties (3.41 .a) (3.41.b) we suppose that the latter hold for every
subgraph belonging to the set ^y(U) from this recurrent hypothesis we can write
Eqs. (3.39) (3.40) for every ye U as follows:

μe(Λ£y(t/)U[/(θ)) γ'eJίγ(U)

Π S?(-^)YVm> (3.43)

We notice that in (3.43) the products between different kinds of disjoint maximal
subgraphs of U(y) commute. Using then the composition property sy?s£Γ = s£?
(Eq. 2.27) and Lemma 3.8a we obtain from (3.43):

(3.44)

μeV°(γ)

So if yφ (7(0) the last equation proves (3.41.b) if ye (7(0) we use properties 3.36.a)b)
of Lemma 3.8 and finally obtain from (3.44) and Definition (2.45) :

Y(?'J} = Vo, Π <( - t"(γa)) nf = YΓ'} (3 41a)
yαε^v(t/(θ))

q.e.d.

Proof of Proposition 3.1. The Definition (2.44) of RG can be reexpressed as
follows :

*G= Σ (l-ίd(G')yf0)) (3.45)
C/(°)e^(J^0)

or by regrouping together the terms which correspond to forests [7(0) in the same
classes C™ with U in

RG= Σ Γ Σ (l-^nΓ'l (3.46)
C/e^(^1)Lt/(°)eC(

l?
) J

In order to show (3.28) (3.29) we are clearly led to prove that the quantities 7[F)
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defined by (3.30) (3.31) (3.32) are related with the Γ^(0)) through the following
formula :

From Lemma 3.9a) we have:

(3.38)

and by Lemma 3.9 b) Eq. (3.41.a) for y = G yields (every forest U(0)eC(^ is a full
forest so Gel/ ( 0 ):

γ(u,j} = yg/(o>) (3 48)

By inserting Eq. (3.48) in (3.38) and taking into account the remark after Definition
3 g, we finally obtain (3.47). q.e.d.

Remark. The "complete forest formula" of Zimmermann [7] appears as the
special case of Proposition 3.1 which corresponds to & = {S(0\ S(1}} (@*(U) then
reduces to B(S\U)).

Definition 3h. For every ye U we define the subset σζ a ̂  as follows:

σζ = {st/)e^ : y£ W(j\U)} (3.49)

we can then prove.

Proposition 3.2. Let yaeJΐγ(U); then

a) if γaeO*(U) then σ^ =) σf and σ^ ± σf

b) ifyaW(U) thenσf^σfa

Proof
a) \ϊyae^(U\ then in view of Lemma 3.6(ii), there is an integer i ̂  L such that :

(3.50a)

(3.50b)

(3.50c)

Formula (3.50a) and (3.50b) show (in view of Definition 3h) that:

(7^ = {S(£)6# ; i^l^L} (3.51)

Now since yα is a maximal subgraph of y in U, we conclude from (3.50a) that
ye W(i\U) Lemma 3.6(i) then implies that:

Then in view of Definition 3h we can say that :

σfc={S ( Z ) e^;z + l ^ / ^ L } (3.52)

Comparing (3.51) with (3.52) yields the desired result a).
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b) Let yaφ<2S^(U). We have the two following cases:
b.l) VS(ί)e J% yae W(i\U). That means σ^ = 0 and property b) is trivially obtained.
b.2) Let / be the minimal integer (1 ̂  ίk L) for which yaφW(l\U). Lemma 3.5(i)
implies that :

V ; ^ / yaφW(j\U] (3.53)

and from Definition 3d.3, we have:

Let us show that necessarily if j ^ 7, then y ̂  W(j\U) indeed since yα is maximal in 7
and since ya has variable lines in S0) (in view of (3.53)), the relation ye W(j\U) would
imply yaεB(j\U), which is not possible since we assumed that yaφ£8^(U\ So we
have proved that if S(7)eσ^ then yφW(j\U), or in other words S^eσ^, and b) is
thus proved.

Definition 3.i.l. With every μ0e^"([/)π U(γ) we associate a nested sequence of
subgraphs, denoted by j/(

y

μo) :

* = 0,...r-l\

j l '

The above set jtf(

γ

μa} can also be empty. We then define:

ay(U) ={μe U(y) n &*([}) : 3 a sequence j^^> ̂  0 } (3.55)

Definition 3i.2. For every yeί/ L/e^(JΓ)we define the following sets of subspaces :

σy - {Sc: £- :3Sωeσf such that 50>) c 5} (3.56)

(3.57)
μe@γ(U)

We prove the following:

Lemma 3.10.
i) For every yaeJίy(U):

σ =) σ απrf σ ^ σ Vy f l e ̂ (17)

σ y αc:σ y Vyβ^^(I7)

ii) T/Z£ couple (σyώy) is an admissible couple in Sr^ k} .

