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Local Theory of Solutions for the 0(2k-+1) 6-Model

H. J. Borchers and W. D. Garber

Institut fiir Theoretische Physik, Universitdt Gottingen, D-3400 Gottingen, Federal Republic of
Germany

Abstract. We develop a theory of solutions n for the Euclidean nonlinear
0(2k +1)s-model for arbitrary k and for a region GCIR? We consider a
subclass of solutions characterized by a condition which is fulfilled, for G=1R?,
by those n that live on the Riemann sphere S2>IR2. We are able to characterize
this class completely in terms of k meromorphic functions, and we give an
explicit inductive procedure which allows us to calculate all 0(2k + 1) solutions
from the trivial O(1) solutions.

Introduction

In this paper we want to investigate instanton solutions n of the Euclidean O(N)-
invariant g-model. This model is characterized by the Lagrangean density

4 N
L= Y Y (0,m)* 0.1)

a=11=1

with constraint

M=

n*=(mn):= ) (n)*=1, 0.2)

=1

and by instanton solutions we understand stationary points of the action

S(n):= [L(n)d"x (0.3)
that are continuous and for which the total action is finite:
S(n)< 0. 0.4)

It is known that for the g-model, (nontrivial) instantons in d > 2 dimensions do
not exist. More precisely, the argument is as follows:

Stationary points of L are, as expected, weak solutions of the Euler-Lagrange
equations associated with (0.1)

Anj+L(mn,=0 I=1,..,N. (0.5)
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Of course, the class of variations has to be specified ; see [ 1] for details. Now, by a
previous result of us [2], continuous weak solutions of (0.5) are real analytic. By a
well-known argument, any twice differentiable solution of (0.5) with finite action is
constant in d>2 dimensions [1, Theorem 5.1].

We may therefore restrict ourselves to d=2 in the following.

In the case of the 0(3)o-model, all instantons have been found and are most
easily described by projecting the three components of n stereographically from
the unit sphere [cf. (0.2)] onto the plane [with coordinates (w,, w,), say]:

wi=n(l+ny)~t,  i=12. (0.6)

Then, instantons are precisely those functions n(x,,x,) for which either
w:=w, +iw, or W is a rational function of z=x, +ix,, see [1].

For the general two-dimensional O(N) model, we give a complete characteri-
zation for those finite action solutions of (0.5) that fulfil (0.5) on the whole
Riemann sphere S?>IR?, i.e. for which also the conformal transform

Az,2) :=n(z"1,z7 Y

fulfils (0.5) in R?~C. We show in Sect. 6 that these solutions fulfil the orthogo-
nality conditions

(0'n, &'n)=0 (0.7)
for all non negative integers i, j with i+j =1, where
0:=13(0,—1i0,) 0.8)

and the bilinear form (,) is defined as in-(0.2) by
N
(£9):= X fudm
m=1

By exploiting (0.7), we are able to characterize solutions n explicitly by rational
mappings. In proving this characterization, we develop the local theory for (0.5):
We consider an arbitrary region G CIR? and characterize completely the class I,(G)
of solutions of (0.5) [with constraint (0.2)] obeying (0.7) for i, j < k where 2k+1=N.
Section 3 deals with the regular case where the vectors 0™n for 1<m=k are
linearly independent, and Sects. 2 and 5 with the remaining singular case.

The characterization obtained (by k meromorphic mappings), though explicit,
still contains a constraint mirroring (0.7). In Sect. 4, however, we show how to
obtain all local I, solutions in the O(N) model by starting from the known (trivial)
solutions of the 0(1) model, using an explicit inductive construction in k.

1. Local Properties of Regular Solutions

In this section, we want to analyze, for a fixed region G CC, real continuous weak
solutions n of (0.5), i.e. solutions of

n= —(0n,on)n=— L(n)n (1.1)

with (locally) finite action (0.3). (Note that we have redefined L by a factor of four.)
By the results in [2], all such solutions obeying the constraint (0.2) are real analytic
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and, in particular, in C*(G). So we may consider the subclass I}, =I}(G) of solutions
for which B
(i) the space H, spanned by {d'n}, le N, has dimension k;

1.2
(i) (0'n,0™n)=0;14+m=1,0=<I, m<k. (1.2

As the bilinear form (, ) is not necessarily definite for complex-valued functions, we
use also the (definite) scalar product ¢, > defined by

(frgy:= lzZl T4,

and the conjugation K defined by Kf:= f for which

fg>=(Kf.9).

By (i), the space KH, is also k-dimensional; by (ii), H, and KH, are orthogonal,
and n is orthogonal to both. Hence, n, H,, and KH, form a (2k+ 1)-dimensional

subspace of the N-dimensional space of the n;, [=1,...,N. Thus, 2k+1=<N.
k+1

Since H, is k-dimensional, there are 4,€ €, not all zero, with Y. 1,8'n=0. Let m

1=1
be the highest index with 4, +0 and apply 8*"*~™ to see that 3" 'n is a linear
combination of {d'n}k_,. By the invariance of H, under  one sees that H, is
spanned by the first k vectors {d'n}*_,
Of course, H, depends on ze GCC. More precisely, we have

1.1 Lemma. For any region GCC, the dimension of H, is constant in G with the
possible exception of a nowhere dense real analytic manifold.

Proof. Consider k:=max{k(z)/ze G} where k(z) is the rank of the matrix
B:=(0"n), ;- ...y Then there is a point z,e G with k=k(z,) and a k x k subde-
terminant D, of detB with D,%0 in z,, whereas any (k+1)x(k+1) subde-
terminant D, , is zero. By the maximality of k, D, , , is zero everywhere. By the
analyticity of n, D, =0 describes a real analytic manifold which is nowhere dense
since the real analytic D, does not vanish in z,. []

Suppose now that G’ C G is a connected region for which the dimension of H, is
constant throughout. Then the space spanned by H,, KH,, and n is a constant real
linear subspace of RY of dimension 2k+ 1 independent of ze G'. Thus, we are
dealing in this case with the 0(2k+ 1)-model trivially embedded into the O(N)-
model. Hence, we may as well suppose

2k+1=N

in the following.

We denote by I,(G) the subclass of solutions » fulfilling (1.2) (ii) for which
max(dimH (z)/ze G)=k. Then [}(G) is a subclass of I,(G) of regular solutions (for
which the space spanned by {0'n}, [eN, has constant dimension k in G).

Our first goal is to associate with I} an analytic vector function feH, (for
which we will in fact show in the next section that it characterlzes Ip). Con31der the
function feH,, H,:=H,u{n}, defined by

(fFny:=5%  i=0,..,k. (1.3)
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The case k=0 is trivial: Then on=2n, but A= A(n, n)=A(n,dn)=0 since (n, dn)=0
by differentiating (0.2). Thus, on=0=dn, so n is constant, f = un, and =1 by (1.3)
and (0.2). Hence, we may suppose k>0.
1.2. Lemma. The vector function f, defined by (1.3), is analytic.
Proof. Since feH,, dfcH, by (1.2) (). Hence, it is enough to show

(3f,0n>=0 i=0,...,k.
Suppose first i>0. Then

0,0y =0<f,0'ny —<f,0""*(9n) .

