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Abstract. In order to provide a mathematical framework for discussing the
statistical correlations between the outcomes, when an arbitrary sequence of
observables are measured, it is necessary to generalize the conventional von
Neumann-Lύders collapse postulate to observables with a continuous
spectrum. It is shown that the standard prescription in conventional quantum
theory for the joint probabilities of compatible observables is sufficient to
characterize, more or less completely, the appropriate "generalized collapse
postulate" which associates with each observable a unique "finitely additive
expectation valued measure". An interesting feature of the collapse associated
with observables with continuous spectra, which again follows from the basic
principles of conventional quantum theory, is that it must be formulated in
terms of the so-called non-normal conditional expectations, which implies
that the joint probabilities associated with successive observations of such
observables are not in general σ-additive. The implications of this non-σ-
additivity on the determination of expectation values, correlation functions
etc., are also investigated. It is demonstrated that the basic prescriptions
introduced in this paper constitute a natural completion of the framework of
conventional quantum theory for discussing the statistics of an arbitrary
sequence of observations.

I. Introduction

One of the major problems of the quantum theory of measurement which has
eluded a satisfactory solution so far, has been that of extending the collapse
postulate to observables with a continuous spectrum. It is well known that the
collapse postulate plays a very crucial role in quantum theory in any discussion of
the statistics of the outcomes of a sequence of observations performed on a system.
However, the collapse postulate as introduced by von Neumann [1] and later
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modified by Lύders [2-7] is appropriate only for observables with a purely
discrete spectrum. The main difficulty with observables with continuous spectra
appears to be the fact that there does not exist any (atomic) spectral projector
corresponding to a single spectral value in the continuum. It is in fact this feature
which forces us to modify or generalize the von Neumann-Lύders (or the con-
ventional) collapse postulate so that it can be applied for any arbitrary observable.
Stated this way, the basic problem is of course of a purely technical nature. How-
ever, it is hardly possible to exaggerate the physical significance of generalizing
the collapse postulate for observables with continuous spectra. Most of the obser-
vables one deals with ordinarily in either non-relativistic quantum mechanics or
in quantum field theory are those with a continuous spectrum and the absence of
an appropriate generalization of the collapse postulate has left the theory in a very
incomplete state. For example, one cannot employ the conventional collapse
postulate to discuss, say, the joint probability distribution associated with two
(successive) position measurements carried out on a particle at different times.
Another important example is provided by the fact that it has not been possible to
systematically discuss from basic principles much of the traditional wisdom that
is associated with the Heisenberg uncertainty principle (see for example [6, 8]),
for that would necessarily involve a discussion of the measurement of the mo-
mentum of a particle (immediately) following the measurement of its position and
vice versa. In fact it may be said that the absence of a general collapse postulate
constitutes a very serious limitation of the conventional formulation of quantum
theory, particularly in connection with the description of successive observations.

In the present investigation we shall arrive at an appropriate generalization
of the collapse postulate which of course reduces to the conventional (von
Neumann-Lύders) collapse postulate in the case of observables with a purely
discrete spectrum. In Sect. II we discuss the reasons why some of the attempts to
obtain a direct or immediate generalization of the conventional collapse postulate
have not succeeded. It is thus seen that one must attempt at a rather non-trivial
generalization after carefully studying the essential mathematical features of the
conventional postulate. In fact, it was on the basis of such a study that Davies and
Lewis [9,10] suggested that the collapse associated with each observable may be
formulated in terms of the so-called operation-valued measures. However, in their
investigation the problem of fixing a particular rule of association between the
observables and the operation-valued measures (which is the essential content of
a collapse postulate) has been left very much open.

In Sect. Ill we outline a generalization of the conventional framework of
quantum theory wherein it is assumed that the collapse associated with each
observable may be formulated in terms of a certain "finitely additive expectation-
valued measure". This framework includes the proposal of Davies and Lewis as a
a particular case. It is shown in Sect. IV that the basic prescription of conventional
quantum theory for the joint probabilities of compatible observables [1,11]
(a prescription which shall be referred to as the "generalized Born statistical
formula (GBSF)"), precludes the possibility of formulating the collapse postulate
in terms of operation-valued measures. However, it is seen that the GBSF also
serves to characterize, more or less completely, an appropriate generalization of
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the collapse postulate (in terms of the so-called non-normal conditional expecta-
tions) which is introduced in Sect. V. Another important consequence of the
GBSF is that the joint probabilities of (a successive observation of) observables
with continuous spectra, do not in general satisfy the property of σ-additivity.
Sect. VI contains a brief discussion of some of the important consequences of this
non-σ-additivity of probabilities for the statistics of successive observations in
quantum theory.

It should be noted that there have also been alternative attempts at generalizing
the von Neumann-Lύders collapse postulate by introducing certain "generalized
eigenvectors" corresponding to spectral values in the continuum. It has often
been suggested [12-18] that one may employ a rigged Hubert space model (or
a related framework) for quantum theory, wherein it can be shown that there does
exist an entire set of such generalized eigenvectors, provided we choose an appro-
priate class of self-adjoint operators as the observables of the theory. Apart from
the fact that one must arbitrarily restrict the class of observables, our main objec-
tion to the above approach is that it has not led to any version of the collapse
postulate which would enable us to predict the joint probabilities of successive
observations. This, however, is not the case with a recent proposal due to Farrukh
[19], wherein a non-standard extension of the Hubert space has been employed
for generalizing the collapse postulate. Though Farrukh has employed his generali-
zed collapse postulate to calculate the joint probabilities for some interesting
particular cases, no general prescription emerges from his work for either the joint
probabilities or the expectation values and correlation functions when an arbitrary
sequence of observables is being measured. We hope to show that our approach,
on the contrary, leads to a more or less natural extension of the von Neumann-
Luders collapse postulate, from which there also emerges a completely general
prescription for the joint probabilities as well as the entire statistics of successive
observations in quantum theory.

II. The Conventional Collapse Postulate and the
Difficulties with Continuous Spectrum

In the conventional formulation of quantum theory [1] the states of a system are
characterized by density operators (positive trace class operators of unit trace)
on a separable Hubert space ffl, and the observables are characterized by self-
adjoint operators on ffl . Then the basic empirical prescription of the theory is
given by the following "Born statistical formula (BSF)" for the probability Pr^(zl)
that the outcome of an experiment to observe A on an ensemble of systems in state
p lies in the Borel set ΔeB(R):

(2.1)

where A -> PA(A) is the unique spectral measure associated with the self-adjoint
operator A. It should be borne in mind that in non-relativistic quantum mechanics
each observable (in the Heisenberg picture) is associated with an instantaneous
observation. Thus the BSF (2.1) gives a prescription for the probabilities associated
with a single instantaneous observation only.
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In order to discuss the statistical correlations between the outcomes of a
sequence of observations, it is essential to introduce the collapse postulate which
(in the conventional framework) "fixes" the state of an ensemble after an obser-
vation has been carried out. The generally accepted version of the von Neumann-
Lύders collapse postulate may be stated as follows.

