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Continuation of Partial-Wave Two-Cluster
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Abstract. It is shown, with some restrictions, that on-shell two-cluster partial-
wave scattering amplitudes for atomic systems whose particles interact via
two-body Coulomb potentials have analytic continuations in the complex
energy plane below the physical part of the real axis. The result is proved only
for energies lower than any three (or more) cluster threshold. Poles of the
amplitudes can occur only at discrete eigenvalues of the rotated Hamiltonian
which may be reached by continuation along the same path. The method of
proof uses analyticity related to a generalized scaling transformation and the
boost transformation.

1. Introduction

In a previous paper [1], referred to as I, we studied an TV-particle atomic system
whose Hamiltonian with center of mass part removed is H. We concentrated
on the range of energy below Emin the lowest threshold of all those correspond-
ing to three or more bound clusters, so that only channels consisting of two bound
clusters are open, and, to simplify the argument, also assumed that at least one of
each pair of clusters was neutral. We proved I Theorem 1 which showed that the
limit

Tfi(E) = Iim(\l/f

9 VfG(E + iε)Vψ) (1)
J εiO

exists for E in the above range on the complement of a closed set of measure zero.
In (1) \l/\ ψf describe the two-cluster states in channels ^/respectively and each
correspond to a given partial wave, and V\ Vf are respectively the sums of the
two-body potentials between all pairs of particles in different clusters of /,/. We
also use G(z) = (Z - H}'1.

The effect of I was thus to show that, under the above conditions, the conven-
tional time-independent formula for the scattering amplitude, Tfi(E) + Born term,
makes sense. In this paper we show that Tfi(E) (and thus the full amplitude) may be
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analytically continued to Tfi(z), a function meromorphic in z in some neighbor-
hood of any part of the real axis between two-cluster thresholds and below three-
cluster thresholds. Poles can occur only at values of z corresponding to discrete
eigenvalues of the "rotated" Hamiltonian, for suitable rotations. The result is
stated as Theorem 1 below, and is proved under conditions (i) to (iii) below, the
third being added merely to reduce the complexity of the exposition.

(i) The system is described by the usual non-relativistic Hamiltonian with a
Coulomb potential V acting between each pair of particles.

(ii) For every channel corresponding to two-bound clusters that is open below
£min at least one cluster is neutral.

(iii) Each bound cluster referred to in (ii) has angular momentum zero.
As in /, the class of potentials for which the results hold is larger than the Coulombic
of(i)

Other work aimed in the same direction as this has recently been reported by
Combes [2] and Tip [3]. Similar results have been obtained independently by
Hagedorn [4] but with the crucial restriction to potentials with exponential
decay at infinity.

The method of proof is based on the algebraic manipulations of I, which relate
the amplitude to the solution of a coupled-channel integral equation. The integra-
tion contours are then distorted as in [5,6]. With Coulomb potentials it is necessary
for the initial and final momenta (complex) to remain on their respective contours.

We deduce the needed analyticity of the effective potentials appearing in the
integral equation by making use of an analytic family of operators related to the
Hamiltonian by a set of transformations involving the boost group and a genera-
lized scale transformation, described in Sect. 2. In a previous summary of this
work [7] a different, less powerful method of deducing analyticity was outlined.

The analyticity of the off-shell amplitude in several complex variables is used
to deduce the analyticity of Tfi(z) and to obtain the connection between the
poles of Tfi(z) and the eigenvalues of the rotated Hamiltonian. In this way we
demonstrate that, even if the integral equations that we use, such as the Weinberg-
Van Winter equation, have spurious homogeneous solutions, not related to
eigenvalues of the rotated Hamiltonian, then Tfi(z) does not have corresponding
poles.

An incidental result of our work is that I Theorem 1 may be strengthened in
that the limit may be shown to exist for all but a discrete set of points, whose only
limit points may be thresholds.

The result of this paper tends to justify a number of calculations of resonance
positions in atomic systems which have been performed by searching for eigen-
values of the rotated Hamiltonian [8].