(3.58)

Proof
i) From Definitions (3.56), (3.49) and in view of Proposition 3.2 (for σ^) we obtain
easily this proof.
ii) The Properties b), c), d) of Definition Id follow easily from Definitions (3.56),
(3.57). We then show the validity of Property a) of Definition Id i.e. :

σ y c=ώ 7 (3.59)

Let Seσy; by Definition (3.56) that means Sφ Ker λ\ VzeJSf- and in view of
Definition (3.57) we have to prove also that S φ Ker λ] V / e JSf - for every μe$y(U).
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Let us consider such a subgraph μ0e^y(l/) following Definition 3i.l. there exist
in U(γ) a sequence jtf(

γ

μo) of subgraphs of γ defined by (3.54). By Lemma 3.10.i)
we obtain that :

% => V => - <V => °y ' With ^o ̂  °μι

so in view of Definition (3.56) there exist at least one subspace S c S such that:

SςέKerAf 0 V/eJ*?-o (3.60)

Sciί p KerλΛnf p| KerAgM (3.61)
\ ίe^y / \ te-Sfμ . J /

or equivalently

yeW^(l/),^.eH^(l7),7=l...r (3.62)

We can rewrite formula (3.61) equivalently as follows:

J = l . . . r

We shall now show that (3.60) and (3.63) imply that V / e J&f ̂  S c^ Ker ̂ y. Indeed, let
us suppose tha
which means :
us suppose that the contrary holds, namely that for one l£^βo one has S c Ker λ]

(3.64)

From the relations (2.29) between the mappings λμ°, sμj+\ j = 0, . . . r, sμo we obtain :

A? = A?«oSjo = A«o S ; r o S * : _ i o. . . s jM j /e^o (3.65)

Inserting (3.64) in (3.65) we have:

^o(K,o(K,l( (Ky = Q9 k} ? k) |fces = o (3>66)

Let us show that

Vj(0 ^ j ^ rl K^(K^ + 1 - 0, k) |fees - 0 (3.67)

(where μr+ί denotes 7).
This results from Lemma 3.1. a) which, in view of (3.62) can be applied to each
subgraph μj+1(0 ̂ j g r).
In view of (3.67) Eq. (3.66) yields:

λf °(Kμo = 0, k) \kes = 0 which means :

S ci Ker λf0 for the considered line le ̂ βo (3.68)

But (3.68) is contrary to the hypothesis (3.60) and we conclude that statement
(3.64) is not true. It follows that:

SφKπλl V/e^-o (3.69)

The inclusion S a S allows us to obtain from (3.69) that also S φ Ker λ], V/e^f -o

q.e.d.
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Lemma 3.11.

i) σ y c:σ-; σy = σ y n | f ] σμ

ii) ώy

Proof
i) From Definitions (2.38.a) and (3.56) we obtain that σy a σ-. In view of definition
(3.i.l) for every μe&y(U) there exists a sequence j/(

y

μ) ̂  0 (3.54) therefore
by Lemma (3.10.i) we have : σμ => σ^ ID ... σμr => σy so it follows: σy =

JΊ ί,̂
ii) In view of Definitions (3.57), (2.38.b) and the first property if we verify that

Definitions 3i.3. For every yaeJiy(l}\ Ue^(^) we define the following sets:
a) If

b) If ya

Lemma 3.12
i) (ω(

y

yj, σy) is an admissible couple inS^

ii) For βi βrj; 5y e ώy , 5ya = sβSy e ω(/j

iii) For every

Proof
i) In view of Definitions (3.70) (resp. (3.71)) and (3.56) together with Property
(3.58) the sets (ω(^, σy) satisfy the requirements a), b), c) of Definition Id.
ii) Let Sγeώy and Sya = saSy.By Property (1.18) and Definition (3.57) we have:

πa(Sya) = π(Sy)Eσy (3.72)

In view of the Definition (3.71) Property (3.72) proves that Syαeωy^ in the case

yat#y(u).
Now from Property (2.29) λ] = λ\asa it follows directly that Sya φ Ker λ\a if and

only if Sy c= Ker λy

r Taking into account this property together with Definition
(3.57) of ώy we obtain:

(J Jίf (3.73)

U ^ = U *, (3-74)
e^Vα(L7) / \μe%(C7) /

From (3.73) (3.74) and by Definition (3.57) of ώγa we obtain Syαeώ rα. The latter
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property together with (3.72) prove (in view of Definition (3.70)) that Syaeω(£ q.e.d.
iii) By comparison of Definition (3.70) with (3.57) (of ώ ) and in view of Property
(3.58) σy c σγa, we obtain that ω^} c ώγa q.e.d.