If p is the state of an ensemble immediately prior to a measurement of an
observable A, with the spectral resolution

Λ = ΣVP (2.2)
i

then the state, immediately after measurement, of the (sub) ensemble of all those
systems for which the outcome of the measurement was found to lie in the Borel
set A eB(R), is given by the density operator £A(A)p/Ύr \βA(A)p~], where

£A(Δ)p = ΣPiPPr (2 3)
λitΔ

The BSF can now be used in conjunction with the above collapse postulate

to yield the joint probabilities Pr^l(ίl)^2(ί2)5...^r(ίr)(^1?^2' ••• »^r) t'ιat ̂  values

of the observables {Afa)} are observed to lie in the Borel sets {Δ.} when an en-
semble of systems originally prepared in state p is subjected to the sequence of
observations {A1(t1)9A2(t2),...,Ar(tr)} provided each of the observables {A.(ί.}}
has a purely discrete spectrum. If each of the observables {A.(t.)} has the spectral
resolution

^(t;) = EW(i;) (2.4)
j

and t1<t2< ... <tr, then we have the following formula due to Wigner [20-22] :

P^l((lM2((2) ..... ArVr)(A, ,Δ2, ... , Δr) =

(2.5)

where

t})9 (2.6)

for each ίe{l,2, ... ,r}.
It has also been noted by Wigner [22, 23] that Eq. (2.5) (to be referred to as the

Wigner formula) combines in itself all the observational content of both the BSF
and the collapse postulate as long as we restrict ourselves to observables with
purely discrete spectra. In fact, for such observables, the Wigner formula (2.5)
may itself be adopted as the fundamental statistical prescription of the theory — so
that there is no longer any need for considering the collapse postulate or the BSF
separately. It may also be noted that the joint probabilities (2.5) exhibit a certain
"quantum interference of probabilities" [24-26], which also demonstrates that
they cannot be brought under the purview of classical probability theory.

The major difficulty in formulating a completely general (quantum) theory of
successive observations is that the collapse postulate as stated above does not
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make any sense for an observable with a continuous spectrum. Since there are no
eigenvectors (in the Hubert space) associated with spectral values in the continuum,
Eq. (2.3) does not make any sense for observables with continuous spectra as the
projectors P. do not exist. Therefore the major problem appears to be a purely
technical one of extending the sum in Eq. (2.3) to some sort of an integral which
would make sense for any arbitrary spectral measure on the real line. We have
already emphasised the physical significance of the above problem, which also
suggests that an appropriate solution should be based on the fundamental prin-
ciples that underlie quantum theory.

Before going into a general analysis of the problem, we would like to note that
there have been some misconceptions concerning this problem in the literature,
which have not been subjected to a proper critical examination. For example, one
suggestion which is implicit even in some textbooks is to replace the transforma-
tions {ΆA(Δ)} of Eq. (2.3) by the transformations {ΆA(Δ)} as given below

Δ\ (2.7)

where Δ -> PA(Δ) is the spectral measure associated with the observable A.1 Unlike
(2.3), Eq. (2.7) is of course meaningful for all observables, and it is also consistent
with the BSF, as we have

PrftA) = Tr [_ΆA(Δ}p] = Tr[jPx(J)pP%d)] = Ίr(pPA(Δ}\

in agreement with (2.1). However, the unphysical character of the above proposal
shows up very clearly once we employ it to evaluate the joint probabilities of
successive observations. We are led in the same way as before to formula (2.5)
with the only difference that ΆAτ(ti\Δ^ are now to be replaced by JΛί(ί<)(/d.). How-
ever, as the JΛ(ίί)(zl.) are not finitely additive in J ., it can easily be shown that the
joint probabilities turn out to be not even finitely additive. For example, if A, B
are two incompatible observables (i.e. the associated spectral projectors do not
commute with each other) and Δ9Δi9Δ2eB(R) are such that AίnA2=0, then
Eq. (2.7) leads to

, Δ) = Tr [£B(Δ)£A(Δ , u Δ2)p\

which is in general different from

Pτ^B(Δ 19Δ) + WAB(Δ2 , A) = Tr \β\A)l\A ,)p] + Tr [J

+ Tr[PB(Δ)PA(Δ2)pPA(Δ2}].

This lack of finite additivity of the joint probabilities makes the above proposal
of replacing Eq. (2.3) by Eq. (2.7) completely untenable.

In his classic treatise [1] on quantum mechanics, von Neumann considered

1 Such a version of the collapse postulate is implicit for example in all those treatments of localization
(or position measurement), where the wave function φ(x) of a particle is assumed to be transformed into
χA(x)ψ(x) modulo the normalization factor (where χA(x) is the characteristic function of AeB(R)), the
moment the particle is found to be localized in Δ.
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another way of generalizing the collapse postulate to observables with continuous
spectra. He suggested that we may consider functions of these observables which
have a purely discrete spectrum and employ Eq. (2.3) for the collapse associated
with such functions as some sort of an approximation to the collapse associated
with the original observable. It must be stated that this programme has not been
actually carried out even for particular cases, and therefore we do not have any
mathematically precise characterization of the nature of the approximation or its
consistency. However, apart from the fact that von Neumann himself considered
this as just a tentative solution (cf. the footnote on p. 223 of [1]), there are very
strong reasons to suspect that such a programme may not be viable. The procedure
advocated by von Neumann involves partitioning the spectrum of an observable
into a countable collection of disjoint intervals. For example, if A is an observable
with a continuous spectrum we may consider the observable /α(,4), where for each
α > 0

00

/.(*)= Σ (» + i)«
n = — oo

where χ[ }(x) denotes the characteristic function of the interval [ ). The observable
fa(A) has a purely discrete spectrum and a precise measurement offΛ(A) is supposed
to be equivalent to an approximate measurement of A with an apparatus which
has a limit of resolution given by α.

However, the crucial point is that there is hardly any justification for the claim
that the collapse associated with/α(,4) is in some sense related to that associated
with A, however small the resolution α might be. Of course, the spectral projectors
of A and its function f(A\ where/ : jR -> R is a Borel function, are related by the
equation

P^A\Δ) = PA(f-\Δ}\ (2.9)

for all ΔeB(R). However, Eq. (2.9) also shows that in general the spectral projec-
tors of/(,4) do not determine all the spectral projectors of A. As regards the collapse
associated with A and/04) the situation is very similar, at least as regards obser-
vables with purely discrete spectra. In fact, we have the following lemma which is
a direct consequence of Eqs. (2.2) and (2.3).

Lemma 2.1. // A is an observable with a purely discrete spectrum, then [Άf(

and {^A(f~1(A})} are totally unrelated, unless f :R -> R is a Borel function which
is injective on the spectrum of A, in which case we have

£^A\Δ) = £A(f-\Δ)) (2.10)

for all Δ <=B(R).
The requirement that/ :R -» R be injective on the spectrum of A is essentially

that we have

for x,y lying in the spectrum of A.
From the above lemma we can easily see that the collapse associated with
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fΛ(A) is very different from even that associated with, say,/2α(,4). In other words,
even a change in the so-called resolution of the apparatus gives rise to a completely
unrelated collapse expression. Also, as Davies and Lewis [9] have noted, any
approach based on a partitioning of the spectrum into disjoint intervals is rather
suspect, as it often destroys the group covariance properties possessed by the
observable. Finally, the result of Lemma 2.1 suggests that in the general case also
we have every reason to suspect that the collapse associated with A and f(A) are
unrelated, unless the function/ is injective on the spectrum of A. Therefore we
cannot hope to get any idea about the collapse associated with an observable A
with a continuous spectrum by studying the collapse associated with functions of
the form/α(,4), for/α takes constant values on each of the intervals [rcα, (n + l)α).

From the preceding discussion it becomes clear that the appropriate generali-
zation of the conventional collapse postulate to observables with continuous
spectra should involve a completely non-trivial generalization of Eq. (2.3). Several
other arguments in favour of this point have also been provided by Davies [27].
It would be appropriate here to recall his conclusion ([27], p. 58) that "... in
measurement theory discrete and continuous projection-valued measures have
very different properties. This runs completely counter to the frequent suggestion
that for foundational purposes one need only consider discrete observables, the
continuous ones being approximated by discrete ones in some manner".