Before presenting the details of the proof we remind the reader of the definitions
of some of the symbols in I that will be used here. For further details see I.

We let D™,m= l , . . . ,be the two-cluster decompositions (C1? C2) of the N-
particle system. For each m the Hubert space 2tf = L2(IR3JV~3) for the whole system
may be decomposed as
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where -J f *£\ ffl^ are the state spaces for the internal motion of the particles in
clusters C1? C2 respectively, and Jf Jn

1>2) is the state space for the relative motion of
the two clusters. There is a corresponding decomposition of configuration space. If
Xe[R 3 ] V- 3,weset

* = (*i,&rj (2)

for each m, so that s^,s2 are respectively internal coordinates of C 1 ? C 2 and
rwe [R3 is the vector joining the centers of mass of the two clusters. We may write
sm = ( S m i > s m 2 > - )> ̂ ^ and similarly for s^.

Those decompositions D™ which correspond to the channels of condition (ii)
are labelled m = 1 , . . . j (not y'0 as in 7) .

The operator VDnDι is the sum of all two-body potentials acting between pairs of
particles in different clusters of D™ .

The operator 7(z) is obtained from the kernel of the Weinberg-Van Winter
equation by removing those terms which are singular when z takes on real values
below E . and above the lowest two-cluster threshold.mm

2. Transformations and Analytic Families

We extend the ideas of Combes and Thomas [9] by introducing a set of unitary
transformations on Jίf given by (using the notation of [9] )

where τelR 3^" 1* and ζ is a 3 x 3 real matrix. For X as in (2) we define ζX =
(C*Vt,...,ίs^,...,CrJ.
In the momentum representation

= (det£Γ ( A r~ i)l2Φ(ζ~lP + Mτ), φeJf (3)

We have

u(τ, ζ)u(τ'9 O = u((τ, ζ) x (τ', £')) - κ(Γ lτ + τ', f Π (4)

Just as in [9], we construct an analytic family H(γ), where now v = (τ, Q,
τeC3 ( N~ l), ζ a 3 x 3 complex matrix. (Note that y is a generalization of that used
in I). Analyticity of Vr(γ) will follow so long as Re(CΓC) is positive definite. The set
of y for which H(y] is analytic we call Y. We have

H ( y x y 0 ) = u(y)H(y0)u-ί(y} (5)

for y real and y, y0,y x y 0e Y. The operator #(0, 1) is the Hamiltonian of the
system.

The properties of the spectrum are analogous to the case studied in [9] . The
only difference is the spectra of H%(y), H%(y) which are the sets of values taken by
KD(C-1P + Mτ), Kc(ζ~^P + Mτ). We shall not trouble to describe σe(γ) exactly,
but we assert that, if B a C is a given bounded set, then σe(γ) n B -> σe(yz) π B as
y -+ 7Z ? where yz = (τ, Iz), zeC. Moreover, that part of the discrete spectrum of
H(y) not contained in σe(y) is independent of y, and is the same as that discussed by
Combes and Thomas for the case γ = yz. With each Eεσd(y), Eφσe(y), is an analytic
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vector \l/(y) satisfying

(6)

for suitable γ.
For a cluster decomposition D™ we define

um(y) = uD(y)

where the operators on the right are analogous to those in [9], eq. (3). Thus we have

(y) (7)

where uκι(γ), ΰm(y) act in ̂ '2), tf^ ® ̂ 2) respectively.
Repetition of the line of reasoning taken in I leads to the following result.

Lemma 1. There exist sets 51 c C, S2 c Y such that for zeS1 9 yeS2, ί/iere 1*5 a
family M(z y) analytic in z, 7 except for a finite set of points S*[ c= 51 αί W/HC/Z M(z y)

/zai e a po/e. We have, for y real, y, y0, 7 x y0eS2

M(z 7 x y0) - w(y)M(z y0)w~ H?)

