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Abstract. In order to provide a mathematical framework for discussing the
statistical correlations between the outcomes, when an arbitrary sequence of
observables are measured, it is necessary to generalize the conventional von
Neumann-Lύders collapse postulate to observables with a continuous
spectrum. It is shown that the standard prescription in conventional quantum
theory for the joint probabilities of compatible observables is sufficient to
characterize, more or less completely, the appropriate "generalized collapse
postulate" which associates with each observable a unique "finitely additive
expectation valued measure". An interesting feature of the collapse associated
with observables with continuous spectra, which again follows from the basic
principles of conventional quantum theory, is that it must be formulated in
terms of the so-called non-normal conditional expectations, which implies
that the joint probabilities associated with successive observations of such
observables are not in general σ-additive. The implications of this non-σ-
additivity on the determination of expectation values, correlation functions
etc., are also investigated. It is demonstrated that the basic prescriptions
introduced in this paper constitute a natural completion of the framework of
conventional quantum theory for discussing the statistics of an arbitrary
sequence of observations.

I. Introduction

One of the major problems of the quantum theory of measurement which has
eluded a satisfactory solution so far, has been that of extending the collapse
postulate to observables with a continuous spectrum. It is well known that the
collapse postulate plays a very crucial role in quantum theory in any discussion of
the statistics of the outcomes of a sequence of observations performed on a system.
However, the collapse postulate as introduced by von Neumann [1] and later
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modified by Lύders [2-7] is appropriate only for observables with a purely
discrete spectrum. The main difficulty with observables with continuous spectra
appears to be the fact that there does not exist any (atomic) spectral projector
corresponding to a single spectral value in the continuum. It is in fact this feature
which forces us to modify or generalize the von Neumann-Lύders (or the con-
ventional) collapse postulate so that it can be applied for any arbitrary observable.
Stated this way, the basic problem is of course of a purely technical nature. How-
ever, it is hardly possible to exaggerate the physical significance of generalizing
the collapse postulate for observables with continuous spectra. Most of the obser-
vables one deals with ordinarily in either non-relativistic quantum mechanics or
in quantum field theory are those with a continuous spectrum and the absence of
an appropriate generalization of the collapse postulate has left the theory in a very
incomplete state. For example, one cannot employ the conventional collapse
postulate to discuss, say, the joint probability distribution associated with two
(successive) position measurements carried out on a particle at different times.
Another important example is provided by the fact that it has not been possible to
systematically discuss from basic principles much of the traditional wisdom that
is associated with the Heisenberg uncertainty principle (see for example [6, 8]),
for that would necessarily involve a discussion of the measurement of the mo-
mentum of a particle (immediately) following the measurement of its position and
vice versa. In fact it may be said that the absence of a general collapse postulate
constitutes a very serious limitation of the conventional formulation of quantum
theory, particularly in connection with the description of successive observations.

In the present investigation we shall arrive at an appropriate generalization
of the collapse postulate which of course reduces to the conventional (von
Neumann-Lύders) collapse postulate in the case of observables with a purely
discrete spectrum. In Sect. II we discuss the reasons why some of the attempts to
obtain a direct or immediate generalization of the conventional collapse postulate
have not succeeded. It is thus seen that one must attempt at a rather non-trivial
generalization after carefully studying the essential mathematical features of the
conventional postulate. In fact, it was on the basis of such a study that Davies and
Lewis [9,10] suggested that the collapse associated with each observable may be
formulated in terms of the so-called operation-valued measures. However, in their
investigation the problem of fixing a particular rule of association between the
observables and the operation-valued measures (which is the essential content of
a collapse postulate) has been left very much open.

In Sect. Ill we outline a generalization of the conventional framework of
quantum theory wherein it is assumed that the collapse associated with each
observable may be formulated in terms of a certain "finitely additive expectation-
valued measure". This framework includes the proposal of Davies and Lewis as a
a particular case. It is shown in Sect. IV that the basic prescription of conventional
quantum theory for the joint probabilities of compatible observables [1,11]
(a prescription which shall be referred to as the "generalized Born statistical
formula (GBSF)"), precludes the possibility of formulating the collapse postulate
in terms of operation-valued measures. However, it is seen that the GBSF also
serves to characterize, more or less completely, an appropriate generalization of
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the collapse postulate (in terms of the so-called non-normal conditional expecta-
tions) which is introduced in Sect. V. Another important consequence of the
GBSF is that the joint probabilities of (a successive observation of) observables
with continuous spectra, do not in general satisfy the property of σ-additivity.
Sect. VI contains a brief discussion of some of the important consequences of this
non-σ-additivity of probabilities for the statistics of successive observations in
quantum theory.