III. The Basic Framework for Generalizing the Collapse Postulate

In order to gain an insight into the problem of generalizing the conventional
collapse postulate, it is very necessary to first analyse its essential mathematical
features as contained in Eqs. (2.2) and (2.3). It was noted by Schwinger [28] that
the collapse or measurement transformation p -> ΆA(A)p as given by (2.3) can be
viewed as a positive linear transformation on the space of trace class operators.
Later, Haag and Kastίer [29] introduced the notion of an "operation" which
incorporates all the essential mathematical characteristics of such collapse trans-
formations. In order to define the notion of an operation, let us consider the
Banach space £Γ{$F) (under the trace norm) of all trace class operators on 2tf.
The set 9~*(#C} of all non-negative trace class operators is a norm-closed cone
in y(#e\ An operation Ά is a linear self-adjoint positive map SL : y(3tf) -> y(tf\
which is also norm-non-increasing, in that

Tr(<2(ι?))^Tφ) (3.1)

for all ve^Γ+(^f). It is easy to see that the transformations p -*QA(Δ)p as defined
in Eq. (2.3) can be uniquely extended into operations. We shall denote the set of all
operations associated with 2tf as £L(2tf\

It was noted by Davies and Lewis [9] that the statement of the conventional
collapse postulate essentially associates an operation-valued measure with each
observable. An operation-valued measure (on the real line) is an association
A -> &(A) oϊB(R) into Ά(tff) such that the following properties are satisfied:

(3.2)
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ii) If {A.} is a sequence of mutually disjoint elements of B(R), then

where the sum on the right-hand side converges in the strong operator
topology on Jpf ).

It is rather straightforward to verify that for an observable A with a purely
discrete spectrum (as given by (2.2)), the association A -» ΆA(A) (as given by (2.3))
defines an operation-valued measure. Thus the conventional collapse postulate
may now be viewed as a statement associating an operation-valued measure
ΆA : B(R) -» Ά(3tf\ with each observable A with a purely discrete spectrum. The
first important step in generalizing the above postulate to arbitrary observables
appears to be the suggestion ctf Davies and Lewis [9] that the collapse associated
with every observable could be formulated in terms of operation-valued measures.
They also pointed out that associated with each self-adjoint operator A, there are
in fact several operation-valued measures QA : B(R) -> J(Jf), each of which satisfies
the requirement imposed by BSF that

Tτ(2A(A)p) - Pr*(J) = Ύτ(pPA(A)) (3.4)

for each density operator p. Also, once a particular association A -> QA between
the observables and the operation-valued measures is specified, then the Wigner
formula (2.5) can be employed to obtain the joint probabilities of successive
observations.

However, we are still left with the problem of fixing the association A -> QA

between the observables and the operation-valued measures. As we noted already,
the BSF does not by itself characterize the above association uniquely. We are
therefore led back to a careful examination of the basic principles of conventional
quantum theory in the hope that further light may be thrown on the problem of
obtaining the appropriate generalization of the collapse postulate. Since the
generalized collapse postulate is essential only insofar as it makes possible a
discussion of the statistical correlations between the outcomes of successive
observations, our goal shall be to obtain an appropriate generalization of the
Wigner formula (2.5). We shall first recast the Wigner formula in an alternative
form, which will enable us to consider a more general class of mathematical
objects (for the generalization of the collapse postulate) than is provided by the
class of operation-valued measures. As we shall see later, this constitutes a very
essential step in the generalization of the collapse postulate.

We employ the well-known duality between the Banach space y(3tf) and its
dual B(Jtf ) (the Banach space under operator norm of all bounded operators on 3tf\
which can be expressed in terms of the bilinear form

<M> = TrM), (3.5)

for ι e^(Jf) and AEB(^f). The cone of non-negative operators in B(Jff) will
be denoted as B+(3tf). We define an "expectation" to be a map δ : B(3tf) -> B(^f)
which is linear, self-adjoint positive and satisfies

7, (3.6)
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where / is the identity operator on ffl . We should note that the term "expectation"
is also used for several different notions in the literature. The set of all expectations
associated with 2tf will be denoted as δ (3? ).

An expectation & is said to be normal if it is also continuous under the ultraweak
topology on B(J4f). Let $ σ($?} denote the set of all normal expectations. It is
well known [27] that with each operation ΆεΆ(tfF\ there is associated a unique
adjoint £*e$σ(34?) (and vice versa) such that

Ίτ(Ά(v)A) = ττ(v£*(A)) (3.7)

for all υ€y(3tf) and AsB(3tf). We can now recast the Wigner formula (2.5) as
follows :

where

δA«*\Δ:) = ΆA*l\Δ*), (3.9)

is the normal expectation which is the adjoint of the operation £At(tt)(A.) given
by Eqs. (2.4) and (2.6). In other words, if the observable A has the spectral resolution

(3.10)
i

then the expectations {$A(A)} are given by

<$A(A)B= £ P^P. (3.11)

for each A e B(R), BeB(^f). It is again straightforward to verify that the association
A -> δA(Δ) as given by Eqs. (3.10) and (3.11) defines a "normal expectation-valued
measure" (a notion which was introduced by Davies [10] under the name "expec-
tation"), in that it satisfies the following:

i) For each Δ eB(R), <$A(A)ε<$ σ(3?\
Ί\)£A(R)I = l. (3.12)

iii) If {A.} is a sequence of mutually disjoint elements of B(R), then

^((JAJB-Σ^WB (3.13)
i i

for all BeB(3?\ where the sum on the right-hand side converges in the ultra-
weak topology on B(3? ).
It is quite obvious that the normal expectation-valued measures are the duals

of the operation-valued measures considered earlier. We shall later find that the
basic principles of conventional quantum theory are inconsistent with any formu-
lation of the generalized collapse postulate in terms of the operation-valued
measures or, equivalently, in terms of the normal expectation-valued measures.
Hence, in our search for the appropriate generalization of the collapse postulate,
we shall allow for a more general class of mappings A -> S\Δ\ where the expec-
tations {SA(Δ)} (i) are not restricted to be normal, and (ii) are required to be only
finitely additive in Δ. The basic framework in which an appropriate generalization
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of the collapse postulated is being sought, can now be stated precisely in terms of
the following assumptions (A)-(C):

A. The states of a system are represented by density operators, and the obser-
vables (corresponding to instantaneous measurements) by self-adjoint operators
on a separable Hubert space 3tf.

B. For each observable A, there is associated a finitely additive expectation-
valued measure δλ : B(R) -> δ(3tf\ i.e.

1) δA(Δ)eδ(tf)9 (3.14)
for each ΔeB(R\

2) £A(R)I = L (3.15)

3) If Δl, Δ2eB(R) are such that Δi n Δ2 = 0, then

£A(Δ1υΔ2) = ΛA(Δ1) + £A(Δ2). (3.16)

C. The joint probability that the outcomes of experiments to measure {At(t^}
are found to lie in Borel sets (Δ.), when an ensemble of systems prepared in state
p is subjected to the sequence of experiments {AfoJ, A2(t2\ ...,Ar(tr)}9 where
tί < t2 < ... < tr, is given by the generalized Wigner formula

p^1(ίlM2(ί^
(3.17)

A few remarks may be made on the physical motivation behind these assump-
tions. The assumption (A) needs no comment. In assumption (C) we have adopted
as the basic statistical prescription of the theory a generalization of the Wigner
formula (2.5), which of course includes as particular cases all those situations
which can be dealt with in the framework of conventional quantum theory. The
statement of the collapse postulate, in our framework, will be a rule of association
A -*δA between self-adjoint operators and finitely additive expectation-valued
measures. The requirement that for each Δ, δA(Δ) be a linear map is to ensure
that the probabilities (3.17) are additive in the density operator p under the forma-
tion of mixtures. The self-adjointness and positivity QtδA(Δ) ensure that Eq. (3.17)
yields non-negative probabilities. Condition (B2) ensures that the probabilities
are normalized to unity and, finally, (B3) ensures that the probabilities are finitely
additive. In fact, once the fundamental statistical prescription of the theory is
assumed to be in the form given by (3.17), then all the properties of (δA(Δ)} which
are postulated in assumption (B) can be deduced as necessary consequences of
the basic physical requirements on probabilities.