Also, for each m= 1, ... J there exists φm(y}e^(^} ®^(^\ analytic in y, such that
for real y

In addition, there exists μ > 0 such that, with φm = £μ|Sml φm, we have φm(y)eJ4f(^} (x)
2f(^} analytic in y, and for real y

ύ Mφ = φ (y).
m\''ιm >γn\''

For Sί we may take Sί

1 = {z:br < Rez < E0, |lmz <h.}, where bj<br<
EQ<Emϊn and /z. > 0 is suitably small. For S2 we may choose {y = ( τ , ζ ) : 3 λ ,
| a r g A | < α0 with || ς — λi \\ <δl, || I m ς τ | | < δ2} where α0,(51,(52 > 0 depend on S^.

In I we introduced the bounded operator Bnm(z) which was a factor in the
kernel of our integral equation. With/e Jtf (^2},f'e Jf?Jj

1'2) we have

where /?πm : Jf -»• ,?f is given by

ftp. = (e~φB| ®ωB) K^.ίl ®ωj [1 + (1 ®ω^)M(z; 0, 1) (1 ®ωm)].

For future convenience in this paper, we shall use for all m

ωn;
1(r) = ω-1(r) = r-1(l-O (8)

Lemma 2. There is a family of bounded operators Bnm(z y) : JΊ? ̂ '2) -> 3^(1'2},mero-
morphic in 5'1 0^2 with poles only at zεS\, such that, for y real, y, y0, y x y0eS2,

(z y0)Mm- Hr) (9)
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and

Proof. The operator βnm has an extension to βnm(y) since the factors (e~μM®
ωJFDnDι(l(χ) ωm) and (1 (x) ω~1)M(z;0, 1) (1 ®ωj have extensions. In the first
case this is obvious from the definition of u(y) and Lemma 7 of I. In the second
case, we have

M(z Q = iΓ \τ', 1) M(z ζ~ V + τ, Qw(τ', 1)

which meang that for each fixed τ, ζ, M(z τ, Q has a boost analytic extension.
Thus the argument of Lemma 5 of I may be used to show that M(z y) is pseudo-
local, from which it follows that the extension of (1 ® ω~ l)M(z 0, 1) (1 ® ωm) is
bounded.

We define Bnm(z y) by

(y) (ύm(y)Φm®f))
In this case we have, for real y

= ((Φn

= ((ίπ® A (ΰ Hyo)";1

= ((Φn®f\ (ύ~\y x yQ)

3. Extension to Distorted Contours

We describe a family of distorted contours by a set of functions qn(s\ n= 1, ... ,j.
Each function gw(s) maps 1R+ into a curve ΓM in the complex plane. For 5 ̂  sz and
s ̂  SM we require gw(s) = As, where A, complex, is the same for all n for a given family,
but may be different for another family. We assume that qn(s) is nine times dif-
ferentiable and that

Jn(s) = -f -p ̂  0, se [R + , and will place further restrictions on qn(s) later.
s cis

If qn(s) is real, we may define a unitary operator Qn : L
2( (R3) -> L2( (R3) by

s| = 1.

If we allow Qn to act in the momentum representation of J4f(

n

1>2\ we may define
operators Bq

nm(z) by

^HδAJ^1 do)
Our task is to define a suitable extension of Bq

nm(z) when [qn(s)} is complex. Formal-
ly, this will be achieved in the following manner. Suppose that in momentum
space Bnm(z y} has the kernel (p' | Bnm(z y) |p), using the Dirac notation. Then (9) is
equivalent to

(11)
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where τm is the projection of τ to the [R3 corresponding to the relative motion of the
clusters of D2

m (see [9]). To continue B*m(z) we need (qn(s')s'\Bnm(z)\qm(s)§) which
may be defined from (1 1) by choosing γ so that, with p = s, p' = s'

(12)

In this case we have

(s'|Snm(z,7)|s)^2(S) (13)

To proceed rigorously, without assuming the existence of a kernel with suit-
able properties, we must first specify a solution of (12) for 7. For n ̂  m, it is ade-
quate to choose ζ~ ί = λl, and use (12) to define τm, τπ.