The first term on the right is zero by (1.3). For the second term, use (1.1) and the
product rule to see that 8"~ (ddn) is a linear combination of d'n for [=0, ...,i—1.
Thus, the second term vanishes by (1.3), too.

Now suppose i=0. By (1.2) (i), f can be written

k
f=7Y Adn. (1.4)
i=0
But A,=0 by (1.2) and (1.3) so that feH, and
_ k+1 _
of =Y won
i=1

with suitable coefficients y;. Again by (1.2),

k+1

< 5f> =, 5f) = .;1 wn, 5;'”) = e 1 (1, o ).

But this vanishes, too:
(n, 0+ 'n) = d(n, 0*n) — (On, d*n) =0,
by (1.2) for [=0, m=k and I=1, m=k. [

We collect further properties of f in the following

1.3. Lemma _
(i) <O'f,0my=(—1)'6"*"*  i120,0Zi+I<k;
(i) (8'f,0if)=35"%s" i1=0,..,k;

vey

Proof.
(i) The proof is by induction on i+I. For i+[=0, (i) is just (1.3). Assume (i) for
some value i+ with 0 <i+I<k:

(0, 0iny =03 L f,d'ny — (L £,5 ).
The first term on the right is zero by the induction assumption so that
<alf; gin> =(_ I)m <al—m](; 5i+mn>

as one can prove by induction on m. Now choose m=1 and use (1.3).
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(ii) Note that 0'f has a representation
k
df=Y Jdin (1.5)
j=o

with AL =(—1)¥*. For i=0, this is just (1.4). If (1.5) is true for i<k—1, then
. k s . k . 3
8’“f=6<21 l;afn) ="n + '21 A 1oin
Jj= j=

with suitable coefficients A;“, if (1.1) is used. Form the scalar product of this
equation with n and use (i) to conclude A5 =(—1)"*16'* ¥ Thus

(@1,0'f)= Y. 21210, " n)= 24 A}
by (1.2) (ii). But
ALAE = oMk,

(iii) Assume a relation
k

Y. 4,0 f=0,

1=0

form the scalar product with 6*f and use (ii) to see that 4, =0. Then, differentiate
once and again form the scalar product with 8*f to infer 4,_, =0. Continuing in
this manner, 4,=0 for [=0,..,k. [J

Note that (iii) is implied by (ii) only; no property of n has been used.

We are now ready to express n in terms of f:

1.4. Lemma. Let n be a solution of (1.1) in G CC and consider the function f of (1.3).
Define the k x k matrix M by

M:=M,),M,; :=3'f,df>, il=0,...k—1.
Then M is invertible, and

(— =3~ Y (M~1),0M, ,_,d'f. (16)

i,l=0

Proof
(i) To see that M is invertible, note that M is, by definition, positive semi-
definite. But the quadratic form associated with M is non-degenerate:

ZZIM-MI,: @Aiai IR f> -0

only for 4,=0 since the vectors ¢'f are linearly independent by Lemma 1.3 (iii).
Thus, M is definite and hence invertible.

(ii) Consider the space L, spanned by {d¢'f}, [=0,..,k—1 which is k-
dimensional by Lemma 1.3 (iii). The right hand side of (1.6) is orthogonal to L, and
KL,: The orthogonality to KL, follows by Lemma 1.3 (ii) (/+k!), and the
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orthogonality to L, is true since
<ajf, 6kf‘ Z(M_ l)ilaMl,k~ 1aif> = <ajﬂ akf> - an,k— 1
=018 > —a [, ¢ 1 f>=0

by the analyticity of f. By Lemma 1.3 (ii), L, and KL, are orthogonal, hence the
right hand side of (1.6) is orthogonal to the 2k-dimensional subspace of H X
spanned by KL, and L,. By Lemma 1.3 (i), this one-dimensional orthogonal
complement is spanned by n. Now form the scalar product of the right hand side of
(1.6) with n to see that the proportionality factor is (—1)*. [J

We close this section by illustrating the results for the 0(3)-model:

Since 2k+1<N=3,k=0o0r 1. For k=0, n is constant. Suppose k=1. Then, by
(1.4), f=A0n, and A can be determined from the defining Eq. (1.3):

1={f,0n> ={Adn, ond = A{on,on)>

so that A is real and A~ !={dn,dn)=L(n), the Lagrangian. Hence, f=L"'dn,
which is analytic:

0f=0L"'0n+L"'0%n;

but
0*n=pugn+pu,on,

and forming the scalar products with n and dn gives pu,=0 and
{dn, 0*ny =0 n, ony — {0dn, ony = 0L

by (1.1) so that u, L=0JL. Hence,

f=—L"20L0n+L"'-dn-0LL™'=0.

2. Structure of Singular Sets

Suppose 7 is a solution of (1.1) in a region GCC~IR2 We know how to associate
with n an analytic function f in case the rank of the matrix (6'n), is constant.
Examples of 0(3)-solutions show, however, that in general one must expect
singular points where the rank of (9'n), is not maximal, and we want to investigate
what happens at those points. From Lemma 1.1 we know already that the set S of
singular points is a nowhere dense real analytic manifold, i.e. a set of points that
can be described as the set of common zeros of a finite number of analytic
functions.

Real analytic manifolds in 2 dimensions are either one-dimensional or points
(zero-dimensional). Knowing from the last section that we can associate with n an
analytic function in one variable one can expect that the type of singular manifolds
which can appear in n are governed by manifolds of functions in one variable
which means that only isolated points can appear.

Let z,, z, be the complexification of the variables x, and x,. We introduce the
new variables u=z,+iz,, v=z,—iz,; then the real manifold z,=z,, z,=2,
becomes u="1. Since the above transformation is bi-holomorphic we see that the
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analytic extension of n can be written as an analytic function n(u,v) where n is
analytic in some domain G C C? such that G= {(u,v)e G; u=7v}. With this notation
the differential Eq. (1.1) can be extended into G and reads

0,0,n+(0,n,0,mn=0.

Our singular manifold can now also be extended into G and reads
S:={(u,v)e G/rank{af)n}f‘; o <k}. Since the exceptional points are given by zeros of
sub-determinants, this is an analytic manifold. The defining relations (1.3) for the
function f can trivially be extended into G\S and we find as in Lemma 1.2 that f
depends only on the variable u. Replacing the family {'n} by {0\n} we obtain in a
similar fashion an analytic vectorfield g which depends only on the variable v and
which is also defined outside of S. On the subset v=17 we find in addition_the
relation g(v)= f(u)= f(v), so that the relation g(v)= f() holds everywhere in G by
analytic continuation.