IV. The Generalized Born Statistical Formula and its
Incompatibility with σ-Additive Probabilities

Having fixed the basic framework of our discussion, we are now in a position
to analyse the various constraints imposed on the collapse postulate or the asso-
ciation A-*{δA(Δ)} by the fundamental principles of conventional quantum
theory. The first and the foremost requirement is that the generalized Wigner
formula (3.17) should yield the same probabilities as the BSF (2.1) for the outcomes
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of a single observation. In other words, we should have

Pr^j) = Tτ[pfA(Δ)I'] = Ύτ(pPA(A)) (4.1)

for all AeB(R\ for all observables A and states p. It is easy to see that (4.1) is
equivalent to the requirement that for each observable A,

δA(A)I = PA(A) (4.2)

for all A<=B(R). In the literature, the above requirement is usually referred to as
the requirement that the observable "determined" by the expectation-valued
mapping A -> SA(Δ) should be the projection-valued measure A -> PA(A). We
shall now see that Eq. (4.2) itself imposes rather severe restrictions on the asso-

For each observable A, let us denote by % A the von Neumann algebra gene-
rated by the set {PA(A)\AeB(R}} of the spectral projectors of A It is well known
that

(4.3)

The commutant WA of °U A is also given by

(4.4)

We now have the following result essentially due to Davies [10], Twareque Ali
and Emch [30].

Lemma 4.1. If the BSF (4.2) is also satisfied in addition to the assumptions (A)-(C\
then for each observable A

(4.5)

for all ΔeB(R),BeB(JP).

Proof. Let BeB+(^f). Since we have

\\B\\I -B^09 (4.6)

it follows from (4.2) and (Bl) that

0 ̂  δA(Δ}Ά ^ || B || «A(Λ)I = || B || PA(Δ), (4.7)

for all A eB(R). From the fact that SA(Δ)B/ \\ B \\ is a positive operator majorized
by the projector PA(Δ)9 it follows that S>A(A)B commutes with PA(Δ\ and we have

δA(Δ)B = PA(A)£A(A)(B) = <$A(A)(B)PA(A).

Now, if Aί,A2eB(R) and A'2 is the complement of A2 in R, then Eq. (4.8)
implies the following :

Adding the above two equations and using the finite additivity (B3) we get

= PA(Δ2)δA(ΔJ(B) (4.9)



142 M. D. Srinivas

for all z^ , A2eB(R) and BeB+(^\ from which the lemma follows immediately.
The other important constraint on the collapse postulate A^{SA(Λ)} is

that for compatible observables, the joint probabilities as predicted by the genera-
lized Wigner formula (3.17) should coincide with those obtained on the basis
of the standard prescription for such joint probabilities in conventional quantum
theory. It is well known that two bounded observables are said to be compatible
if they commute. In the general case (which includes also unbounded observables)
two observables A, B are said to be compatible [11] iff

PA(Ai)PB(A2) = PB(A2)PA(Ai) (4.10)

for a\\Aί,A2 eB(R). A set of observables {A19A29..., Ar} is said to be a compatible
set if every pair of elements of the set is compatible. It is well known that apart
from the BSF (2.1) and the collapse postulate (2.3), the conventional formulation
of quantum theory includes the following generalization (D) of the BSF as one
of its basic assumptions [1, 11]:

D. Generalized Born statistical formula (GBSF): If {A19A2,...,Ar} is a
compatible set of observables then

^A,..,̂ !*̂  (4.H)

forallAi<ΞB(R\i=l2,...,r.
It is obvious that the GBSF (4.11) includes the BSF (2.1) as a particular case.

In fact GBSF constitutes a non-trivial generalization of the BSF as it happens
to be the only available prescription in conventional quantum theory for joint
probabilities for observables with a continuous spectrum, and as such plays a
very important role in several applications of quantum theory. However, it
should be emphasised that Eq. (4.11) holds for compatible observables only, and
in any case it cannot be applied otherwise as the right-hand side will then take
on complex values. In the following lemma we shall show that the GBSF (4.11)
imposes a further constraint on the collapse postulate.

Lemma 4.2. Under the assumptions (A)-(C\ the GBSF (D) is equivalent to the
requirement that for each observable A,

£A(A)P = PA(A)P (4.12)

for each A eB(R) and every projector P e WA .

Proof. Let PeWA be a projector. Now if λ, μ are real numbers, then B = λP +
μ(I — P) is an observable which is compatible with A. Then we have from the
GBSF (4. 11)

However, from the generalized Wigner formula (3.17) we also have

we have already seen that the BSF, which is a particular case of GBSF, is equivalent
to the relation (cf. Eq. (4.2))
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We therefore have

Ίr(pPA(A)P) = Ύr(p£A(A)P)

for all density operators p, which implies that

= PA(Δ)P,

thereby establishing the lemma.
We are now in a position to obtain a more or less complete characterization

of the collapse postulate A— {SA(Δ)} which follows from the assumptions (A)-(D).

Theorem 4.3. The assumptions (A)-(D) imply that for each observable A, we have

<$A(A)(B) = PA(A)£A(R)(B) (4.13)

for each AeB(R) and BEB(3Jf\ where $A(R) is a projection mapping of norm one
of B(3f) onto the von Neumann algebra tfί'A .

Proof. From the finite additivity property (£3), it follows that

PA(Δ)SA(R)(B) = PA(A)£A(A)(B) + PA(Δ)£A(Δ')(B),

for each AeB(R\ where Δ' is the complement of A in R. All we must do now is
to employ Eq. (4.8) for A and A! in order to conclude that

In order to establish that $A(R) is a norm one projection mapping onto °lί'A,
let us consider an arbitrary self-adjoint element Ce^ . Since tfi'A is a von Neumann
algebra, we have Pc(A)e^'A for each AeB(R). Now it follows from Lemma 4.2
that

fA(R)Pc(Δ) = PA(R)PC(A) = PC(A), (4.14)

for each AeB(R). Also, $A(R) is continuous in the norm topology on B($f\ as
it is a positive linear map. If we now recall the well-known fact that every bounded
self-adjoint operator can be expressed as a limit under the norm topology of
linear combinations of its spectral projectors, we can then conclude from Eq. (4.14)
that

δA(R)C = C (4.15)

for all self-adjoint elements Ce^'A. It therefore follows that °7ίA(R} acts as the
identity map on ̂ 'A. Since we have already shown in Lemma 4.1 that the range of
°UA(K} is contained in °lt'A , we have the following

Range δA(R) = <WA (4.16)

^(Λ). (4.17)

In other words, $A(R) is a projection map onto tfl'A . Since we also have from (B2)
that

δA(R)I = /,



144 M. D. Srinivas

it follows that $A(R) is a projection of norm one of B(3Jf) onto ^l'A, thereby establish-
ing the theorem.