In the case n = m, we define

where /z 1 ? Λ2 are six times differentiable and satisfy h^x) + h2(x) = 1, Λ^x) = 0,
x < Xp ft^x) = 1, x > XM > xr We choose

i-qm(s'))] C(s-s') b]-[a (s-s')] [(s-g')-b]A ,
r α * DA

and

where

and

Again, we use (12) to define τm.
We see that, if qm(s) and its derivatives are close enough to λs and its derivatives,

then the corresponding γ will belong to S2 .
To obtain a rigorous definition of Bq

nm(z) for complex q, we express 5πm(zίy(s/, s))
appearing in (13) in terms of integrals of derivatives of Bnm(z y) with respect to 7.
Let us define

0, 5 < 0
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and ̂ 2 = 1 - 0*. Then Bq

nm(z) may be written
2 2

βKz) = Σ ••• Σ ^®^i2®^Bq

nm(z)^®^®^ίβ (14)
II =1 16= 1

We define the extension of Bq

nm(z) by extending each of the 26 terms in the expansion
of (14) separately. We give the argument for 0> + Bq

nm(z)0> + , where ̂  + = 3?1 ® &1 ®
0*1, and that for the other terms follows after a trivial modification.

We define S. , i = 1 , . . . , 6 by S = (s', s) and writeJS(Sl , . . . , S6) for £nm(z y(s', s)) .
With repeated use of the formula (S. ̂  0)

/(Sf) = /(O) + dΓ, = /(O) + J dTtθ(St - Γ,)
0 ^i 0 C1i

We have an expression of the form

k = 0 p

U1 1 •••

where p runs over all choices of k integers from 1, ...,6. The function Θ(S 1 — Tx)
may be interpreted as a multiplicative bounded operator θτ . This leads us to our
rigorous definition of ^>+Bq

nm^>+ which is

Definition 1. For zeSl and q complex so that the corresponding y all belong to S2 ,
we define 0> + Bq

nm(z)0>+ by

Σ Σp]dTl...]dTk (15)
k = 0 p 0 0

where θτ. is placed to the left or right of the operator depending whether i is
oo 0

^ 3 or > 3. For the other parts of Bq

nm, we replace J dTiθ(Si - T.) by - J dT.
0 -oo

Θ(T. - S.) where appropriate.
dk

Remark 1. The convergence of the integrals in (15) follows since B(Ti ...
cT...cTk

TkO... 0) may be written as a sum of terms involving products of factors such as

3V(t',t) 8B(z;y)
(j = -„-, ^—T Λ— and -̂̂  ~-£, where yl is an element of ς or τ.

ϊ'l I'm ϊ'm+ 1 in ' " ' '

It follows from our definition of y(t', t) that | G| < const|(1 + tf. )... (1 + t[ ) x
(1 + ί. )...(! + ί f n )I ~8 / 7 and the derivatives of B(z'9y) with respect to ymare
uniformly bounded since, for all t, f, γ(t\ t) remains bounded.

Lemma 3. For zeSΐ and q real so that the corresponding y all belong to S2, Bq

m(z)
as given by Definition 1 coincides with QnBnmQm

 1 of (10).
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Proof. We show that 0>+ Bq

nm(z)0>+ of (15) equals 0> + QnBnmQ~ 1 0> + . Let hn(x) =
e~χ2Hn(x\n = Q,..., where Hn(x) are normalized Hermite polynomials. Let
χijk(s) = Λί(s1)ΛJ.(s2)Λfc(s3) and define the orthogonal projection pyfc by

Now set

PN = Σ

Then we have PNBnm(z)pN -+ Bnm(z) as N -> oo, and similarly, for y real, ί?N(y) =
u(j)pNBnm(z)pNu- >(y) t «(y)Bwm(z)«- '(y) = Bπm(z 7).