4. Integrability of the Renormalized Integrand RG

This section is devoted to the proof of our main theorem:

Theorem 4.1
a) For every fixed value ofK in S>r^n~1}, the renormalίzed integrand RG(K, k) (defined
by formulae (2.43), (2.44) and all the derivatives DKRG of the latter belong to a class
A(?m whose asymptotic indicatrix α satisfies the following condition :

sup (α(S/) + Λ(S/))= -1 (4-1)
{S'^W.S'cE™}

where h(S') ^ rm denotes the dimension of the subspace Sf.
b) The integral

«£"(*) = f RG(K,k)drmk (4.2)
EΪS

is absolutely convergent. The function H™n that it defines belongs to the class
Γ<x> (&v(n- 1)\C (ώ(K} ).

The proof of this theorem is based on the possibility of writing decomposition
formulae of the type (3.28) for RG, corresponding to a variety of nested sets ̂  =
(5(1) c S(2} c ... c S(m)} for each such decomposition (3.28), the various terms
Xv, with UE%(έF) will be proved (in Proposition 4.2) to belong to appropriate
classes A*N(U). But since Xυ is itself defined through recursive formulae (see (3.29),
(3.30)) which involve auxiliary functions Y(yeU(^)) it will be first necessary to
prove (in Proposition 4.1) that each of these functions Yy belongs itself to an
appropriate class j/^Λ,^)

Proposition 4.1. Let ̂  = {S(1}... S(m}} be a nested set ofsubspaces in E™} and U be
a forest in %(&Γ)(m^ m).

Then for any subgraph ye U, the function Yy(Kyk) in formula (3.30) belongs to a
class jtf&y>σ y ωv) of admissible Weinb erg functions with the following properties:

a) σy = σy(U9^)9 ώy are defined by formulae (3.56) (3.57)
b) i) V Sω e 2? such that SU) φ σy, the asymptotic coefficient α(Sα)) satisfies:

either: αy(Sω) - 0 if V^e U(γ) S(j]^σμ (4.3)

or : <xy(SU)) ^ - M(j\y) - 1 (4.4)

if there is at least one μe U(γ) with S(j}eσμ

iί) VS(</)e^" such that S(j)εσγ the asymptotic coefficient with respect to every
subspace Sy^ώy with π(Sy) — S^\ satisfies:

αy(Sy)gd(y)-M%0 (4.5)

For the proof of this statement we shall use the recurrence hypothesis that Proposi-
tion (4.1) holds for every function ΎJa, with yaeJty(U}. We shall need to prove the
following auxiliary Lemmas 4.1., 4.2., 4.3.
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Lemma 4.1. J* and Ueύlί( &) being given, the function Iy(K\ k) belongs to a class
^(otγ,σγ,ωγ) of admissible Weinberg functions with the following properties:
i) For every S(j)£ ^ such that S(J'^φσy, the corresponding coefficient satisfies :

αf(S<Λ) = 0 (4.6)

ii) For every S(i)e^ such that Sϋ)eσy, the coefficient corresponding to every Sγeώy

such that π(Sy) = Su\ satisfies:

rm(γ). (4.7)

Proof. From Lemma 2.3 we obtain that: IJ(Ky

9k)ej/($f*<°v) with σ-ω- and α-
defined by formulae (2.38) a) b) and (2.39). Now the following properties have been

proved in Sect. 3 (Lemmas 3.11, 3.10) : σy c σ- ώ- c ω- and (ώy, σy) is an admissible
couple in$r

(χϊkr so that in view of Proposition 1.3.c. we also have:

It remains to check (by using formula (2.39) and the Definition (2.41) of d(y) that :

one has:
α

?(S)= Σ ^+ Σl*i = d(y)-rm(γ) (4.8)
vejf-.y ieJέfy

- VS = S(J>e^(l ^j^ m\ such that S^φσΊ(U^\ one has α-(S) - 0. (4.9)