Theorem 4.3 provides a more or less complete characterization of the expecta-
tions {SA(Δ)} specifying the "collapse" associated with an observable A, modulo
the choice of the norm one projection mapping $A(R)\B(ffl}-*(ίU'A, which will
have to be chosen such that for observables with a purely discrete spectrum we
recover the conventional von Neumann-Luders collapse postulate (3.11). Before
going into an explicit construction of such norm one projection maps, we shall first
establish two very important conclusions which follow directly from the above
theorem. The first one concerns the impossibility of formulating the collapse
postulate in terms of operation-valued measures and may be stated as follows.

Theorem 4.4. If the assumptions (A)-(D) are satisfied, then the expectations
{SA(Δ)} associated with an observable A cannot be normal unless A has a purely
discrete spectrum.

Proof. As we have shown in Theorem 4.3

δA(Λ) = PA(A)£A(R\

where $A(R) is a projection map of norm one QΪB(3?} onto °lί'A. It is a classic result
due to Tomiyama [31,32] that a projection map of norm one of a von Neumann
algebra onto a subalgebra satisfies all the properties characteristic of a so-called
conditional expectation2 introduced earlier by Dixmier [33], Umegaki [34] and
Nakamura and Turumuru [35]. If we now assume that SA(K) is normal, then it
follows that it is a normal conditional expectation of B(JΊ?) onto the von Neumann
algebra WA. However, it is well-known (see Davies [27]) that a normal condition
expectation of B(Jf) onto υll'A = {PA(Δ)\ Δ E B(R)}' exists only if A has a purely
discrete spectrum. Hence S(Δ) = PA(Δ)$A(R) cannot be normal unless A has a
purely discrete spectrum, thus establishing the above theorem.

The above theorem clearly demonstrates that we shall have to consider non-
normal expectations, in order to obtain a generalization of the conventional
collapse postulate which is also consistent with the GBSF (D). This of course rules
out the possibility of employing operation-valued measures as they are the duals
of normal expectation-valued measures as was noted earlier. In fact as non-normal
expectations do not have a dual object (or adjoint) which is a transformation on
3~(3tf\ we have arrived at a rather surprising result that the "collapse" associated
with an observable with a continuous spectrum cannot be formulated as a trans-
formation on the space of density operators. We shall return to this question later
in Sect. V.

From a physical point of view, a somewhat more startling conclusion which
follows from Theorem 4.3 (and hence from the GBSF) is that the joint probabilities
involving observables with continuous spectra are not in general σ-additive. First
of all it should be noted that the BSF implies that the probabilities
Pΐl

A(A) = Ύr(pPA(Δ)) associated with a single (instantaneous) observation are
always σ-additive—whatever the observable A might be. This of course is a

2 Some of these properties will be discussed in the next section.
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consequence of the fact that each pe^(J^) defines a "normal" or ultraweakly
continuous linear functional on B(^f). However, the situation is very different
when we consider joint probabilities, say Prp

AB(R,A) for AeB(R). Let {A.} be a
countably infinite sequence of disjoint elements of B(R) such that (J A. = A. We

ί
then have

Ai), (4-18)

where the right-hand side converges in the strong and ultraweak topologies, but
not in the norm topology on B(3tf\ Now, the σ-additivity of the above joint
probabilities is expressed by the equation

CM;). (4.19)
ί

From Eqs. (3.17) and (4.2) we see that the above equation is equivalent to

Ίτlp{$A(R)}PB(Δ)-} = ΣTr[>{^(K)}PB(4)]. (4 2°)
ί

for all states p, which implies that

SA(R)PB(Δ] = δΛ(R)PB(Δ^, (4.21)

where the right-hand side is required to converge in the ultraweak topology on
B(Jf). From Eqs. (4.18) and (4.21) it follows that the σ-additivity property (4.19)
is satisfied for all observables B only if &A(R) is normal. This, as we have shown in
Theorem 4.4, is possible only when A has a purely discrete spectrum. In other
words, we have established the following result.

Theorem 4.5. // assumptions (A)—(D) are satisfied, then given any observable A
with a continuous spectrum, there exists a density operator p and an observable B
such that the probabilities Prp

A B(R,A) are not σ-additive in A.
We admit that the conclusion that we must deal with non-σ-additive proba-

bilities is somewhat disturbing, for most of the traditional machinery of probability
theory is built up on the basis of the assumption that the probabilities are
σ-additive. However, as several probabilists have noted [36-38], σ-additivity
is a purely technical requirement (but a very useful one at that) which has no basic
empirical justification unlike the other assumptions such as the non-negativity
and finite additivity of probabilities. Before going into a discussion of some of the
intriguing features of a probability theory with only finitely additive probabilities
(which shall be undertaken in Sect. VI), we shall first present an appropriate
generalization of the conventional collapse postulate which is consistent with the
assumptions (A)-(D).

V. The General Collapse Postulate
In this section we shall introduce a generalization of the conventional collapse
postulate which is more or less implied by the assumptions (A)-(D) and the require-
ment that we should recover the conventional collapse postulate for observables
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with a purely discrete spectrum. As we saw in the previous section (cf. Theorem 4.3),
the collapse associated with each observable A is completely characterized by its
spectral projectors {PA(Δ}} and a norm one projection map $A(R)\B(3?)^ (Jlί'A.
We shall define a conditional expectation of Bpf) onto a von Neumann subalgebra
^ to be a linear self-adjoint map ε: B(34f) -> ̂ , which is also a norm one projection
of B(J^) onto fy. It may be noted that the term conditional expectation is often
used for several related (and sometimes even very different) notions in the literature
[9,10,27,30-35,39-50]. Tomiyama [31,32] has shown that a conditional
expectation ε: B(2tf) -> m has also the following properties

(i) β is positive,

(ii) ε(AXB) = Aε(X)B, (5.1)

for all A,BeW and XeB(3P) (module property).

(iii) ε(X*)ε(X)^ε(X*X\ (5.2)

for all XeB(JP)

It is also well known [47, 50] that a conditional expectation is a completely
positive map. There have been several investigations [27, 32,40-43] as to when
there exists a normal conditional expectation onto a given subalgebra. As we
stated in the previous section, it is well-known (see Davies [27]) that there exists
a normal conditional expectation of B($C) onto the von Neumann algebra ^ί'A
iff A has a purely discrete spectrum.

In order to generalize the collapse postulate to arbitrary observables we need
to consider the following questions:

(i) Does there always exist a conditional expectation εA of B(3ίf) onto <*U'A
for each observable Al
(ii) If there exist several such conditional expectations, can we fix a rule of
association A ->• εA, such that for an observable with a purely discrete spectrum
εA will be identical to the δA(R) given by Eq. (3.11) (so that we can recover the
conventional collapse postulate)?
We shall now see that the answers to both these questions are in the affirmative.

In fact we shall explicitly construct a class of conditional expectations onto WA

following a procedure essentially due to Arvenson [41]. For this purpose we shall
employ the other canonical object (apart from the spectral projectors) that is
associated with each observable via Stone's theorem—the strongly continuous
one-parameter group of unitary operators {eitA\ teR] generated by A. First of all
let us note the following important result which is a consequence of Stone's theorem

WA={PA(A)\AeB(R)Y = {eitA\tER}'. (5.3)

Eq. (5.3) implies that WA is also the fixed point algebra for the group of auto-
morphisms B -> eitABe~itA defined on B(2ff\ Since our construction of the condi-
tional expectation depends on the notion of an invariant mean on the additive
group R of real numbers, we shall briefly summarize the main properties of
invariant means on R (see for example [51,52]).