Now bN(γ) is an operator, analytic in y, that satisfies the properties demonstrated
for Bnm(z y) in Lemma 2. It is also represented by a kernel (s' | b(y) \ s), analytic in
s, s' that obeys property (9) . Thus the previous empirical argument applies rigo-
rously in this case, and we have

.
ui ... uι

The Lemma follows on taking N -» oo .
In I the kernel of our integral equation Anm(z) was written as

where 3fm(z) = ω~ 1gm(z)ω~ί. With the assumptions of I, we might just as well use
the projection of gm onto a state of given angular momentum. Thus, from now on,
we will replace gm(z) by gl

m(z)9 where gl

m(z) has momentum space kernel

YtoW) VP) (*-bm- P2/2μmΓ 1 δ(p' - p)p~2

As in the case of Bnm(z) we may, for real qm , define tfq

m(z) by

Since ω"1 is a bounded operator with the same transformation properties as
Bnm(z), we may define the extension (ω-1)g for complex q as we did for Bnm(z).
We define the extension of gl

m(z) explicitly by

(s' I g%z) I s) = JV\S'} Ylo(β>) Ylo(β) (z-bm- q2(s)/2μmΓ 1

δ(s'-s)q-2(s)J1J2(s) (16)

so that for real Qm

Provided that km(z) = [2μm(z - ftm)]1/2 is not on Γm, g% is obviously a bounded
operator.

Lemma 4. For km(z)£Γ m and the same restriction on q as in Lemma 3, Jf^(z) is a
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Hilbert-Schmidt (H-S) operator, which is also continuous in the H-S norm as

Proof. We have ω~\r) = (r rΓ1/2(l - e~(rr)1/2). Let the Fourier transform of
ω~ x(r) be W(p). Define the analytic family of bounded operators Ω(ζ) by (Ω(ζ)/(r) =
ω~ ί(ζr)f(τ). In momentum space Ω(ζ) has the kernel

We write

2 2 2

(ω-i)«= Y Y Y ̂
v ' L̂̂  _̂-ί Z_^

ii = 1 Ϊ2= 1 13= 1

and show how to treat the term with i1 = 12 = i3 = 1. The other terms are treated
similarly.

As before, it may be shown that, for complex q such that the corresponding
yeS2,

ό 00 00 /

= ΣΣP\dT1...\dTkθTί...θTis'
/c = 0 p 0 0 \

where now p chooses h integers from 1, 2, 3.
We are thus led to study operators such as X1g

l

ι^(z)X2 where X19 X2 have
rnp»lckernels

= s ac'....ac
3*

TnΩ(ζ(T1...TkO...O,s))s\

(siz>')=(s^^
In coordinate space Xig

l^(z)X2 has kernel

(r'\Xιg

l«(z)X2\r) = const Jds'ds/^r', s>ίr'

where

Λ(r',s') = - -Γω 1 (ζr / )withζ = C(T 1 . . . '

Using (16) we obtain

(r' I X 1 g%(z)X21r) = J ̂ s2F, (r', s)F2(r, s) (z - bm - g
0

where

F^r', 5) = const Jds/^r', syr' s 7ίo(s)

and similarly for F2. Straightforward estimates using the explicit form of ω"1
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show that uniformly

and

dF±(τ9 s)
< const r 1(| r

ds

and similarly for F2 . It follows that

\P\X1g«(z)X2\τ)\<con&t[r>(\ι' + l)r(|r| + I)]"1

even in the limit km(z) -» Γm . Thus the operator Xl gl«(z)X2 is H-S.
We must also extend the inhomogeneous term of the integral equation I (6).

Define χ(kn)eJf«l 2> by

χ(kn,τ) = ω-1(r)jl(knr)Pl(τ)

By explicit calculation from (8) χ(kn) has momentum space representation

For complex k and distorted contour Γ with kneΓn, we define the continuation
*'(*„) by

It is easy to check that χ«(/cπ)eL2(IR3) and that for real kn and qn(s)9 χq(kn) = Qnχ(kn).
The function αM(z) appearing in 1(6) may be expressed as sums of products of

operators with properties similar to Bnm(z) and Jf w(z) acting on χ(ki). To extend
αn(z), we extend these operators as before and at the same time extend χ(fc.) to
χ^fc ). In this way we obtain α*(z kt) defined for complex fe.eΓ., with zeSί , each
km(z) above the corresponding Γm and q chosen so that the corresponding y all
belong to S2 , with the property that, for real ki9 q, q*(z fe.) = απ(z).

