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Abstract. We consider continuous weak solutions of the Euler-Lagrange
equations associated with the Euclidean d-dimensional O(N) nonlinear
og-model. We show for arbitrary N and arbitrary d that such solutions with
locally square integrable gradient are real analytic.

1. Introduction

We consider solutions of the d-dimensional (d=2) Euclidean O(N) non-linear
g-model, i.e. stationary points of the Lagrangian

Ln)= i i(ézn, 2=(Vn)* (1.1)

a=11=1

0 - .
where 0, = e and neR¥ satisfies the constraint
'xa

n?=n?=(nn): = i ng=1. (1.2)

Stationary points n of L such that L(n) is locally L' are (weak) solutions of the
Euler-Lagrange equations associated with (1.1)

An+ Lmn,;=0 [=1...N. (1.3)

(A detailed proof of this fact along the lines of the usual variational argument has
been given in [1] where also the class of variations was specified.)

Since the left hand side of (1.3) is an elliptic operator, one may expect weak
solutions to show some regularity, i.e. to be C* (k times continuously differentiable)
for some k. There is an extensive literature on elliptic regularity, and we quote only
some results relevant for (1.3):

In 1929, Lewy [2] gave a lucid proof of Bernstein’s theorem that in two
dimensions (d=2), every C3-solution of a nonlinear elliptic equation with analytic
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coefficients is, in fact, real analytic. Three years later, Hopf proved [3] the
corresponding result for C2-solutions in any number of dimensions. Finally,
Petrowsky [4] generalized Hopfs result to systems (N>1) of elliptic partial
differential equations; for a recent proof of Petrowsky’s result, see [10].

All of this work concerns classical solutions. The first result on weak solutions
was proven by Morrey [5] who showed that, in two dimensions, any Holder
continuous solution of (1.3) is C? (and hence analytic). Though his results apply to
slightly more general elliptic systems, too, the method of proof does not generalize
easily to higher dimensions. The next step was taken in the late fifties and
culminated in the result of Ladyzhenskaya and Ural’tseva ([6]; see also the earlier
work quoted therein on which they rely): Any bounded, locally square integrable
solution of a single elliptic equation is analytic. Note that the corresponding result
for systems of equations is false: For d=N(>2), (1.3) has the weak solution
n=|x|"*x.

Under the additional assumption that |n|<1, Hildebrandt and Widman
proved in [7] that any bounded locally square integrable solution of the system
(1.3) is Holder continuous, for d =2 (which implies analyticity by Morrey’s result).
Note that the assumption |n|< 1 is incompatible with (1.2). The result in [7] was
generalized in [8] to any number of dimensions. It is again inapplicable because of
the assumption |n| < 1; furthermore, for arbitrary d, we have been unable to find in
the literature the generalization of Morrey’s result that Holder continuity implies
analyticity.

Thus, no regularity result known to us seems to be directly applicable to the
system (1.3) with condition (1.2). As the example given above shows, one cannot
expect arbitrary bounded solutions of (1.3) to be analytic. We will show, however,
the following theorem in Sect. 4:

Theorem. Let n be a continuous solution of (1.3) fulfilling (1.2), and let Vn be locally
square integrable. Then n is real analytic.

2. I’-Properties of the Gradient

As a first step in proving regularity, we show in this section that the gradient of
weak solutions of (1.3), i.e. of vector functions » fulfilling

[ 0,n0,pd"x = { (Vn)*nedx (2.1)
2 2

(summation convention!) for all regions Q and all test functions pe2(Q), is in
Ly () for every p =1, provided n is continuous. As i was initially assumed to be
locally L2, this is an improvement only for p>2. We will use (1.2) as it simplifies
the proofs and mention only that the regularity results would hold without
assuming it. We will estimate Vn by approximating it by difference quotients
defined as follows:

Choose an orthonormal basis {e,} of R? and put, for any function f on R? and
O=+helRR.

A =h ' [E(h)—11f a=1..d (2.2)



Solutions of the O(N) Nonlinear ¢-Model 301

where we introduced the translation operators

(EMf1(x): =f(x+he) a=1..d. (2.3)
We note the formula on “summation by parts”

{4, (0 f1gd'x =~ [ [[A,(—h)g]d’x (2.4)
for fe2'(RY, ge Z(RY, and the product rule

ALf-9)=[4,09)+(4,/)E,g. (2.5)

The next, well-known lemma relates difference quotients and derivatives:

2.1. Lemma. Let QelR? be a region and Q' strictly interior to Q. Suppose fe L¥(€)
and 1 <p< 0.
(i) If 0,fe LX), then A (h)f is strongly bounded in L?(€) for small heR.
(i) If A,(h)f is strongly bounded in LP(Q), then 0,f € L*(Q), and A (h)f converges
strongly in LP(Q') to 0,.f, for h—0.