Let CB(R) denote the Banach space of all bounded continuous complex-
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valued functions on jR with the norm

l l / l l = sup|/(x)|. (5.4)
xeR

An invariant mean η on the additive group R is a positive linear functional on
CB(R) such that the following properties are satisfied:

(i) If eeCB(R) is the function e(x) = 1 for all xeR, then

η(e)=L (5.5)

(ii) For each aεR,

n(fa} = η(f), (5.6)

where fa is the function

/«(*) =f(x + *)• (5-7)

We shall employ the notation ηf(x) to indicate the number η(f) whenever

the function/(x) is explicitly given. From the above definition, it is obvious that

M/)l^ 11/11 (5.8)
for all/eCBCR). It may also be noted that there are several invariant means on jR.
However, it is well known [52] that if/eCβ(R) is also a weakly almost periodic
function, we then have

ι,/(x) =lim-ί- lf(x)dx, (5.9)
x Γ +oo Z1 -T

for every invariant mean η on R.
The basic result concerning the existence of conditional expectations onto

WA may now be stated as follows.

Theorem 5.1. Let η be an invariant mean on the additive group R. Then, for each
observable A there exists a unique conditional expectation εA ofB(J^f) onto tfl'A such
that

Tr \υεA(B)'] = ηΎτ \veίAxBe-iAx'] (5.10)

for all ve^T(^f) and

Proof. The function

defined on the real line is continuous and bounded by \\v\\! \\B\\ (where
denotes the trace norm on y(2tf}\ Hence, the map

defines a bounded linear functional on 3~(3?} so that there exists a unique operator
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that

- η Ύτ(veίAxBe-
ίAx)

for all βεβ(Jf) and
The linearity and positivity of the map ε^ : B(Jtf) -> BpO, follow from the

corresponding properties of the invariant mean η. The property

<(/)=/
follows from Eq. (5.5). In order to show that ε^jBe^, we consider the following
relation, which follows from (5.10) and (5.6)

ττ(veix'Atf(B)e-ix>A) = η Tr(vei(x+x')ABe-i(x+x'}A

X

= η Ύΐ(veίxABe-ίxA) =
X

which holds for all ve^Γ(^f) so that

for all xΈR. We can therefore conclude, on the basis of Eq. (5.3), that ^(B)e^f

A for
all BeB(Jf). Finally, if J3e^, it is obvious from the relations (5.10) and (5.5)
that ε^CB) = B. Thus we have verified that ε^ satisfies all the properties charac-
teristic of a conditional expectation of B(tfΓ) onto <*U'A , thus establishing the above
theorem.

As regards the second question that was posed above, we have the following
rather interesting result.

Theorem 5.2. If A is an observable with a purely discrete spectrum, and its spectral
resolution is given by

A = ΣλtP. (5.11)
ί

then for each BeB(^f) we have

si

η(B) = ΣPίBPί (5.12)
ϊ

for all invariant means η on the real line.

Proof. If the observable A is given by (5.11), we then have for each BeB(^f) and
υePW)

Ίϊ(veixABe-ixA) = £^<-^ TτfyPflPj), (5.13)
ij

which can easily be verified to be an almost periodic function on the real line (see
for example [53] and references cited therein). We can now employ Eq. (5.9) and
the fact that the right-hand side converges uniformly, to obtain

Γ-»oc
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Equation (5.10) and the ultraweak continuity of vE3Γ(tff) when regarded as a
functional on B(£f ), yield the relation

which establishes the above theorem.
From Theorems (5.1) and (5.2) it is clear that we can now set $A(R) = ε^ for

each observable A. In other words, we can now employ for the "collapse" associated
with each observable A, the expectations

tA(A)=PA(Atf (5.14)

If we now emply Eq. (5.12) we then obtain, as a particular case of Eq. (5.14), the
conventional collapse postulate (cf. Eq. (3.11))

δA(Δ}B = PA(A) ΣP.BP. = £ PtBPi9 (5.15)
i λ ezl

for every observable A with a purely discrete spectrum as given by (5.11). It is also
clear from our discussion that the collapse postulate as given by Eq. (5.14) is more
or less an inevitable consequence of the assumptions (A)-(D).

However, we are still left with the arbitrariness in the choice of the invariant
mean η employed in Eq. (5.14), and as we have noted, there do exist infinitely many
invariant means on the additive group R. As we shall later see in a concrete example,
different choices of the invariant mean do lead to different predictions for the joint
probabilities. For the purposes of the present investigation, we shall leave the
choice of the particular invariant mean employed in the collapse postulate to be
rather arbitrary. We do however hope that further investigations will throw some
light on (i) either the physical motivation behind making a particular choice, or on
(ii) the physical significance of employing different invariant means to characterize
possibly the various different ways of measuring the same observable. If we now
tentatively assume that a particular invariant mean η has been chosen, then we are
led to the following generalization of the collapse postulate as a natural con-
sequence of our assumptions (A)-(D).

E. The general collapse postulate: For each observable A, the associated finitely
additive expectation-valued measure A -> SA(A) is given by

(5.16)

for each A eB(R\ where the conditional expectation &A \B(3tf) — >• tft'A is given by

= ηTτ[υeixABe-ixA'] (5.17)

for all ve^(je) and
Having arrived at the general collapse postulate we can now adopt (A\ (C)

and (E) as the basic postulates of quantum theory. Of course the assumptions
(B) and (D) are now automatically satisfied and we also have a non-trivial generali-
zation of the conventional framework, wherein we can discuss the joint proba-
bilities of any sequence of observations. For example, we can employ (£) and write
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down explicitly the generalization (3.17) of the conventional Wigner formula (2.5),
as follows:

Pr^ t A t A (zl 1 ,zl 2 , . . . Δγ) = η η ...η | _J
XI X2 Xr-l

.e-ίXr-ίAr-ί(tr-ι) _ £-iX2^2(i2)g-ixUi(ii)-| (5.18)

The generalized Wigner formula (5.18) is a non-trivial generalization of (2.5)
and (2.6) as it is valid for arbitrary observables {A^t^} and reduces to (2.5) and
(2.6) for observables with a purely discrete spectrum. As an explicit application of
(5.18), we can consider a one-dimensional non-relativistic particle which is subject-
ed to a measurement of momentum P immediately followed by a measurement of
position Q — a situation that cannot be discussed in the conventional framework.
This example also serves to illustrate the fact that the joint probabilities (5.18) do
in fact depend on the choice of the invariant mean employed. For this purpose let
us consider the closed and invariant subspace L c: CB(R\ which consists of
those functions / for which the limits/( ± oo) = lim /(x) exist.

JC-> ±00

From the Hahn-Banach and the Markov-Kakutani theorems (see for example
[54]) it can be established that for each 0 ̂  λ <Ξ 1, there exists an invariant mean
ηλ on CB(R) such that

ηλf = λf(— oo) + (1 — λ)f(co) (5.19)

for all/eL. If we now consider the function

f(x) = Tr [υeipxPQ( [ - oo, α] )e ~ iPx~]

for some finite a. It then follows from the canonical commutation relations that
/eL, as in fact/(— oo) = !,/(+ oo) = 0. If we now employ the invariant mean
in the Wigner formula (5.18), it then follows that

PrJ t β(jR,(-oo,fl]) = A (5.20)

for all finite α. Similarly we can show that

and

for all finite α, b.
The most important feature of the above equations (5.20)-(5.22) is that they

very clearly show that immediately after a measurement of the momentum, the
position distribution is entirely concentrated at ± oo. This fact does seem to throw
some new light on the meaning of the uncertainly relations from the point of view
of measurement theory. It may also be noted that results very similar to Eqs. (5.20)-
(5.22) can be derived for the probabilities Prp

QtP(R,.).
Equations (5.20)-(5.22) also demonstrate the fact that the joint probabilities

(5.18) do depend on the particular invariant mean ηλ employed. In this context it
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might be interesting to note that results some what similar to Eqs. (5.20)-(5.22)
(particularly with λ = 1/2) were obtained by Farrukh [19] on the basis of his
approach through non-standard analysis. Farrukh was also led to a consideration
of non-σ-additive joint probabilities for observables with continuous spectra.
Though our results are obtained by entirely standard methods, we suspect that
there is perhaps some deep connection between the approach of Farrukh and the
one outlined here, a study of which might also clarify the question of the choice of
the invariant mean in Eq. (5.18). Another possibility for resolving this question
could be via a study of the limiting process envisaged by von Neumann (see the
discussion in Sect. II), either directly or perhaps in terms of the approximate
position and momentum measurements introduced by Davies [10, 27].