4. Analyticity

The aim of this section is to demonstrate that there exists a neighborhood of the
segment S3 = {z : Im z = 0, br < Re z < EQ } of the real axis into which the physical
scattering amplitude Tfi(z) may be continued from real values of z. (The Born
term may be dealt with easily).

Suppose that zQeSi with Im z0 < 0. To continue from real values of z to z0 we
shall use various contour distortions (qn(s)} corresponding to Γn in the fourth
quardant, and we assert that | Im z0 1 may be chosen small enough so that all the q
concerned satisfy the restrictions of Lemma 3. This assertion may be checked
without difficulty and we shall assume its validity in the discussion below.

Let us write fc° = feM(z0) (Im/c° < 0), and suppose that q° = {g°(s)} is such that
g°(l) = fep #?(!) = fc?, and the contours Γ°(n ^ i or/) pass below the correspond-
ing points fc°. We shall assume for these contours that λ = 1 . It will also be assumed



Partial-Wave Two-Cluster Atomic Scattering Amplitudes 1 1

that there exist εn > 0 such that for 1 — εn ̂  s ̂  1 + eπ, Im g°(s) = Im /c°, n = i or
/, and that | Re «°(1 + εΛ) - Re fc° | > <$„ > 0.

Now we define

qn(θn,s) = Rεq0

n(S) + θnlmq°n(S). (17)

We set

and leave the remaining θw as variables denoted collectively by θ.
For zeSί — S^ with Im z > 0 and suitable fc., fe^ with negative imaginary parts

we denote by un the solution of

where A*m(z) = B*m(z) JΓ^(z), and we are using g given by (17). Since the kernel of
this equation is a H-S operator, analytic in z, there will be a unique solution for all
but a finite set Sd, and we suppose that z£Sd. We define the off-shell partial-wave
scattering amplitude Tfi(z kf, /c., θ) by

Tfί(z 9 k f 9 k i 9 θ ) = (X*(kf)*,uf)

The kernel of (18) has a Fredholm determinant D(z fc/? fc., θ) whose zeroes in
S1 comprise Sd

q. We have

Lemma 5. Provided that the variables are chosen so that, for each n, kn(z) is above
the contour corresponding to (77), D depends only on z (analytically for zφS^).

Proof. The functions qn(θn, s) depend analytically on /c/? k.9 θ for fixed s, and it
follows from the definition of Aq

nm(z) that this operator depends analytically on these
variables. It is also analytic in z for each kn(z) above its corresponding contour.
For Im z > 0, D may be continued from fc/? fe. = fc°, /cr°, θ = {i} to real values, each
quantity varying over a segment of the real axis. In this case D is independent of
kf, /c , θ, for Aq

nm(z) is related to Anm(z) by a unitary transformation that leaves D
unchanged. The result follows by analytic continuation.

This lemma means that Sd

q is independent of fc/? fc., θ provided each kn(z) is
above its corresponding contour. We also see that we may construct an open disk d
with centre z0, such that D(z) is analytic, zed + dd. To do this it will be necessary to
use in (18) kn = Re fc° + iKn,\Kn\ > |lm fc°|.

Lemma 6. T/zβ amplitude Tfi(z fc/? /c., θ) z's independent of θ and is analytic in
z,kf,k.9zeSί9 except possibly for poles at zeS^+S*, provided that, for each
n, kn(z) is above its corresponding contour.

Proof. As in Lemma 5.
We shall call the amplitude ΎΛz kf, k.).
Now let β0 = max | arg fc^.(z) | . Suppose that d has been chosen sufficiently small

that we can find β > β0 for which d is contained in that part of (C - σe(0, e~ίfi 1))
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obtained by continuation to Im z < 0 through (b , Emin). We set

kf = Re k°(l - ί tan β),n = i or/.