When working in the complex €2 it has some advantage to avoid the positive
scalar product. For instance the defining relations for f(u) become

(@,n, f)=0"

@n, )=0 =0,..., k (2.1)
which by using the product rule of differentiation can also be written as

(@in,0if)y=(—=1F" 1! 0k i4j=0,.. k. (2.2)
From these equations together with the Egs. (ii) from Lemma 1.3 which now read

(@Lf,0if)=5%", i,j=0,..,k (2.3)

we learn the following:

2.1. Lemma

(i) In G\S the vector field f is regular and depends only on the variable u.
Moreover the vectors f, d,f, ...,0 f are linearly independent there.

(ii) If f defined by (2.1) is regular and fulfils the Egs. (2.3) then f, 0,f, ...,0%f are
linearly independent and hence d,n, ...,0n are linearly independent also.

Proof

(i) The manifold S is defined as the set where the 2k+ 1 vectors n, on, ...,on,
on, ...,0% become linearly dependent. From this follows in particular that the
matrix

Li=@noimp=(" 9 24)

T Wl Ytto T 0 E .

is invertible in G\S by the following argument. Insert the vectors n, 3,1, ...,0%n as
columns in a (2k+ 1) by (2k+ 1) matrix N. Then the linear independence tells us
det N+0, and hence det N'N +0. Using the Egs. (1.2) we obtain

1]0
N‘Nzooi
Ilo

from which it follows that det L +0 and hence detZ=0. With this knowledge we
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can solve the Egs. (2.1) by the ansatz:
k . k .
f= Y Adin+ Y pdin
i=0 j=1

and obtain after multiplying with the vectors n, d,n, ..., 0kn a linear system for A, u;
which can be solved, and we obtain

f= 3 (2.5)

Since nis analytic in G and det L+0in G\S it follows that f is analytic in G\S. That
f depends only on u can be proved in the same way as in Lemma 1.2. Also the
linear independence of the vectors {d.f}& can be proved in the same way as
statement (iii) of Lemma 1.3.

(i1) Using the product rule we can generalize Egs. (2.3) to

@L2IN=0,  i+j<2
@A) =(= 1, i=0,...k.

If f is now regular then it follows from these Egs. (2.6) that f, 0,f,...,0"f are
linearly independent. Using now Egs. (2.2) we get that the set of vectors {d.n}* are
linearly independent. []

Using formula (2.5) we obtain

2.2. Lemma. The vector field f of (2.1), defined in G\S, has an extension into all of G
as a meromorphic function of one variable.

(2.6)

Proof. From formula (2.5) we see that f can be extended into all of ~G~as a
meromorphic function. But since we know that f depends only on u in G\S, the
same is true in G by analytic continuation. []

The last statement allows us to disentangle the structure of the singular set S.
But first let us remark that we get for g(v) similar statements as for f(u).

Let us denote by PuG‘ the projection of G into the u-plane and similarly for v,
and let us denote by p(f) the pole-set of the extension of f into all of G. Then we
obtain:

2.3. Lemma. The singular set § has the structure
S=(@(f)x P,GUP,G x p(g))nG. (2.7)

Proof. If (u,v) is not in § then it follows from Lemma 2.1 (i) that f and g are both

regular and hence S contains the right hand side of (2.7). Assume next f, g are both

regular at (4, v); then it follows from Lemma 2.1 (ii) and Egs. (2.2) together with the

analogous equations for g that n, d,n, ...,0%n,0,n, ...,dn are linearly independent.

This shows that (u,v)e G\g. Hence the right hand side of (2.7) contains S. []
Putting now everything together we obtain

2.4. Theorem. Let a solution of (1.1) be an element of I,(G), then the set of vectors
{0'n} has constant rank k except on a set of isolated points which have no
accumulation point inside G.
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Proof. Using the fact that G= Gn{v=1} and g(v) = f(7) we obtain from Lemma 2.3
S=Sn{v=u}=p(f).

Since f depends on one variable only and f was meromorphic in G (Lemma 2.2),it
follows that p(f) consists of isolated points with no accumulation points in P,(G).
Identifying now x, +ix, with u we see GCP,(G). [

3. Characterization of Regular Solutions

We have seen in Sect. 1 that, to every solution » of (1.1) in G CC which obeys (1.2),
an analytic vector function f can be associated which fulfils Lemma 1.3. For
convenience, we denote the set of such functions f by a special name. For any
region GCC, define

A(G):={:G—>C"/f analytic; (3'f,0'f)= 6"5™} . (3.1)

We will now show the converse: Any fe A,(G) determines a solution n of (1.1)
which obeys (0.2):

3.1. Theorem. Suppose fe A,(G). Then the k x k matrix
M, =K&f[0>)y;  Li=0,.. ,k—1

is invertible, and the function n defined by
(_l)kn :=akf— Z(Mn 1)ilaMl,k—1aif (3.2)
il

has the properties

@) (n,m=1,

(b) n=n,

(c) ddn= —(0n,on)n.

In short, any fe A4,(G) gives rise to a (real) solution of the O(N)-model. We show
in the next theorems that the functions n defined by (3.2) exhaust the class I;(G).

In the proof, we will use the summation convention that repeated indices will be
summed over with the sum extending from 0 to k— 1.

Proof. (a, b) By the argument in the proof of Lemma 1.3 (iii), for any zeG, the
vectors {0'f}, 1=0,...,k form a (k+ 1)-dimensional vector space L, with scalar
product <, > and conjugation K defined by

Kf:=f (3.3)
fulfilling
fg>=(Kf9). (3.4)

By (3.1), the k vectors {Kd'f}, =0, ...,k—1, are orthogonal (in <, >) to L, and are
linearly independent since the {0'f} are. Hence, they form, together with L, a
(2k + 1)-dimensional space L, , ;.

Consider the 2k-dimensional subspace H,,CL,,,, spanned by {¢'f} and
{Kd'f} for I=0, ...,k—1, and choose a vector e+0 orthogonal to H,,. Since KH,,
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=H,,, Ke is orthogonal to H,,, too. Hence, one can choose

e=Ke (3.5
and, since e=0,

1={e,e>=(Ke,e)=(e,e). (3.6)

Next, the vector 0*fe L, , has the representation

f=re+udf, AueC*G) (3.7)

from which one obtains, using (3.1) and (3.6)
1=(0"f,0f)=A*(e,e) = A?

by the fact that e=Ke is orthogonal (in {, ) to H,,. This implies A= 41 so that
one may assume A= +1 (if necessary, replace e by —e).
Now form the scalar product of (3.7) with o'f:

S OM =M. (3.8)

The matrix M is invertible as it is positive definite [cf. Part (i) of the proof of
Lemma 1.4] so that u;=(M);, '0M, ,_,. Compare (3.7) with (3.2) to see that

e=(—1n 3.9

which proves (a, b) by (3.6), (3.5).
(c) By (3.9) and the construction of e,

O finy=(—1k*  i=0,... k

. 3.10

(Ko fyny=0 i=0,..,k—1. (3.10)
We now show that these equations remain true, for i <k, if n is replaced by don:
(0if, 00ny =03 f, Ond =00 f,ny — {3 1 fin) =0 (3.11)

by (3.10), and the complex conjugate Eq. (3.11) is
(Kaif,00n) =0.
Hence, 00n is orthogonal to the space H,, and thus proportional to e or n:
don=7In.
The proportionality factor is easily determined. By (a),
0=00(n, n) =20(0n, n) = 2(0dn, n) + 2(0n, on)
=2A+2(dn, on)
so that
A= —(0n, On)

which implies (¢). [

As a tool in the singularity theory to be developed in Chap. 5, we will need a
relation between the action density L(n) and the matrix M. This relation requires
several preparatory lemmas:
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3.2. Lemma. _
(i) M is symmetric, M,=M,,
(1) (M“l)i,aM,j=5i,j+1forj<k— 1.