We shall now collect, in the following theorem, some of the important proper-
ties of the collapse associated with an observable as given by the general collapse
postulate (E).

Theorem 5.3. // A, B are any two observables, then we have the following :

(5.23)

forallAί,A2eB(R).
ii) // A and B are compatible, then

£A(Δ,}£B(Δ2) = $\A2}$\A^ (5.24)

forallA1,A2eB(R).

m)εA = sBo<%'A = Wf

B (5.25)

iv) I f f ' R -> R is a Borel function which also induces a Borel isomorphism of the
spectrum of A onto some Borel set in R, then

εf(A) = εA (5.26)

and

fHA\A) = &A(f-*(Δ)) (5.27)

forallΔeB(R\

Proof. The property i) follows directly from the relation

once we employ the module property (5.1) of the conditional expectation εA. In
order to prove ii), we shall first show that if A, B are compatible, we then have

sAεB = SBSA (5.28)

For this let us consider an arbitrary element CeB(^f ). Since A, B are compatible,
we have that for each

TφεV(Q]

= ηη Tr[veίxAeίx'BCe-ίx'Be-ίxA]
X X'

= ηη Ύr[veίx>BeίxACe-ixAe-ix'B]

(5.29)
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But since eixA€<%'B, we have from the module property (5.1) the relation

£B(eixACe~ίxA) = eixA£B(C)e~ixA (5.30)

From (5.29) and (5.30) we can conclude that

TφεV*C] = TφεVC]

for all i e^pf), from which it follows that

8AεBC = eVC,

for all C^B(^\ which implies Eq. (5.28). The property ii) can now easily be derived
from (5.28) by apply Eq. (5.26) and the module property (5.1).

As regards iii), the implication εA — εB => fyl'A = tyl'B is trivial as the algebras
^'A'^B are ^e ranEes °f £A

?ε
β, respectively. To prove the converse, we may

first note that if (%'A = (%'B, then A, B are compatible, so that we have £AsB = εβε^
as shown above. Also, since our hypothesis WA = WB implies that

for all CeBpf), we get

C = eVC = ε^εβC - εβCε

for all CeJ3(Jf ), so that we have εA = εB. Finally, in order to prove iv), we note
that if the function / satisfies the above conditions, then every spectral projector
of A is also a spectral projector of/ (.4) and vice versa. Hence we have fyt'A = ^'f(Ar

so that we can conclude from iii) that εA = εf(A\ Equation (5.27) follows right
away from (5.26) once we make use of the relation (2.9) between the spectral
projectors of A andf(A). This completes the proof of the above theorem.

We shall comment briefly on the physical significance of the various properties
established in the above theorem. The property (i) is sometimes referred to as the
repeatability property of the collapse transformation. It may be noted in this
connection that Davies and Lewis [9] had suggested that it might perhaps be
necessary to give up this property in order to obtain an appropriate generalization
of the collapse postulate. Property (ii) shows that for compatible observables,
the associated collapse transformations also commute, (iii) shows that the condi-
tional expectation εA is completely determined by just the algebra <%'A associated
with A. Finally, (iv) is just a generalization to an arbitrary observable of the
result stated in Lemma 2.1 for an observable with a purely discrete spectrum.
We may note that it essentially demonstrates that the collapse associated with
an observable A and that associated with its function/^) are related only when
<9/' = Q/'MA Mf(Ay

Finally, a few remarks may be made on the novel feature of the collapse
postulate (E) that it cannot be formulated in terms of collapse transformations
(or operations) which are defined on the space of density operators. As was noted
in Sect. IV, this is due to the fact that the expectations {SA(Δ)} as given by (5.16),
(5.17) are in general non-normal. In our opinion, this novel feature of the collapse
postulate (E) clarifies to some extent the essential role played by the collapse
postulate — for it has often been thought of as a postulate which introduces some
strange transformation in the state of a system "caused" by the act of observation.
The necessary delinking of the collapse postulate from transformations defined on
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the set of states (which is implied in our postulate (£)), would perhaps serve to
illustrate more clearly the fact that the main function of this postulate is to provide a
prescription for the joint probabilities associated with the outcomes of successive
observations.

It should however be noted that it is still possible to consider the postulate (E)
as introducing a transformation on the "states", provided we are willing to include
as states all the normalized positive linear functional on B(34f). It is well known
that there exists an isometric isomorphism of £Γ(2tf) into a subspace of the dual
B(3?)* of B(3?). Also, every expectation $A(Δ) (normal or otherwise) has an
adjoint which is a positive linear map on B(3?)*. Hence, if we accept all the norma-
lized positive elements of B(2tf)* as possible states of a system, then the collapse
postulate (E) can also be viewed as introducing certain collapse transformations
on such states. This formulation would also vindicate the often expressed conjec-
ture that a generalization of the collapse transformation (2.3) would, in the case of
observables with continuous spectra, take every density operator into a more
general object—which in our case would be an element of B(3?}* which is not
a normal linear functional on B(3f). The fact that the joint probabilities for
observables turn out to be non-σ-additive will now also be closely related to
the inclusion of non-normal linear functionals on B(3?) as possible states of a
system. Finally, we may note that all our results can be easily extended to the
algebraic formulations of quantum theory, wherein the significance of some of
the above remarks would be more transparent.

VI. The Statistics of Successive Observations in Quantum Theory

In this section we shall consider some of the important features of the framework
developed so far, from the standpoint of probability theory. We have seen that
the general collapse postulate (E) provides an unambiguous and complete pres-
cription for realizing various outcomes in any arbitrary sequence of observations,
in terms of the generalized Wigner formula (5.18). It was also noted that these
joint probabilities are not in general σ-additive. Before going into a discussion
of the implications of non-σ-additivity on the statistics of successive observations,
we shall first consider some of the other non-classical features of the joint pro-
babilities themselves.

To start with, it may be noted that the basic joint probability prescription
of the classical probability theory can also be formulated in a manner analogous
to the generalized Wigner formula ((3.17) and (5.18)). For this purpose consider
a classical probability space (Ω,B(Ω)\ where Ω is a complete separable metric
space and B(Ω) is the associated σ algebra of Borel sets. Each observable is a real
valued random variable A :ί2-> R and the characteristic functions {χA-ι(A)} are
the classical analogues of spectral projectors. Again if M(Ω) is the Banach space
of all bounded complex measures on B(Ω) and £P(Ω) is the Banach space of all
bounded complex measurable functions on (Ω, B(Ω}\ then we have the bilinear
form

(6.1)
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for all μeM(Ω) and Xe&(Ω). The important feature of classical probability
theory is that &(Q) is an abelian algebra, and therefore the algebra of all those
bounded observables compatible with any given observable will be the whole
of Σf (Ω) itself. Thus each of the conditional expectations SA will reduce to the
identity map on <&(Ω).3 Hence we have for each observable A, the associated
expectations {SA(Δ)} given by

δA(Λ)X = XA-l(Δ}ε
AX = XA-ί(A}X (6-2)

for each Xe^(Ω). The generalized Wigner formula (3.17) will now reduce to the
following:

Δi}lA-\Δ2y"^\Δr}

d^

\Ar))9 (6.3)

which is the well-known prescription for joint probabilities in classical probability
theory.