We suppose that | Imz0 1 has been chosen small enough so that Tfi(z k/? k.) may be
continued along Re kf = Re k°, Re fc. = Re fc? to a neighborhood of z = z0,kf =
k;,k^fcf.

Next we define F ( z m , x f 9 xt), x / 9 x f eC, by F(z; x/?x t.) = Γ/f(z xr + k^z),
xf + fc£(z)). We have

Lemma 7. For sufficiently small d there exist δ'f , <5J , ft^. , ft . > 0 swcft ίftαί F(z x^ , xt)
is meromorphic in the polycylinder |RexJ < <5^, — ftπ < Imxn <0, w = z or f ,
zed + dd. Poles ofF(z xf, xt) may occur only at those values of zed + ddfor which
//(O, e~lβl) has an eigenvalue.

Proof. The meromorphy is immediate from that of Tfi(z kf, k.), for provided that
I Re(kM — kn(z))\ <δn,n = i or/, our_choice of {q} ensures that kπ(z) will lie above the
corresponding contour if Im (kn - kn(z)) <ΰ,n = i or/ and zed + dd, d sufficiently
small.

To demonstrate the relation of poles of F with eigenvalues of ί/(0, e~lβ\],
we define for Im z > 0, λ, q > 0

where ι^.(l) means the ψ. defined in I with k. = 1.
As explained in Sect. 2, this expression is analytic in z, λ for arg k .(z) > arg λ,

except possibly for poles in z at the eigenvalues of w(0, λ~ ll)Hu~ l(0, Λ ll).
For Im z > 0 and λ, q real with λ near Re k^, /lq near Re kf , we have

T(ziλ9q)=Tfi(z;λ9λq). (20)

Now suppose that the only point of (S* + S^ ) in zed 4- <9d is at z = z0, and that
H(09e~iβί) has no eigenvalue at z = z0 (and therefore none for zed + dd). By
analytic continuation in λ of (20) along a path near Re λ = Re k° with g fixed near
Re fc?/Re k^, we deduce that Tfi(z A, λq) is analytic in z, λ for zed + 3d, q real

and A, /lg in neighborhoods of kβ

f, kf . We therefore have for such λ, q

The right-hand side is analytic in q, λ, z, and so by analytic continuation is the
left-hand side. It follows that b"n > 0 and the specifications of the polycylinder may
be chosen so that F(z x/5 x f) is analytic for Re x J ^ δ'n, - hn < Im xn < -hn +
δ'ή,n = i or/ zed + dd. Analytic continuation from this region of

shows that F(z x/9 x.) is analytic throughout the polycylinder.
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If H(0, e~iβl) has an eigenvalue at Z = ZQ such that (z - H(Q, e~ίβl))~1 has a
pole of order v at this point, the above argument is easily modified to show that
(z — z0)

vF(z x/? xt) is analytic inside the polycylinder.
We are now in a position to prove

Theorem 1. Subject to conditions (i) to (iiί\ the pαrtiαl-wαve on-shell scattering
amplitude ffί(z) = Born term + Tfi(z) is meromorphic in a neighborhood of any
segment of the real axis below Emίn not containing thresholds, where physical scatter-
ing is possible. It may have poles only at eigenvalues of H(Q, e~lβl) which may be
reached from this part of the real axis without crossing the continuous spectrum of this
operator.

Proof. Suppose as in the previous Lemma that H(0, e~ίβϊ) has no eigenvalue for
zed + dd. For zed + dd, a straightforward extension of Lemma 4 shows that
uniformly

lim F(z; — iε, — is = F(z)
εiO

Taking this limit in (21) shows that F(z) is analytic for zed. If #(0, e ~ ί β ί ) has an
eigenvalue, index v, at z = z0, and no other for zed + dd, then we can show that
(z — z0)

vF(z) is analytic for zed.
Covering a neighborhood of S3 with disks such as d shows that F(z) is meromor-

phic in this neighborhood. For z real, zeS3, we have F(z) = Tfi(z) and the theorem
follows by analytic continuation.
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