Proof. (i) it follows from

A f=h"t ;i 0,f(x +te,)dt (2.6)
by using the triangle inequality as generalized to integrals that

1AW S ooy S Jup, IELD0.f Il Loy SN0, | ooy

for all h such that x +he,eQ if xeQ'.
(i1) Since

I(E,(h) = 1)f | Lra) = Klh]

with K independent of h, the distributions T,e Z'(Q) defined by
Ti(@): =h™'[[(E,(h) — 1) f1(x)e(x)dx

obey the estimate
IT{@) =K@l oo

where g7 ' =1—p~ !, by the Holder inequality. For h—0, T, converges on Z'(Q) to
T=0,f, by (24), and the limit distribution obeys again

lT((P)] <K @“Lq(ﬂ) :

Hence, T can be uniquely extended to a continuous linear functional on L4(€) and
is thus in L?(€Q), by the duality of L) and L?(Q) which proves d,f e L#(Q).
To show the strong convergence, note that (2.6) implies

Haaf_Aa(h)fHLP(n')§ osggh [(E (1)~ 1)aaf\|Lp(Q')
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which tends to zero by the strong continuity of the translation operators in
LQ). O

We will later want to insert into (2.1) as test vectors ¢ functions of n which are
not known a priori to be in Z. But note that any weak solution of (1.3) fulfils (2.1)
with pe H3(Q), i.e. with functions ¢ which are, together with their derivatives, in
L*(Q) and vanish close to the boundary of Q. To be precise, define the |- |{"-norm
by

d
ol =lell,+ X 10,0l
a=1

Then H3(Q) is the completion of Z(Q) in the [ |$P-norm. We have the following
estimate :

2.2. Lemma. For any continuous solution n of (2.1), (1.2), any ye Q, and any ¢>0,
there is a ball K (y) around y of radius ¢ = o(e) such that

[ mPedix<e | (VE)Pd'x

Ko(y) Ko(y)

for all e HX(K ().

Proof. Choose as a test vector in (2.1)
@(x) 1 = [n(x) = n(y)]E*(x)

and use the continuity of n to fix ¢ such that
din(x)—n(y)|<46* <1

for xe K, =K (y). Then

[ (@,n,0,mE%dx=—2 [ (0,n,n—n(y)Ed,Ed'x
K

KQ e

+ | () (n,n—n(y)Exd'x.

K,
Hence
[ m)2edix <o {2~ [ 1o,n1€0,¢ldx + | (Vn)zézd"x}
KQ KQ KQ

where we used (1.2). But
2[E0,n)[0,E| = (V)2 &2 +(V¢)?
and therefore

(1=28) [ (M)2E2d'x <6 | (V&)2d'x

KQ
from which the statement follows if 6 is chosen such that

e=6-(1-20)"". O
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As a preliminary step, we prove

2.3. Theorem. Let n be a weak continuous solution of (2.1) which fulfils (1.2). Then
(i) VnelXQ);
(i) 0,0,mel?(Q) 1=Z0,p=d

for all precompact regions Q' strictly interior in Q.

Proof
1. Choose a unit vector e, and insert into (2.1)
@ =A,—hy

where pe HX(Q) and |h| is so small that pe H3(Q). Then use (2.4) to get
§ (4,0,m0,pd"x = | A,[(Vn)*nTipd'x.
2 2

Now put
v =(Um?
with (e H3(Q). Since 4 ; commutes with d,,
J(r(agn)*Cdix < JI(4,0(m)*n], 4pn)C%d x
2 2
+2 [1£0,8(0,4,n, Agn)ld'x . 2.7
Q
For the second integral we use Young’s inequality
2lal bl élal® +07 Hb|? (2.8)
(valid for all §>0) to bound the integrand by
V(A n)> 2 +0~ 1 (V)*(4,m)*.
We choose 20 <1 for later purposes to get
(1=0) [ (V(4m)*Cdx <67 [ (A,mA(V0)*d'x
Q Q
+ [ CUE,+1)d,n, 4,0,n)
Q
(Egn, Agn)d'x + [ (Vn)*(A,n)*C2dx (2.9
2]