Proof.
(i) follows from the symmetry of <, ).
(i) For j<k—1,

M, =03 f, > = (3,00 [y =M, ., (3.12)
by the analyticity of f. But (3.12) implies
(M_l)liaMij=(M_1)liMi,j+1=5l,j+1‘ O

Part (ii) of the lemma and (3.2) suggest the definition of the matrix

N:=M"1'0M. (3.13)
3.3. Lemma.

M, 0N, 1 =68 1 (3.14)
Proof. We have

(= *nd; oy =01 f = f(M™1);,0M, ;. (3.15)

Fori=k—1,(3.15) is just (3.2), the definition of n. For i<k — 1, the right hand side
is zero by Lemma 3.2 (ii) so that (3.15) holds, too.
By Parts (a), (b) of Theorem 3.1, (n,n) =1 so that (3.15) implies

Oikm1 =<0 [ =0 f(M™1);;0M,;, 05 f — 0" f(M ™), 0M 1)
=00€0'f, 0" 1 fy — M; ' OM 0 f, 051 f )
—(M™1),,0M, 30 f,0"f)
+ M OMy(M™Y),, 0M

where we used the symmetry of M and M ™! [Lemma 3.2 (i)]. By the definition of
M, the second and fourth term on the right cancel. Hence

i 1=00M, . — (M), M, ,_,0M,,. (3.16)
Since MM~ '=1, 6(MM~')=0 so that —(M)M ' =M(@OM™'):
Sino1 =M, (M1, 00M_, | +M, (OM™ "), oM, ,
=M,,0[(M "), 0M, ,_,]
=M,,0N,, ., . O
3.4. Lemma
ONy_ 1 x—1=(0n,0n). (3.17)
Proof. By (3.2) and the analyticity of f,
(—=1)fodn=—0o'* lngi,k—l —aifaéNi’k_ L
=—Ln)(—1)fn
= — L) {0"f =Ny, ,0'f}, (3.18)
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where we used Theorem 3.1 (c) and (3.2) again. Since the vectors {0"f} are
independent, we may compare the coefficients of 0¥ f in (3.18) to obtain (3.17). [
3.5. Lemma.

{0n, 6n>=Mk_—11,k—1 (3.19)
Proof. Multiply (3.14) by M;;* to get

5Nl,k— 1 =Mljk1— 1>
put I=k—1 and apply Lemma 3.5. []

We remark that it is, in fact, enough to require, in definition (3.1), only the
weaker equations

(@f,0)=06% i=0,...k (3.20)
The original equations will follow if we can show that, for all i<k,

@f,0*f)=0 for 0<I<k—i.

Assume that the last equationis true foralliand all [<m— 1. To show it for all iand
m, differentiate once to obtain

0=(6i+ 1ﬁai+lf)+(aif,ai+l+ 1f)

But the first term is zero by the induction assumption for the term i+ 1.
To show that the solutions of the O(N)-model constructed from f are of class I},
we need the result corresponding to Lemma 1.3 (i):

3.6. Lemma. For i, 120, 0Zi+I1Zk,

<alf; gin>=(_1)15i+l,k‘ (321)
Proof. Form the scalar product of (3.2) with ¢'f and use (3.1):
(=, 0 f)=0" (3.22)

which shows that (3.21) is true for i +1=0, by the reality of n. Assume (3.21) for all
I, i such that I+i is fixed. Then

(', 0y =0¢0'f,0"" 'y =< £,0 Mn,

where the first term is zero by the induction assumption so that
(@1, Ty =(— 1,3

as one can prove by induction on m. Now choose m=i and use (3.22). O
We are now ready to prove

3.7. Theorem. Assume fec A, (G), and define n by (3.2).Then n is of class I, i.e.

(a) (@'n,0"n)=0 for I+m=1; 0=, m<k;
(b) the vectors {d'n}, =0, ...,k are linearly independent.
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Proof.
(b) Assume a relation
20n=0,

form the scalar product with ¢'f and use (3.21) to conclude that 4,_,=0, for
[=0, ...,k successively.
(a) Differentiate (3.2) j-times and use the analyticity of f to obtain

in=Jid'f . (3.23)
Note that 4] =0 for j>0 as the coefficient of 3*f in (3.2) is constant. By (3.22),
(0'n, O'n) =AML (' f, 0m f) = MAL

using the fact that feA,(G). But Aj4,=0, as just remarked, if either j>0 or
I>0. O

By the results of Sects. 1 and 3, solutions of the O(N)-model which are of class I},
can be described in two equivalent ways:

Either a solution is given (locally in a region G C €) by a real analytic function
n:G—R" with the properties:

(@) d0n=—(0n, on)n;

(b) {0'n}, I=0, ...,k are linearly independent;

(¢) (&'n,0™n)=05"6m°.

Alternatively, a solution can be given (locally in G C €) by an analytic function
f:G—C¥ such that

() 0f=0;

(b {3'f}, 1=0, ..., k are linearly independent;;

(C') (alf, a’"f)=5”‘5'"".
Note that (b) is implied by (c).

The connection of f and n is given by

@ (- l)kn=akf_Ni,k— 0,

N:=M"'oM, M,:=<3£a'f>; il=0,. k-1

or ~
(d) f=(L ydn,

L, :=<{dn,dny, il=1,..,k;
() =(e): @', Biny=(~ 157 H%.
In short, we have proven:

3.8. Theorem. There is a bijective mapping from I'\(G) onto A,(G) (given explicitly by
(d) and (d")).

4. Construction of Solutions

In this section we want to obtain new solutions of the O(N)-model from known
ones. This will be particularly convenient if the “f-language” developed in the last
sections is used.
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The first lemma is simple:
4.1. Lemma. Let fe A,(G), and suppose w:G—G is analytic with dw=0 in G. Then
g:=(0w) *fow 4.1)
is in A4,(G).