The latter result comes from the fact that for such an S(j\ yeWj(U), which means
that:

ieJSf Ϋ

therefore formula (2.13) applies to αy(

Lemma 4.2. For et?ery subgraph yaeJty(U\ with ya^(U) the function
s*(l - ίd(yα)Yyα belongs to the class j/^fl)'^>ώv) of admissible Weinberg functions
with the following properties :
i) VS(7)e^ wzί/ϊ S^eσy f fte asymptotic coefficient corresponding to every subspace
Syeώy with π(Sy) = S(j} satisfies :

(4.10)

either :tf\Su>) = 0= - Mu\ya] ifVμeU(ya)S(»φσμ (4.11)

or : α<,α)(Sω) ̂  - Mω(yfl) - 1 if 3 at least one μe U(ya) with Sϋ)eσμ . (4.12)

Remark. The last equality in (4.11) is a consequence of Definition (3.7) which
yields M(j\ya) = 0 if Vμ c 7, μe P .̂([7), i.e. Sω£σμ .

Proo/. From the recurrence hypothesis we have that Ϋya^^^'άya'ώγa} from

5 We note that when S <= Ker / l^Vie^f- then from the Definitions 2c and 2d we can easily verify
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(4.3), (4.4), (4.5) the corresponding coefficients αyα satisfy :

- for every : Sya e ώja with na(Sy) = S(j\S(j) ε σy) :

«ySSy) = α Jsϋ>) i d(ya] - M %β)
 α (4.13)

ΓαJSω)^-M%α)-l (4.14)

- for Sωjέσyβ :< if 3 at least one μe t/(yfl) with Sωeσμ

0 U.ί̂ ) = 0 if Vμe l/foj, S&φσμ (4.15)

The property yαE J^([7) yields by Lemma 3.10:

σy c σyα (4.16a)

moreover by Definition 3i.l we have γaeέ$y(U) which by Lemma 3.12 iii) implies:

ω£> c: ώyα (4.16b)

We now apply Lemma 1.6 to the function (1 — td(ya})Ϋya in view of Properties
(4.16a, 4.17b) and Lemma 3.12(i), (σyώ[yβ)) (resp. (^ya^y)) can play the role of

(σ'ωf) (resp (σ, ω)) in this lemma and we obtain that (1- td(y^} Ϋyε^fy^}\ the
coefficients άyα are specified as follows :

a) If S(j)eσy Property a) of Lemma 1.6 yields :

VSyβeω^ with π(Sy) = S(j\
ά JS J =Xα(S

0'0= α JS J (4.17)

Moreover by Properties (4.16 a,b) and the hypothesis S0)eσy we have S(j}eσya and
Syαeώyα, too; so, we insert (4.13) in (4.17) to obtain:

αjSj^*fl)-M%,α) (4.18)

b) If S(j) φ σy but S(j] e σya , then Property b) of Lemma 1 .6 yields :

«7β('Sc/)) = αyβ(Sω)-d(yβ)-l (4.19)

Inserting (4.13) in (4.19) we obtain:

άyα(^)^-M%J-l (4.20)

c) If S(j)φσya Property c) of Lemma 1.6 yields :

fi

yβ(Sϋ>) = αyβ(S^) (4.21)

We insert now (4.15) (resp. 4.14) in (4.21) to obtain :

αyβ(S<Λ) = 0 if Vμe U(ya) S^φσμ (4.22)

άyα(Sω) ̂  - Mω(7fl) - 1 if 3 at least one μ e [/(yα) with 5(7) e σy . (4.23)

Lemmas 3.10 (ii) and 3.12 (i) and (ii) allow us to apply Lemma 1.4 to the function

(1 - td(^) yyee^-^<}), and to the mapping sα(from δ$tk) to ̂ -fc)); we

obtain that s*(l - ίd(yα)) 7yα is an admissible function on £r$,k) ^n ^e c'ass

with 5

α = 5A) (4 24)
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Since the condition πα(Syβ) = π(Sy) holds (in view of formula (1.19) it is easy to check
that in view of (4.24) the conditions (4.18) (resp. (4.20), (4.22), (4.23)) entail property
(i) (resp. (ii)) of the Lemma. q.e.d.