where we used the product rule (2.5) for the first integral on the right of (2.7). In the

second integral of (2.9), we use Young’s inequality again to bound the integrand by
Lo (A m)? +6~ H(E,+ 1)(M)* }(4,m)*]

so that

(1=20) [ (P dix 2671 [ (703
Q2

4671 [ {(E,+ 2)(Vn) 2} (4 n)>2d'x (2.10)
Q
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2. To estimate the second integral on the right of (2.10), we use Lemma 2.2. Fix
a point ye Q and choose ¢>0 so that 66~ ! +26 < 1 which is possible since 25 < 1.
Replace, in Lemma 2.2, & by pA4,n. Then there is a ball K ,(y)CQ so that for all
pe HUK ),

[ (m)*(4,n)*p*dix <e | [V(pd,n)]d'x
K, K,

<2 { L(7p)*(4,n) +p*(V(4,n))*]dx . (2.11)
KQ
This takes care of the terms not containing the translation operator E. To estimate
the translated terms, note that (1.3) is translation invariant; hence, Lemma 2.2
holds for E (l7n)2 as well with possibly a different circle K (y), and (2.11) remains
true if (Vn)? on the left is replaced by EB(Vn) and mtegranon extending over K,
Put o =min(y, ). Then choose pe HZ(K )in (2.11) and {=1v in (2.10):

(1—-26—6e6"") | (M) (4 n)*y?d*x <67 (1 +6¢) | (Vip)*(4,m)*d’x. (2.12)
Ko Ko

Choose p=1 on K,(y) where A< g. Then, since Vne L*(Q), the integral on the right
in (2.12) is bounded independently of h, by Lemma 2.1(i). By the same lemma, 4,1
converges almost everywhere to Vi so that Fatou’s lemma implies |Vn|e L*K /1)
Since yeQ was arbitrary, the precompactness of Q' implies [Vn|e L*(Q).
Furthermore, (2.10) shows that all second derivatives d,0,ne LA Q). O

We are now ready to prove the announced LP-properties:

2.4. Theorem. Let QeR* be a region, and Q' a precompact region strictly interior to
Q. Assume that the gradient Vn of any weak continuous solution is in L2 (Q). Then
VYneL? (Q') for any p=1.

loc

loc

Proof

L. By the last theorem we may replace ¢ in (2.1) by d,¢ for any <peﬁf(9) and
integrate the first term by parts:

§ 0,0,n0,0d'x + | (V)*nd,pd'x=0. (2.13)
2 o

Now choose N >0, define
by(x): =min {(n)*(x), N}

and insert into (2.13)
@:=(by)anl*

for an arbitrary integer s and (e H #(9Q). Taking into account
(n,0,n)=0

because of (n,n)=1, this yields, if we sum over f,

L2+ (2,0, 0yIsbi 0.byE2+ 20,2, 2,00, Lb3 '

+ [ (7)*(n, 8ﬁ6ﬂ;1)bfvczddx}:0. (2.14)
Q
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Use (1.3) in the last term; for the second term, note that d by is non-zero only if
("M)* <N, ie. if by=(V)? so that, for those points,

0,by=2(0,0,n,0,n). (2.15)
This yields
X
o U,

5 (aaaﬂn)z] b3+ %b;,‘ q VbNIZCZ} dix
a, B

<[ IPnP*b %+ | Y (0,0,m)2b302d%x +&~ 1 [ (Fn)2(V()2bydix (2.16)
Q Q2

Qa,p

where we used Young’s inequality for the third term in (2.14).
2. We now fix a point yeQ and a number 0<d<min {s™*,27 (1 —¢)}. By
Lemma 2.2 we can find a ball K (y) so that

[ (Mn)*E2dix <6 [ (Vé)*d'x (2.17)
K,

K,

for all e HX(K .- We replace ¢ by £d,n so that
[ n*E2dx 26 | [(VE) (V) + Y. (0,0,n)*E*]d"x
K, a, B

KQ
and choose

E=by*n
with ne Iflf(Kg):

[ IVnl*byn?dix <28 | | Y (9,0,m)n*byd’x

Ko Koo, B

2
+ SZ [ (7)2bs 2 Vb 1Pn?d’x + | (Vn)?by|Vn|*d x|
Ko K,

In the second term, (Vn)* can again be replaced by b, because of the support
properties of Vby. Choose {=# in (2.16) and insert the last inequality into it,
transferring the first two terms to the left:
[ 2 (0,0,0)°bPdx <(1—e—28)" (e ' +25) | (V)*(Vn)*byd‘x .