Proof. The function g is analytic in G by definition. Thus it is enough to check
condition (3.1) for G. But d'g has the representation

I 1
Fo= ¥ (000w 0F =3 3 'S 42

so that wj=(dw)' ¥ as one can immediately prove by induction on L
Now, (3.1) is implied by (3.20). But from (4.2), for [ <k,

1 1
d'g,0'g)= Z _ZO (0 £,0°1)=0,

and

(09, 0*q)=ppui=1. [

Next, we want to construct, from those of the O(N)-model, solutions of the
O(N +2)-model (N =2k+1). This is particularly useful since solutions of the 0(3)-
model are explicitly known [1], and the only solution of the 0(1)-model is /= +1.

4.2. Lemma. Let feA,(G), and let CV"2=C"@®C? with a basis e,, ey, , of C*
Sulfilling

(ey,enia)=1,(eq,e)=0=(ey ,en,,), Key=ey,,.
Define f:G—C*2 by
fi=ae,+F—a " 'hey,,, O%aeC
with
F@z):= [ f(Odl
0

and
h(z) :=(F(2), F(2)).
Then f is in A, ,(G).

Proof. All N +2 components of f are analytic, and
(£ Dy 2=(F. Fly—h=0,

where the index at the scalar product refers to the number of components.
Furthermore,

(a’ﬁa’f)N+2=(6’F,6’F)N=(3’“1f,8"1f)N=5’*1vk
since f is in 4,. But §'" k=541
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By combining the processes of the last two lemmas, we can generate a lot of
solutions of various O(N)-models. The surprising fact is that we get all solutions of
every O(N)-model (of the class considered before) in this way:

4.3. Theorem. Let fe A, ,(G), and let CV*+? =C"®C? with the same basis as in the
last lemma. Then there is a function F: G—C", GCG, a number acC, a+0, a
function w: G—G with ow=0 in G such that

(0w) *fow=ae, +F—a hey_,
with

h(z) : =(F(z), F(2)).
Furthermore, OF is in Ak(é).

Proof
(i) Note that, with f, any translated f is in 4,(G), too; thus we may suppose

0e G. Next, one can find by induction an orthonormal basis {y;};_;  y., such
that
. +1
O'f0)= Y aw;. (4.3)

i=1
Since the d'f are independent, f(0)=0 so that a :=al +0. Consider
o(z) :=a" > f(0), f(2)) .

Then ¢(0)=1; hence, there exists a simply connected domain G, CG in which
¢(z)*+0 so that

U;=(p_1/k+1 (44)

is well defined in G,, and v(0)=1. Furthermore, the function

W) i= [0

has ow(0)=1 and can be inverted in some region GCG CG. Choose G so small
that G :=w(G)CG. The inverse function has dz+0 in G ; define

gw):=(92)~ % D f(z(w).

(ii) We now show that g can be written in the form g=ae, + F—a™ ‘hey, , as
asserted. Note that, since w(0)=0 which implies z(0)=0, and since 9z(0)=1,

9(0)=fO)=ay, , (4.5)
by (4.3). This results in

g(0), g(w)y =(02)"** D f(0), f(z(w))) = a*(32)~*" Vop(z(w))
=a2p(z) (Ow)+ 1 =a? (4.6)

by (4.4). On the other hand, g(w) has a representation
go0)= ¥ g, @47
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and inserting (4.7) and (4.5) in (4.6) gives
a?={g(0),g(w)> = 3. g{W)awo, p;> =go(w)-a,

i.e. go(w)=a is constant. That is, g can be written

g=ap;+F—a"thyy,,, (48)
N+1 B
where F:= ) g, and h:= —ag,, ,.
i=2
To show that v, Yy, , =, 3 have the properties of the basis stated in the
last lemma, note that, since feA, , (G),

(6lf(0), 0if(0))=5l’k+ 15ik+1
which implies, by induction on m, for 0<m<i<k+1,

(al+mf(0), 6i_mf(0))=(— 1)m51,k+ léi,k+ 1
In the first equation, choose I=i=0 to see that (y,,y,)=0. Next, choose =0 to
see by induction on i that (yp,,y,)=0={Ky,,p;> for i<k+1. In the second
equation, choose i=m to see by induction on m that (K, ;> =0 for i<2k+2,
and <Ky, Wy 30 =(—1)*"". Thus, Ky, is a multiple of v, 5, Ky, =(—1)*!

“Pys 3 Nowchoosee, : =1y, e, 3:=(—1) 1y, . ;. Then(e,,e,)=0,Ke, =e,,, 3,
(€264 3 €214 3)=(Key, Key)=(ey, ,)=0, and (e, €5, 3)=<€yp1 3 x50 =1.

(iil) By (4.8), g can be written
g=ae,+F—a ‘hey,,

with h:=(—1)**1h, and it remains_to show that F, h and OF have the stated
properties. By Lemma 4.1, ge 4, , ,(G), hence (g,9)=0, i.e. h=(F, F). Furthermore,

ST =(0'g,0'g)y 4, =01 £, 0" )y,
which proves (3.20) for f:=0F so that fe A(G). [

We will illustrate the procedure of the last theorem in the simplest case, the
transition from k=0 to k=1, i.e. from the 0(1) to the 0(3) model:

For k=0, f=n [see the argument after (1.3)]; hence, f =1 by (n,n)=1. Next,
consider an orthonormal basis {e,,e,,e;} of C*=C**! with (e,,e,)=0, Ke, =e,.
Then

f— 2
f=e +ze,— 2%,

(where we have taken a=1 in the last theorem). We remark that one can get all 0(3)
instantons from f by applying to it the process described in Lemma 4.1.

5. On the Behaviour at Isolated Singular Points

The structure of regular solutions ne I;(G), i.e. solutions of (0.5) for which the rank
of (0'n)k_ | is constant and equal to k, has been fully described in Sects. 1 and 3 in
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terms of an analytic vector function f fulfilling
(0 f,00f)=05%s"*  i,j=0,...k. (5.1)

In case the solution n is not regular, i.e. neI,(G) so that rank(d'n)i_, <k, it was
shown in Sect. 2 that one could associate with n a meromorphic function f
fulfilling (5.1), i.e. an element of the set

M,(G):={f:G—C"/f meromorphic, (¢'f, &' f) = §*5*} (5.2)

the poles of f being precisely the points for which the rank of (6'n) is not maximal.

Now we want to investigate the converse question: Suppose an arbitrary
feM,(G) is given so that fe 4,(G\S) where S is a set of isolated points. By (3.2),
one finds a solution ne I}(G\S) of (1.1). The question is if n is continuous in all of G,
and if it is whether it fulfils (1.1) in G [so that neI,(G)]. It is the goal of this section
to show that these questions have a positive answer. The strategy of attacking this
problem will be a reduction procedure in the number of dimensions, similar to the
technique described in Sect. 4.