It should be noted that there have also been alternative attempts at generalizing
the von Neumann-Lύders collapse postulate by introducing certain "generalized
eigenvectors" corresponding to spectral values in the continuum. It has often
been suggested [12-18] that one may employ a rigged Hubert space model (or
a related framework) for quantum theory, wherein it can be shown that there does
exist an entire set of such generalized eigenvectors, provided we choose an appro-
priate class of self-adjoint operators as the observables of the theory. Apart from
the fact that one must arbitrarily restrict the class of observables, our main objec-
tion to the above approach is that it has not led to any version of the collapse
postulate which would enable us to predict the joint probabilities of successive
observations. This, however, is not the case with a recent proposal due to Farrukh
[19], wherein a non-standard extension of the Hubert space has been employed
for generalizing the collapse postulate. Though Farrukh has employed his generali-
zed collapse postulate to calculate the joint probabilities for some interesting
particular cases, no general prescription emerges from his work for either the joint
probabilities or the expectation values and correlation functions when an arbitrary
sequence of observables is being measured. We hope to show that our approach,
on the contrary, leads to a more or less natural extension of the von Neumann-
Luders collapse postulate, from which there also emerges a completely general
prescription for the joint probabilities as well as the entire statistics of successive
observations in quantum theory.

II. The Conventional Collapse Postulate and the
Difficulties with Continuous Spectrum

In the conventional formulation of quantum theory [1] the states of a system are
characterized by density operators (positive trace class operators of unit trace)
on a separable Hubert space ffl, and the observables are characterized by self-
adjoint operators on ffl . Then the basic empirical prescription of the theory is
given by the following "Born statistical formula (BSF)" for the probability Pr^(zl)
that the outcome of an experiment to observe A on an ensemble of systems in state
p lies in the Borel set ΔeB(R):

(2.1)

where A -> PA(A) is the unique spectral measure associated with the self-adjoint
operator A. It should be borne in mind that in non-relativistic quantum mechanics
each observable (in the Heisenberg picture) is associated with an instantaneous
observation. Thus the BSF (2.1) gives a prescription for the probabilities associated
with a single instantaneous observation only.
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In order to discuss the statistical correlations between the outcomes of a
sequence of observations, it is essential to introduce the collapse postulate which
(in the conventional framework) "fixes" the state of an ensemble after an obser-
vation has been carried out. The generally accepted version of the von Neumann-
Lύders collapse postulate may be stated as follows.

If p is the state of an ensemble immediately prior to a measurement of an
observable A, with the spectral resolution

Λ = ΣVP (2.2)
i

then the state, immediately after measurement, of the (sub) ensemble of all those
systems for which the outcome of the measurement was found to lie in the Borel
set A eB(R), is given by the density operator £A(A)p/Ύr \βA(A)p~], where

£A(Δ)p = ΣPiPPr (2 3)
λitΔ

The BSF can now be used in conjunction with the above collapse postulate

to yield the joint probabilities Pr^l(ίl)^2(ί2)5...^r(ίr)(^1?^2' ••• »^r) t'ιat ̂  values

of the observables {Afa)} are observed to lie in the Borel sets {Δ.} when an en-
semble of systems originally prepared in state p is subjected to the sequence of
observations {A1(t1)9A2(t2),...,Ar(tr)} provided each of the observables {A.(ί.}}
has a purely discrete spectrum. If each of the observables {A.(t.)} has the spectral
resolution

^(t;) = EW(i;) (2.4)
j

and t1<t2< ... <tr, then we have the following formula due to Wigner [20-22] :

P^l((lM2((2) ..... ArVr)(A, ,Δ2, ... , Δr) =

(2.5)

where

t})9 (2.6)

for each ίe{l,2, ... ,r}.
It has also been noted by Wigner [22, 23] that Eq. (2.5) (to be referred to as the

Wigner formula) combines in itself all the observational content of both the BSF
and the collapse postulate as long as we restrict ourselves to observables with
purely discrete spectra. In fact, for such observables, the Wigner formula (2.5)
may itself be adopted as the fundamental statistical prescription of the theory — so
that there is no longer any need for considering the collapse postulate or the BSF
separately. It may also be noted that the joint probabilities (2.5) exhibit a certain
"quantum interference of probabilities" [24-26], which also demonstrates that
they cannot be brought under the purview of classical probability theory.

The major difficulty in formulating a completely general (quantum) theory of
successive observations is that the collapse postulate as stated above does not
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make any sense for an observable with a continuous spectrum. Since there are no
eigenvectors (in the Hubert space) associated with spectral values in the continuum,
Eq. (2.3) does not make any sense for observables with continuous spectra as the
projectors P. do not exist. Therefore the major problem appears to be a purely
technical one of extending the sum in Eq. (2.3) to some sort of an integral which
would make sense for any arbitrary spectral measure on the real line. We have
already emphasised the physical significance of the above problem, which also
suggests that an appropriate solution should be based on the fundamental prin-
ciples that underlie quantum theory.