KQ

Ko a,p

We have dropped the second term on the left containing |V'by|* since it is positive
(e<(2s)™h).

3. We use the same procedure as in 2 to estimate the integral of (Vn)?b3. Insert
E=b3*n in (2.17):

[ (Vn)?bin?d®x < 23{ [ {s?by 2|V byl Pn* + b3(V) 2 dx
Ko

Ko
| {452;7217;,' ! EB(@a&ﬁn)z +b3( Vn)z} d“x]

Ko

<2

where we used, on the support of Vb, Eq. (2.15):
[Vbyl? =4 1(3,0,m,0,n|> <4 Y (0,0,n)*(0,n)*
a, o, B

<4y ((“/(,zal,n)2 Y (0,n)*=4by > (6a8,,n)2
a, B a o, p
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Now replace s by s+1 and use the inequality proven in 2:

j‘ (Vn)zb;ﬁ lﬂzddX_S_ZB j b}sv+ 1(V11)2ddX+Ks’e 5 (VH)Z(VYI)ZbISVddX
Ko Ko

K,

<K, , | by(V)*(Vig)?dx . (2.18)
KQ

4. From the last inequality we conclude by induction that |Pn|* exists for all k.
This is true for k <4, by the last theorem. If it is true for k one can take s=k—1 in
(2.18) and let N—oco in the right hand side to bound the integral on the left

independently of N. Fatou’s lemma then shows that | [Vn|*"'d%x exists. Since

Ko(y)
ye Q2 was arbitrary, the statement follows. []

We remark that Theorem 2.4 can be proven rather quickly in d=2 dimensions
by appealing to the Sobolev inequality (see Theorem 3.5.5 in [5])

d
Inll o) = Cd, p, Q’)(llnllm(grﬂr ) Ilaanllum) (2.19)
a=1

1 1 1
which is valid for 1 Zp<d, o= o d Apply (2.19) for d=2 and p<2 to 0yn and

then use Lemma 3.2 (ii) below (which will be proven independently of
Theorem 2.4) together with Theorem 2.3 (ii) to conclude that dyne L'(Q2) for

1 1 1 .
-= E -3 and all p with 1 £p<2, ie. dnel’(Q) for all r,  Sr<co.

3. Differentiability of Weak Solutions

In this section we show that all distributional derivatives of a continuous solution
n of (2.1) are infinitely often differentiable. It is enough to prove, for all k, that the
derivative of order k is locally L?; it is then, in particular, locally L* so that, by
integrating locally over IRY, the derivative of order k —d is continuous (in fact even
absolutely continuous).

We will even prove that all derivatives are in L(£2),

LQ):= () L2(Q (3.1)
1<p<w

for any region QeR% Since (2.1) relates LP-properties of Vn and n to those of An, we

will have to estimate second derivatives in terms of An. This can be done by using

the known L?-properties of Riesz transforms R, «=1...d. For fe L*(R%, their
Fourier transforms are defined to be

(RN (P):=plpl" f(p) o=1,...d. (3.2)

One can then show that R, is, in x-space, defined on all L? spaces for 1 <p < oo,
ie. for L(RY, and is a map into:

3.1. Lemma. For all fe L(RY),
IR, = A0S, (3.3)
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Forthe proof,see p.59 of [9]. The proof is not difficult, but lengthy, and uses
interpolation: By Fourier transformation, R, maps L? into L? and, in fact, L2 into
L? (where f is in the weak L? space LP(u) for a measure p if

plx/lf ) >t} =Ct™?

for all £>0). One then shows that R, maps L} into L and uses the Marcinkiewicz
interpolation theorem to conclude that R, is bounded as a map from L? to L? for
1 <p<2. By duality, the same is true for 2<p<oco. An immediate consequence is

3.2. Lemma. (i) For all 1<«, f<d and fe% (RY),

10,0,/ 1, = A, NAf 1, (34)
(i) For all 120, f<d, fe LA(Q) with Vf, Afe LP(Q), and any strictly interior
precompact region ' CQ,

d
10,05 Lo S Al AT Loy + B, 2 110, oy + Coll S Loy - (3.5
y=1

Proof.
(i) As one can immediately show by Fourier transformation,

0,0,f = — R,R,Af

so that (i) follows by the previous lemma.