As the set S consists of isolated points, it is no loss in generality to consider a
single point which, by the translation invariance of (0.5) we may take to be z=0.
We start with some preparations:

5.1. Lemma. Let y(z) be an analytic function holomorphic in a domain G containing
z=0, and let «=0. Define

A(2) =) {p(f)ag (5.3)

Oty N

then there exists a unique function y(z) holomorphic in G with

212)=1+u)" 2 "*%(z) (54
having the property
7(0)=(0). (5.5)

Proof. Since 0e G there exists a power series

converging in some neighbourhood of zero.
From this we get

0

w2)= Y a(l+v+o) 2P r=(140) 712 Y (T+0)(L+a+v) la,2

v=0 v=0
so we obtain

e}

Y2)= > (I+a)(1+a+v) taz’. (5.6)

v=0

Since |(1+o)(14+a+v) <1, the power series of y(z) has the same radius of
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convergence as that of y. Since (1+0)z~" " [{*p({)d{ is uniquevalued in a
0

neighbourhood of zero, the existence of y in all of G follows. The second statement
(5.5) follows directly from the power series of y(z). [

5.2. Lemma. Let f(z)e A,(G\{0}) and define g(z)=z"- f(z). Then g(z) fulfils the
equations

(@'9(2), 0'g(z)) =0"z"  i=0,...k. (5.7)

On the other hand assume g(z) is holomorphic in G\{0} and maps it into C*** . If in
addition g(z) fulfils the relations (5.7) then

f(2)=2""9(2)
belongs to A,(G\{0}).
Proof. The relations
(@'f,0'f)=0%, i=0,...k
are equivalent to (see Lemma 1.3)
(0'f, 07 fy=5%5", ij=0,.. k.

Inserting f=z""g, we see by induction with respect to i and j that these are
equivalent to

(9'g, 0g) = 5™67+z>".

But by the same argument as in Lemma 1.3 we see that the last equations are
equivalent to (5.7). [

Now we are prepared to enter the reduction procedure.

5.3. Lemma. Let fe A,(G\{0}) and assume fis meromorphic in G. Choose n such that
g(z)=z"f is holomorphic in G and g(0)%0. Let G, CC contain zero and consider a
holomorphic map w:G,—G such that w(0)=0, dw(0)=1, and ow=0 in G,. Define

. dz \¥
Fieyi=om o= | fovta)

g:=z2"f.
Then fe A (G\{0}) by Lemma 4.1, § is holomorphic in G, and the relation
g(0)=4¢(0) (5.8)
holds. In addition we can choose w(z) in such a way that
<4(0), 4(2)> =<g(0), 5(0)> (5.9)
holds in a suitable neighbourhood of zero.
Proof. From w"f(w) holomorphic in G, follows by assumption that z*- f(z)= vzv_:

dz \* o
. (d—vZ;) -w" f(w(z)) is holomorphic in a neighbourhood of zero. Since f is holomor-
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phic in G,\{0}, we get by the last two statements taken together that §j=2z" 1 is
holomorphic in G,. From %(O)=1 and ;;%(0)=1 follows §(0)=g(0). This proves
the first part.

Because of (5.8) we get

dz

@096 = (2] () - <oonatmp. (5.10)

From g(0) 0 follows {g(0), g(w)> #0 in a suitable domain I C G. In this domain we

can define p(w) = {%(%%}_ I/k. Let now y(w): = :j:{"/"tp(C)dC ; then we have by
Lemma 5.1

1+2
" : 7(w)

L+

x(w)=

with y holomorphic in I" and

<9(0), 9(0)>}" Hk
0)=y(0)=—Z—= =1.
0=r0= {505
Let I'CI' be a subdomain containing zero with y(w)+0 in I, define
1
o(w) :=y(w)1+wk with 6(0)=1 and put z(w):=w-5(w). We find z(0)=0 and (5—;)

(0)=1. Choose now a simply connected subdomain I', CI; containing zero such
dz
dw
claim that this function has the desired property. By construction we obtain

that #+0. In this region we can invert the function and define w(z). We now

n

n\"! 142 n\"t o1+ 142 "l o1+
n k— n kg Tk (1o 3
(1+k> z <1+k) w ) ( +k) w ky

w

= y(w)= [ (" p(Q)dl.
0
Differentiating with respect to w we obtain:

SR

or
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This shows by (5.10):

- (3) (d_z)"w_kz (5) (d_z )". <9(0). g(w)
w/ \dw w/ \dw/ {g(0),g(0)>
_ <9003
g(0),3(0)>”
which shows the lemma. [

Knowing this result, we can set up a reduction- and induction-procedure in the
same way as in the last section. The only difference is that we have to work with
the functions g(z) now which are again free of singularities.

5.4. Reduction Lemma. Assume f(z)e A (G\{0}) and f (z)¥z'"-g(z) with ¢(z)
holomorphic in G and g(0)=0. Assume in addition the relation (5.9)

<9(0), 9(2)) =lal>*>0

Theny'(z):= g — |a|~2g(0) {g(0), 6g(z)) defines amapping y’ :G—C**~ . Define g,(z)
and m by the relation

Y(2)=2"9,(2)
with g, holomorphic in G and g,(0)=0. Then we obtain
(6ig1’aig1)=5i,k—122(n—m)’ i=1,...,k——1

and hence
fii=2""""g,(2)e A, ,(G\{0}
by Lemma 5.2.

Proof. By assumption follows {g(0),dg> =0 and <y’,¢(0)> =<y’, g(0)> =0. Hence
y'(z) is living in a 2k— 1 dimensional space. The mapping y’ might have a zero of
order m. From the relation (d'g, d'g)=z*"6%, i=0, ..., k it follows easily that m <n.
Because of (y', g(0)> =<y, 9g(0)>=0 we have (8%, d'y")=22"6"%"1, i=1,.. k—1.
Inserting now y’=z"g,, the desired relation for g, follows by induction. []

5.5. Reconstruction Lemma. Assume f, defines a solution of the 0(2k — 1) o-model in
G\{0} and assume

filz)=z"""1g,(2)

with g,(z) holomorphic in G and g,(0)=0. Let m, be any positive integer and a=0.
Put

Wz):= icmkgaodc

and define

g(z):={a-2" 1/2(e2k+ i€y 1) 9(2), —a~ L.2- 1/2(e2k_ iey, 1) (9(2), 9(2)} .
Then we find

(aig’aig)=22(nk—1+mk)5ik5 i=1, ,k
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Hence
Sy =zt mg
is an element of A,(G\{0}).

Proof. By construction we find (g,g)=0. The higher relations follow from the
properties of g, (see also Lemma 5.2). [

5.6. Corollary. Let feA,(G\{0}) and assume f is meromorphic in G with

J(2)=z""g(2),

9(z) holomorphic in G and g(z)+0. Then f(z) can be reconstructed locally at z=0
from the case k=0. The order of the pole n, can be written

k
me= 3, m,
i=1
where m; is the order of the singularity we gain by the i-th reconstruction step.