It is thus clear that the non-classical features of quantum-theoretic joint
probabilities arise from the fact that B(J^) is a non-abelian algebra so that the
conditional expectations εA : B(J^) -> ^'A turn out to be nontrivial. It is precisely
this fact that εA is not the identity map (whatever the observable A might be)
which gives rise to the "quantum interference of probabilities" [24-26] — which
essentially is the feature of quantum-theoretic joint (and conditional) probabilities
that they crucially depend also on the entire sequence of observations performed
on a system.

Apart from the quantum interference of probabilities which was also well
known earlier in connection with observables with a purely discrete spectrum,
the important non-classical feature of the quantum-theoretic joint probabilities
(which arises only when we include in our considerations observables with conti-
nuous spectra) is that they are not σ-additive in general. For example, as we
already noted, the joint probability Pr^ B(Δ1 , Δ2) is not σ-additive in Δ2 whenever
A has a continuous spectrum, because the conditional expectation ε^ turns out
to be non-normal. If in addition the observable A happens to have a purely
continuous and simple spectrum, then we can show that the associated condi-
tional expectation will be "singular" [32, 43] and has the property

GAC = 0 (6.4)

for each compact operator C. We therefore have the following rather curious

3 It should of course be emphasised that non-trivial conditional expectations do arise in classical
probability theory when we consider, say, the algebra <fy A of all bounded complex-valued Borel func-
tions of A [55]. In fact the study of conditional expectations in operator algebras was inspired mainly
by the work on conditional expectations in classical probability theory. However, unlike in quantum
theory, the conditional expectations play no role in the formulation of the basic prescriptions of classical
probability theory
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result :

0, (6.5)

for all AeB(R), whenever A has a purely continuous simple spectrum and λ is
an eigenvalue of B with a finite multiplicity.

The most important limitation of a probability theory with only finitely additive
probabilities seems to be that we no longer have the very well developed machinery
of integration with respect to a σ-additive probability measure which plays a
very crucial role in the classical probability theory in providing a natural definition
of expectation values, correlation functions etc. In fact the joint probabilities
pr2L1(ti),^2(t2),...^r(ir)^i»^2' ••• '^r) &VQn by the generalized Wigner formula (5.18)
are just finitely additive set functions, which are in addition defined only on
finite Unions of sets of the form A1 x A2x ... x Ar, where Δ.eB(R) for each
ze{l,2, ... ,r}. Hence, there does not seem to be any immediate prescription4

for the evaluation of the expectation value of an arbitrary Borel function/ : Rr -» R,
based solely on the generalized Wigner formula (5.18). From a physical point of
view, this is indeed a very serious limitation, as one usually employs the proba-
bilities only insofar as they determine the entire statistics of successive observations
— which essentially involves a determination of the mean or expectation values of
all suitable functions of the set of outcomes when an arbitrary sequence of obser-
vations are performed. For the purposes of the present investigation, we shall take
the viewpoint that in order to have a complete theory, the expectation values of
the various observations and their Borel functions are to be prescribed separately,
but in a manner consistent with the basic prescription for probabilities. We shall
now introduce such a prescription for expectation values, which (together with
our assumptions (A). (C) and (E)) serves to characterize completely the statistics
of any sequence of observations.

First of all it may be noted that for each state p and arbitrary observables
{A19A2,...,Ar} the map

A1 xA2 x ... xAr^Ύΐ[pPAί(A1)eiXlAl...eiXt'-ίAt -lPAt'(Ar)e-ίXr-ίAr-ί

e-ix2A2e-ixιAι-ϊ

can be extended into a unique (bounded and σ-additive) complex measure on
Rr. The associated distribution function is given by

(6.6)

^R is a measurable function and tί<t2< ... <tr, then we denote by

1),...,Λr(tr)[/(^ι(ίι)' ••• Ά frr))]' ̂ e exPectati°n value of the function /of the
outcomes which are obtained when an ensemble of systems prepared in state p

4 Since the joint probability Prjι(ίι) Ar(tr](Δi,Δ2,... ,Δ^) are not defined on the entire σ-algebra

B(Rr), we cannot, for example, employ the integration theory for finitely additive measures outlined

in [56, p.354].
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are subjected to a sequence of experiments to observe {A1(t1),A2(t2)9... 9Ar(tr)}.
We now introduce the following prescription for such expectation values.

(F) Expectation value postulate: Let f\Rr -+R be a measurable function and

tί < t2 < ... < tr. Then Exp^l(ίl),...,^r(ίr)[/Uι(ίι)? • •• > A-Wl exists ana is diven by

= η η ...η [ I f ( λ ± , λ 2 , . . . ,/Γ)

),...,Ar(tr) (Ai>A29... ,Λr;χί9X29 ... ,Xr_ 3 , , _.
(O./j

whenever the right-hand side of the above equation exists.
The condition that the right-hand side of Eq. (6.7) exist is essentially the

condition that the Lebesgue-Stieltjes integral enclosed by brackets [ ] which
function (in all the variables x 1 5 x 2 , ... ,xr_1) should be such that the operation
of taking invariant means makes sense.

The expectation values defined by postulate (F) satisfy the following properties,
which also show its consistency with the collapse postulate (E) and the predictions
of conventional quantum theory (wherever available).

i) If/j , /2 are Borel functions on Rr, and α1 , α2 are arbitrary real numbers, then

which shows the linearity of expectations.
ii) Expectation value of a constant function is constant.
iii) If/ : Rl -> R is given by

f(λ19λ29 ... Λ) = χΔί(λJχΔ2(λ2) ... χΔr(λr), (6.9)

where ΔieB(R\ i = 1, 2, . . . , r, then

^pWWΛ^ (6 1Q)
which shows the consistency of (F) with (£).

iv) If {Aγ , v42 , . . . , Ar] is a compatible set of observables and / : Rr -+ R is a
Borel function, then

whenever the right-hand side exists, which shows the consistency of (F) with the
predictions of conventional quantum theory. In particular, we recover the standard
result

Exp^4) = Tr(M) (6.12)

whenever the right-hand side exists.
We shall not go into a further discussion of the statistics of successive obser-

vations, as would follow from the postulate (F) except to note that the postulate
(F) reduces to the usual prescription for the expectation values in classical pro-
bability theory, if we assume that the algebra of observables is abelian. It may
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be of some interest also to write down the following formula, which we believe
would be of importance in applications,

E*PPAι,A2,..,Ar(
ATAm22' 'AΓ) = ̂ {.pAm^(A^εA2(...sA-^A^ ...)] (6.13)

for all integers m 1, m2,..., mr.
In conclusion we would like to emphasise that the postulates (A\ (C\ (E) and

(F) provide a complete framework for the discussion of successive observations
involving any arbitrary sequence of observables in quantum theory. The main
observational prescriptions of the theory are contained in Eqs. (5.18) and (6.7),
the former being a particular case of the latter if we take into account Eqs. (6.9)
and (6.10). These of course include as particular cases all the basic observational
prescriptions of conventional quantum theory. In addition, as we have shown,
the general framework that has been introduced enables us to discuss situations
(involving successive observables with a continuous spectrum) which cannot
be handled in the conventional framework of quantum theory. It is hoped that
this generalization would also perhaps give rise to new ways of confronting the
elusive collapse postulate to appropriate experimental tests.
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