(i) By regularization and (i), (3.4) extends to all f such that 4fe LF(R?). Now
replace f in (3.4) by f-y where ye2(Q) fulfils 0=y =<1 and is identically 1 on
Q. O

This is enough to prove

3.3. Theorem. Assume that n is a continuous solution of (2.1) with locally square
integrable gradient, and that n obeys the constraint (1.2). Then all distributional
derivatives of n are locally square integrable (and hence infinitely often
differentiable ).

Proof. Choose a point yeIR? and consider a ball K, z(y) of radius 2R around y. We
will show that all derivatives 0, ...0,n are in L(Kpgg(y)D L(Kg(y)), for
R(k)=(1+k~ "R, by induction on k. By Theorem 2.4 this is true for k= 1. Suppose
it is true for k. Consider an index set I: ={o,, ..., _,} of k—1 indices (empty for
k=1) and write

om:=0,-....0,, n

for short. By the product rule
— 0 An=0,("n)*n)=Y" (CLMN Y 6Lé‘an16Mé’an16Nn) (3.6)
a,l

where Y denotes the sum over all partitions of I into three sets L, M, N, and ¢,y
are combinatorial factors arising because we don’t require the partitions to be
ordered. The right hand side of (3.6) contains at most k derivatives of n and is
therefore in L(K g, (»)) by the induction assumption and Holder’s inequality. Thus,
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A(0m)e L(K gg(y)), and, by Lemma 3.2 (ii), ¢,0,0ne L(€) for €' strictly interior to
K go(y). Choosing Q'= K, 1)(v) shows that all derivatives of order k+1 are in

L(K g+ 1y(0)2 LIKXy)). O

4. Analyticity of Solutions

To show the analyticity of solutions of (1.3), one can proceed in at least two ways:

The first method consists in extending (1.3) (or associated equations) into the
complex domain; this was done in [2, 3, 5].

The second method consists simply in obtaining bounds for successive
derivatives; this has been exploited in [4, 10].

We will follow the second method and just quote a result of [10] as we have
not found a significantly shorter proof of analyticity. This result seems to be the
farthest reaching and even gives uniqueness results in case successive derivatives
grow faster than allowed by analyticity. We define growth classes as follows:

Let M, be a sequence of positive numbers. Then a function F: C*(D)—C where
D CRR is open belongs to the class C{M,,; D} if to any closed subset D, CD there
exist constants H,, H with

|0/F(x)| SHH'M;, xeD, 4.1)

where we used multiindex-notation (0/F =9J' ... 97"F ;j=j,). Note that C{n!; D}
is the class of functions analytic in D.
In [107], general elliptic systems of the form

Q,(x;u, Vu, V2u, .., V™u)=0 xeQCR?; ueRY;, I=1,..,N 4.2)

are considered, (where e.g. V?u stands for the tensor with components 0,,05,u), and
the following theorem is proved:

4.1. Theorem. Let u(x) be a real solution of the elliptic system (4.2), let QCIR? be
open and let E be some open set containing

E, = {u(x), Vu(x), ..., V>"u(x)/xe Q} .
Assume that
(i) ¢,eC{M,;Q2x E} 4.3)

and that the M, satisfy the monotonicity conditions

0<ign, neN 4.4

na’

(ii) (’7)MiMn_i§AM ;
i
for some A>0.
If ueC*™**Q), 0<a<1, then ue C{M,_,, ,,;Q} (where M_;:=1 for ieN).

Proof. Theorem 1 in [10]. [
In the case of the system (1.3), m=1 and

@(n, Vn, V?n)= An,+(Vn)*n,
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so that @, is analytic and hence of class C{n!; Q}. The constants M, =n! satisfy the
monotonicity conditions (4.4) with 4=1. We even know that ne C*(Q). By the
theorem the solution is in the class C{(n—1)!; 2} and hence (real) analytic there.
Furthermore, n obeys the estimate (4.1) so that the nearest complex singularities
must be at least at a distance H™* from Q [where H depends on n and on the
closed subset 2, C for which (4.1) holds]. This proves

4.2, Theorem. Let n be a weak continuous solution of
An+(Vn)*n=0
obeying

(n’n)=1a

and assume Vne L. (Q). Then n is real analytic, and n can be continued analytically

into {Imz|<C where C depends only on n and on the distance of Rez, to the
boundary of Q.
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