Proof. This follows immediately from Lemma 5.5 and the fact that the transfor-
mations in Lemma 5.3 do not change the order of the pole. []

It is our next goal to show that the solution n(z, z) of (1.1) associated with f(z)
stays a solution at points where f(z) has a pole, the only thing happening being a
change in the number of linearly independent vectors. The key for the solution of
this problem is the following

5.7. Lemma. Let n(z,z) be a solution of (1.1) in G\{0} and assume the action density
L(n) in (0.1) stays continuous at z=0. Then n(z, z) is a solution of (1.1) in all of G.

Proof. If L is continuous, then it is also bounded, i.e.
L(z2)£M;zeG,5{0}.
Assume G, is convex; then we get

| (gradn, ds)

Z1

In(z,) —n(z,)| = SM'2 |z, —z,||

which shows the continuity of n. Since we have An=— L-n it follows that 4n
=continuous part + “§”. Since the equation An="5" leads to some n which is not
continuous at z=0 it follows that also 4n is continuous at z=0. Hence we get
An=—Lnin all of G. []

Now it remains to show the continuity of L(n). There we have to distinguish
two cases, namely the induction step from k=0 to k=1 and the other cases. For
k=1 we have by the remarks at the end of Sect. 3 the formula f =L 16n [cf. (2.5)]
and hence L={f, f>~*. Thus, if f has a pole z~™, then L has a zero |z|*"*. For
k>1 we get L by Lemma 3.6 and have

det(M ij)l(()—z
det(Mij)l((; v
We are not able to compute these determinants exactly, but this is not necessary

since we are only interested in the leading singularity of these determinants. The
outcome of this investigation is the following:

L=M1, = (5.11)
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k

5.8. Lemma. Let fe A,(G\{0}) and assume f has a pole of order n,= Y m,. Then L
i=1

behaves at zero as |z|*™*. Hence L is continuous in G and f defines a solution of Eq.

(1.1) in all of G.

Proof. The case k=1 has been treated separately and therefore we can proceed by
induction with respect to k. This means we have to follow the steps described in
Lemmas 5.3 and 5.5. We start with the analytic transformations.

_ Let w(z) be an analytic map with w(0)=0 and w(0)=1 and let
f(2) :=(@w)"*f(w(z)). Then we get with M,;={0'f,0’f) and w'=0dw

FI> o <Laf>
@I Ty @7
W)W TKLS o D) THW) TS
7)) A :
w0 LI LA ()0
o ) \ags 0wy
In this calculation, linearly dependent vectors have been subtracted. This means

det(Mik)g =det(M,), | (w) K+ DHIaE D272

det
=det

=det

Since w'(0)=1 it follows that det M and det M have the same behaviour at zero. So
it remains to evaluate the determinant of (M, j){) where f has the special form
described in Lemma 5.5. Inserting f =z~ *™-1g we obtain with n,_, +m,=n,

det((0'f, 07f ))o =121 720" ™ det(<d'g, 8g)), - (5.12)
Remember g was of the special form

g=(a2" (e, +iey ), h)
with a#0 so that we obtain

(d'g, 07g> =6"°67°|al® +{Ih, o'h) .

Using the expansion of the determinant and estimating |{d'h, 6'h)| by {d'h, ¢'h>1/?
-{0’h, ?'h>'?* we obtain
1

det(<d'g, d’g>)o <lal® [] <&k, O'hy + {(I+1)! +1} ﬁ (O'h, ')y

i=1 i=0
and

1 1
det((d'g,dg>)o =lal* T <0, 0'hy — {1+ 1)+ 1} [ | <&'h, ') .
i=1 i=0
Remember that (h,h) has a zero of order [z|?™<* 1) so that we obtain:

det(<2'g, d'gy)h= [T <0h, o' {lal* +0(=>" )}
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Inserting now the value of h we obtain
o2y =iy, yy + (L2

From (dg,,8’g,)=0 we calculate
(0, 0y =" (2™ g,), 0" H(2"™g,)) +4lal =2y, 0" (2™, )P
SO (E"gy), 07 (2™ g ) (144 al =2y, 7))
=0 H(2"gy), 0" (2™ g,)y (1+0(z>m* D).

Using the argument backwards, we can replace the product of the (0"~ !(z™yg,),
0"~ }(z™g,)> again by the determinants. So we finally obtain

det(<0'g, 0'g))o = det({ 0 (z"™g,), di(z™g )))5 *
~{lal® +0(|z 2™ D)+ 0(|z| 20me- 1+ Dy
=|z|*™ det(<d'g,, 07g, D)y !

{laf? +0(12[2m D) 4-0(1z[2me- 1+ 1}

This result inserted into (5.11) gives together with (5.12):

L) = oo S G PN o et D))

det(<d'g, 0’9o |z1>™ det(<0'g,, 079, )5~ >
(1 40(|z| 2™ 1) 4 0(|z| 20me -1+ 1))
= L(f) (L4 O D - 0(( 2 1),

Since we had n, =) m, we obtain the desired result. []

Lemma 5.8 and Theorem 2.4 now combine to give

5.9. Theorem. The bijective mapping from I}(G) onto A,(G) constructed in Theorem
3.8 extends to a bijective mapping from I,(G) onto M,(G).

We have shown in Sect. 4 that every f'e A4,(G) can be obtained by reconstruct-
ing it from f,€ A,(G). Note, however, that the induction procedure described in
Lemma 4.2, since it involves integration, will only lead again to a meromorphic
function if no poles of first order appear (which can always be achieved by starting
with poles of high enough order).

6. Global Solutions

In this section, we study continuous finite action solutions of the O(N) model in all
of R? 2, i.e. continuous solutions n of (1.1) with (n, n)=1 such that L(n)e L}(R?).
We denote this class by I(IR?).

If the orthogonality conditions (0.7) are imposed on these global solutions, we
may obtain a characterization of them rather easily by choosing G =C in Theorem
5.9 and remembering Lemma 3.5: They are precisely given by those meromorphic
mappings feM(C) for which M ', , _, is in IXCT).

This characterization is, however, deficient in two ways: The integrability
condition on f is rather implicit, and the orthogonality conditions (0.7) on n have
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to be imposed. Thus, neither the class of solutions » to be characterized nor the
class of characterizing mappings f are described in a very illuminating way.

Fortunately, the situation is completely transparent if we restrict ourselves to
the class of solutions n of (1.1) which are solutions on the whole Riemann sphere
S25IR?, i.e. for which also the conformal transform

A(z,2) i =n(z" 4,771 (6.1)

is a continuous finite action solution of (1.1) in all of R2. As the action S [cf. (0.3)]
is a conformal invariant, we merely assume by this that # is a solution of (1.1) for
z=0 and is continuous there. We denote the class of these solutions by I(S?). Note
that there is no index k: We do not assume any orthogonality condition of the type
(0.7). In fact, we are now able to derive (0.7) as a consequence:

6.1. Theorem. Let n be a solution of the O(N) model on S?2>R?. Then, for all non
negative integers i, j with i+j=1,

(0'n, 0In)=0. 6.2)
Proof. We prove (6.2) by induction on i+j. For i+j=1, we may suppose i=0, j=1
by the symmetry of (6.2) in i, j. But (n,dn)=0 by differentiating (n,n)=1. Now
assume (6.2) for all i, j with 1<i+j<m. As a first step in proving (6.2) for
i+j=m+1, we show that (0'n, ¢/n) is analytic.