Lemma 4.3. For every subgraph ya<=Jΐy(U) with yaφ3l(U\ the function s*( - td(ya})Ϋya

belongs to a class ^^^ω^ of admissible Weinberg functions whose asymptotic
coefficients satisfy the following properties :
i) Let S(j)eσy VS yeώ y with π(Sy) = Sα)

either : α^(^) = d(ya) = d(ya) - M<j\ya) (4.25)

o r y ^ y a

if 3 at least one μe U(ya) with Sωeσμ . (4.26)

ii) Let S(j}φσy; then

either : α<fl)(Sω) = 0 = - M(j\ya) if Vμe U(γa)SU)φσμ (4.27)

or : α<α)(S(j)) ̂  - M(j\ya) - 1 if 3 at least one μe U(ya)

withSU}εσμ (4.28)

Remark. For the last Eqs. in (4.25) (4.27) see the remark at the end of Lemma 4.2.

Proof. From the recurrence hypothesis we have y^ej/^«'σy«'ωyα). Moreover the

property yaφ &(U) yields by Lemma 3.10 :

σyac:σy (4.29)

We apply directly Lemma 1.5 to the function ( — td(ya})Ϋy now in view of (4.29)
the role of the set (σ'ω') (resp. σ, ω) is played by the admissible couple (ώ ,̂ σy)
(see Lemma 3.12./) (resp. σyα, ώ ) and we obtain that :

( - ίd(yα)R ej^&Λ» <} with αv defined as follows :
Yd * n i a Ya

a) If S(j}eσ. Sωeσv , then VSV with π(Sv ) = Sω

f i a 7α f* i a

we have by Property a) of Lemma 1.5 :

From the recurrence hypothesis (4.5) which applies to S(j}εώya the Eq. (4.30)
yields :

5JSJ^W-M%0 (4.31)

b) If 5ωeσy S^φσ^, then \/Sya with πa(Sya) = S(j} by Property b) of Lemma 1.5
we have:

From the recurrence hypothesis (4.3), (4.4) the Eq. (4.32) yields:

either : άJSj = d(ya) if Vμe U(ya) S®φσμ (4.33)



234 Jacques Bros and Marietta Manolessou-Grammaticou

or : &ya(Sy) ^ d(ya) - M<%α), if 3 at least one μe U(ya)
U}eσμ. (4.34)

c) If S(j)φσy by Property c) of Lemma 1.5 we obtain:

Taking into account (4.29) we also have S(j}φσy so from the recurrence hypothesis
(4.3), (4.4) the above Eq. (4.35) yields :

(4.36)

αyβ(S">) ̂  - M(%α) - 1, if 3 at least one μe U(ya) (μ + ya)

withS ( j )eσμ. (4.37)

Lemmas 3.7 (ii) and 3.9 (i) and (ii) allow us to apply Lemma 1.4 to the function
( — td(Ja))Yya and to the mapping sa as at the end of the proof of Lemma 4.2, we
easily check that the Property i) (resp. ii) of the present lemma is directly implied
by the above inequalities (4.31), (4.33), (4.34), (resp. (4.36), (4.37) if one again defines
the class ^(4j>.*v.*v) by (4.24).

Proof of Proposition. 4.1. We apply the results of Lemmas (4.1), (4.2), (4.3) to each
of the factors in formula (3.31) :

y = / Π s* f ΫIy Ly 11 *aJya

1ya

<tx<c

By Proposition 1.2.b, we obtain that : Ϋyes/^Ύ'ωγ\ where the set of asymptotic

coefficients ay(S) satisfies the following conditions :
i) VSα)e^ with S(j}φσy, we take into account Properties (4.6) (4.11) (resp. 4.12),
(resp. 4.28) and Proposition 1.2 b, and this yields :

ay(S^) = ay(S^) + 2a(a)(Su)) = 0; if V μeU(γ) S(j^σμ (4.3)
a

or respectively : αy(Sω) ̂  - ΣM(7)(7α) - 1 = - M(j\y) - 1

if 3 at least one μe U(y) with Sωeσμ . (4.4)

For writing the equality at the right hand side of (4.3), (4.4) we have made use of
Definition 3b and of the fact that yeW(j\U}.
ii) VSωe<r with Sωeσy from Properties (4.7), (4.10), (4.25), (resp. (4.26)) and
Proposition 1.2 b we have that VSyeώy with π(Sy) = S(j} :

*γ(Sγ) = Σtf\Sy) + «y(SJ ^ Σ *J ~ Σ Λf%>β) + d(y) - rm(y) (4.38)

Let us use the relations :

d(y) = Σd(ya) + d(y) (2.42)
a

and

+ rm(y) (3.6)
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(the latter trivially follows from Definition (3b) since γ£W(j\U)). So, (4.38) yields
finally:

αy(Sy)gφ)-M%;) (4.5)

q.e.d.