We distinguish the cases (i) i,j=1 and (iii) i=0, j=>1:
(i) o', 0'n)= — (0"~ Y(Ln), &'n)—(d'n, &'~ 1(Ln))=0
by the induction assumption.

(i) O(n, d'n)=(n, d'n)—(n, &~ '(Ln));
the last term is equal to — &'~ 'L by the induction assumption. We will prove

(On, 0'n)y=0'"1L (6.3)
by a separate induction argument on j. Equation (6.3) is true for j=1 by the
definition of L. For j>1,

(On, 0'n)=(On, &~ 'n)— L(n, &'~ 'n),
where the last term vanishes by the induction assumption for (6.2) and the first is
equal to 00’ 'L by the induction assumption for (6.3).

Hence, in all cases, (8'n, 9’n) is analytic. Next, we want to prove

|0'n| € I2(IR?). (6.4)
This will finish the proof, since by Cauchy-Schwarz, we then have the majorization

(', o)l < (0" |0°n]],

where the right hand side is in Z}(IR?), by (6.4). But an analytic function that is in
L}(IR?) is identically zero, by a variant of Liouville’s theorem. (For a short proof,
see e.g. (3.13) of [1].)
To prove (6.4), note first that, by induction on i,
@) (2,2)= Y ¢z ™™ R) (z7LZ7Y)
1

m=
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with suitable constants c,,;. Hence, with w=z"1,

[ <o'n,dnydzdz<i Y |c,.l*
|z|>1 m=1
| LA(WWY””‘2<6mm0mﬁ>dwdw, (6.5)

where we used the Cauchy-Schwarz inequality

i 2 i
<i ) a,l*.
m=1

Y.

m=1
But the right hand side of (6.5) is finite: Since 7 is a continuous solution of (1.1)
with L(7) integrable for [w| <1 [puti=1in (6.5)!], n is analytic there, by the results
of [2]. Consequently, the integrals exist as m, i=1. This proves (6.4), since the
integrals over |z] <1 are finite by the analyticity of n. [

At this point, one might speculate about the possibility that the orthogonality
conditions (6.2) are automatically satisfied for any »n which is merely in I(IR?). This
is the case for the 0(3) model, and we believe it to be true in general but have been
unable to prove it. However, not much is missing: We can show (by using the
Calderon-Zygmund and Sobolev inequalities in tandem) that (6.2) is satisfied for
any solution n of (1.1) on R? for which L(n)e I! **(R?) for some &> 0.

Our next goal is to give a simple characterization of solutions ne I(S2). Note
that, for any such solution, there is an integer k such that neI,(R*): The rank of
the matrix (0™n),,., is finite, and (1.2) is implied by (6.2).

meN

6.2. Theorem. The following statements are equivalent :

(i) nel(S?);

(i) feMC) is a rational function of z=x,+ix,eC;

(iii) neI(R?) is a rational function of (x;,x,)e R,
Proof. (i)=(ii): By the definition of I(S?), neI(S?) implies 7cI(S?). By the
arguments before the theorem, there are integers k, j such that ne I,(R?), ic j(IRz).
Since by (6.1), d'n and 0' are linear combinations of each other, j=k so that the
functions f, f corresponding to n,7# by Theorem 5.9 fulfil

(fomy=8%={f, o). (6.6)
Now simply note that
J@) i=(=z"2f" (6.7)

satisfies (6.6) by which f, f are defined uniquely. Since f, f are both meromorphic,
(6.7) implies that f is rational.

(ii)=-(iii) : By (1.6) n is a rational combination of {¢"f} for m=0, ...,k. But f
and hence all derivatives are rational functions of x; +ix,.

(iii)=-(i) : Since ne I(IR?), 7 fulfils (1.1) in all of IR? except possibly for z=0. Since
n is rational and bounded, ((n,n)=1), so is 7. Thus n defines a distribution for
which the combination T'=d8n+ L(A)i has support only in z=0 and is hence a
combination of derivatives of the 6 measure at z=0. But T is actually arbitrarily
often differentiable at z=0 and hence zero [so that 7 fulfils (1.1) in all of R?]: Since
f,, is rational, #, =P, (Q,,) " ; since #,, is bounded, Q,,=+0 so that #,, and hence T is
infinitely often differentiable. []
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We remark that in the 0(3) model, the conclusion that f is rational follows
already from the assumption ne I(IR?). Again we believe this to be true in general
but have been unable to prove it.

As a last point we want to show that the previously known solutions of
0(2k + 1) models (see Sect. 4 of [1]) fall into the subclass considered here. This will
follow easily from condition (iii) of the last theorem.

We briefly recapitulate how the harmonic polynomial solutions of the 0(2k + 1)
model described in [1] were constructed :

By stereographic projection of IR?

x,=r,(d+ry)" ", p=12 (6.8)

3
into the unit sphere 1= )  x?=1, the equation of motion (1.1) can be written
n=1

I?n—(I?n,n)n=0, (6.9)

where L is the angular momentum operator on the sphere r?=1. Hence, any
eigenfunction of I? to any fixed eigenvalue k(k+ 1) will solve (6.9). Choose, in
particular, the following combination of spherical harmonics Y,,,:

) k

Nt =¢ _ZkUi,m+k+1Ykma (6.10)
where U is a constant unitary (2k+ 1) by (2k + 1) matrix fulfilling
Ui,m+k+1=(_1)mUi,—m+k+1 (6.11)

so that n, is real. By the addition theorem for the spherical harmonics, n* is a
constant, and ¢, can be adjusted so that n?=1. Thus, (6.10) are true 02k +1)
solutions, not lying in any subspace of dimension smaller than 2k+1, by the
independence of the spherical harmonics. The action of these solutions is given by
Ank(k +1).

To see that the solutions (6.10) fall into the class I(S?), we use Theorem 6.2 (iii) :
Note that the spherical harmonics are polynomials in cos 6, sin@; cos ¢, sin¢ where
0 and ¢ are polar angles on r2 =1, and thus rational functions of the r variables. By
(6.8), n; as defined in (6.10) are rational functions of x,, x,.

Finally, we remark that the harmonic polynomial solutions, though stationary
points of the action (0.3), are not minima for k> 1; this instability of the solutions
(6.10) has been shown in [3]. This result is in sharp contrast with the case k=1, the
0(3) model, see [1].
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