Proposition 4.2. For every Uetfί(^r), the function

(3.29)

and every derivative DV

(K}XV ofXv belong to a class A(^U}} of Weinberg functions
such that :

- Λϋ) - 1 (4.39)

/z(J) means the dimension of the subspace S(J).

When Proposition 4.1 is applied to γ = G, it yields :

ΓGe^G'*G'ώG) with the properties:

1) V Sω ε ̂  such that Sω £ σG :

aG(S(j}) ^ - M(j\G) - 1 (4.40)

because there is always at least one μe U(G) such that S(j}<=σμ (since Sω 7^ {0} ).
ii) V^eJ^ such that 5ωeσG and VSeώG with π(S) = Sω:

(4.41)

We can now apply Lemma 1.6' to the function Xv expressed by (3.29) (the cases i)
and ii) correspond respectively to the cases b) and a) of Lemma 1 .6') we then obtain
that there exists a class A^U)} which contains Xv and all the derivatives DV

(K)XV

and which satisfies the conditions :

VS(% &, α([7)(S
ω) ̂  - M(j\G) - 1 (4.42)

Moreover taking into account Definition 3b, we have : M0)(G) ̂  h(j) where h(j)

is the dimension of S(j). It then follows from (4.42) that :

q.e.d.

Proof of Theorem 4.1. Let {L1 , . . . , L^} be an arbitrary set of independent vectors
and W an arbitrary bounded region in Er™}. With the ordered set (L 1 >... ,̂ },
we associate a unique nested set of subspaces 3? = (S(1), . . . , S(m)} by the following
definition :

We then write the corresponding expression (3.28) of ,RG:

RG(K,k)= Σ X^K,k) (3.28)

Then in view of Proposition 4.2 and of Definition la, we can say that for each
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forest U in ^(^), and for each bounded region £2e<f4(" 1} there exist numbers
bj(U, Ω) ̂  1 (1 gj ^ m) and MV(Ω) such that Xv satisfies the following bound:

MKeω:

7 = 1

r , Σ -
j=ι

,-Aω-l

^ Mυ(Ω)
j=ι

(4.43)

provided that: Vj, η. ;> b.(U, ω), and Ce W.
Let us then put:

M(Ω)= Σ ML/(^

)= sup &/C/,Ω)

(4.44)

From (3.28), (4.43), (4.44) it follows that:

VKeΩ: R,.
J = l

(4.45)

provided that: V/, */. ̂  fe.(Ω) and Ce W.
Let us now introduce the class A™ whose asymptotic indicatrix α is defined as

follows for every subspace 5 in E™ with dimension h(S), one puts :

α(S) - - MS) - 1 (4.46)

Since formula (4.45) has been established for an arbitrary set of independent
vectors (L1,... ,Lm} and an arbitrary bounded region W in Er™ it expresses the
fact (see Definition la) that for every K in δr(n~ υ, RG(K, k) belongs as a function
ofk, to the above-defined class A™.

Now, by definition, α satisfies the following property:

sup(α(S) + h(S)) = — 1, (4.1)
s

and therefore RG satisfies the Weinberg integrability criterion (1.4) thus in view of
Lemma 1.2, the absolute convergence of the integral (4.2) is then ensured.

To achieve the proof of Theorem 4.1, it remains to show that the function
Hr

G

n defined by (4.2) is infinitely differentiable on Sr£~1}. This will result from the
two following points.
i) In Weinberg's proof of his convergence theorem, (whose details are essentially
reproduced here in the proof of our Lemma B.I in Appendix B, it is clear that the
uniformity of the input bounds on the integrand (such as (4.3) for RG) with respect
to the external variables (namely K) varying in a bounded set ω, entails the follow-
ing property: there exists an integrable positive function g(k) on the integration
space Er™} such that:

\/KεΩ\RG(K,k)\^g(k).

ii) Every derivative DV

(K] RG(K, k) also belongs to the class A(^ (satisfying condition
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(4.1) ) and also fulfils a bound of the type (4.3) for K varying in Ω. In fact, for every set
3? and every forest U in ^l(^\ Proposition 2 applies to DV

KXV as well as to XU9

and one just has to use the various decompositions of DV

(K)RG which correspond
to those of jRG written above (as an application of formula (3.25)).

By now applying the same argument as above (in i)) to the functions DV

(K}RG,
we deduce that there exist integrable functions gv(k) such that :

From a known theorem of integration theory, we then conclude that derivation
under the sign J with respect to variables K is licit in formula (4.2), so that

1*) q.e.d.
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