Before going into a general analysis of the problem, we would like to note that
there have been some misconceptions concerning this problem in the literature,
which have not been subjected to a proper critical examination. For example, one
suggestion which is implicit even in some textbooks is to replace the transforma-
tions {ΆA(Δ)} of Eq. (2.3) by the transformations {ΆA(Δ)} as given below

Δ\ (2.7)

where Δ -> PA(Δ) is the spectral measure associated with the observable A.1 Unlike
(2.3), Eq. (2.7) is of course meaningful for all observables, and it is also consistent
with the BSF, as we have

PrftA) = Tr [_ΆA(Δ}p] = Tr[jPx(J)pP%d)] = Ίr(pPA(Δ}\

in agreement with (2.1). However, the unphysical character of the above proposal
shows up very clearly once we employ it to evaluate the joint probabilities of
successive observations. We are led in the same way as before to formula (2.5)
with the only difference that ΆAτ(ti\Δ^ are now to be replaced by JΛί(ί<)(/d.). How-
ever, as the JΛ(ίί)(zl.) are not finitely additive in J ., it can easily be shown that the
joint probabilities turn out to be not even finitely additive. For example, if A, B
are two incompatible observables (i.e. the associated spectral projectors do not
commute with each other) and Δ9Δi9Δ2eB(R) are such that AίnA2=0, then
Eq. (2.7) leads to

, Δ) = Tr [£B(Δ)£A(Δ , u Δ2)p\

which is in general different from

Pτ^B(Δ 19Δ) + WAB(Δ2 , A) = Tr \β\A)l\A ,)p] + Tr [J

+ Tr[PB(Δ)PA(Δ2)pPA(Δ2}].

This lack of finite additivity of the joint probabilities makes the above proposal
of replacing Eq. (2.3) by Eq. (2.7) completely untenable.

In his classic treatise [1] on quantum mechanics, von Neumann considered

1 Such a version of the collapse postulate is implicit for example in all those treatments of localization
(or position measurement), where the wave function φ(x) of a particle is assumed to be transformed into
χA(x)ψ(x) modulo the normalization factor (where χA(x) is the characteristic function of AeB(R)), the
moment the particle is found to be localized in Δ.
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another way of generalizing the collapse postulate to observables with continuous
spectra. He suggested that we may consider functions of these observables which
have a purely discrete spectrum and employ Eq. (2.3) for the collapse associated
with such functions as some sort of an approximation to the collapse associated
with the original observable. It must be stated that this programme has not been
actually carried out even for particular cases, and therefore we do not have any
mathematically precise characterization of the nature of the approximation or its
consistency. However, apart from the fact that von Neumann himself considered
this as just a tentative solution (cf. the footnote on p. 223 of [1]), there are very
strong reasons to suspect that such a programme may not be viable. The procedure
advocated by von Neumann involves partitioning the spectrum of an observable
into a countable collection of disjoint intervals. For example, if A is an observable
with a continuous spectrum we may consider the observable /α(,4), where for each
α > 0

00

/.(*)= Σ (» + i)«
n = — oo

where χ[ }(x) denotes the characteristic function of the interval [ ). The observable
fa(A) has a purely discrete spectrum and a precise measurement offΛ(A) is supposed
to be equivalent to an approximate measurement of A with an apparatus which
has a limit of resolution given by α.

However, the crucial point is that there is hardly any justification for the claim
that the collapse associated with/α(,4) is in some sense related to that associated
with A, however small the resolution α might be. Of course, the spectral projectors
of A and its function f(A\ where/ : jR -> R is a Borel function, are related by the
equation

P^A\Δ) = PA(f-\Δ}\ (2.9)

for all ΔeB(R). However, Eq. (2.9) also shows that in general the spectral projec-
tors of/(,4) do not determine all the spectral projectors of A. As regards the collapse
associated with A and/04) the situation is very similar, at least as regards obser-
vables with purely discrete spectra. In fact, we have the following lemma which is
a direct consequence of Eqs. (2.2) and (2.3).

Lemma 2.1. // A is an observable with a purely discrete spectrum, then [Άf(

and {^A(f~1(A})} are totally unrelated, unless f :R -> R is a Borel function which
is injective on the spectrum of A, in which case we have

£^A\Δ) = £A(f-\Δ)) (2.10)

for all Δ <=B(R).
The requirement that/ :R -» R be injective on the spectrum of A is essentially

that we have

for x,y lying in the spectrum of A.
From the above lemma we can easily see that the collapse associated with



Collapse Postulate for Observables with Continuous Spectra 137

fΛ(A) is very different from even that associated with, say,/2α(,4). In other words,
even a change in the so-called resolution of the apparatus gives rise to a completely
unrelated collapse expression. Also, as Davies and Lewis [9] have noted, any
approach based on a partitioning of the spectrum into disjoint intervals is rather
suspect, as it often destroys the group covariance properties possessed by the
observable. Finally, the result of Lemma 2.1 suggests that in the general case also
we have every reason to suspect that the collapse associated with A and f(A) are
unrelated, unless the function/ is injective on the spectrum of A. Therefore we
cannot hope to get any idea about the collapse associated with an observable A
with a continuous spectrum by studying the collapse associated with functions of
the form/α(,4), for/α takes constant values on each of the intervals [rcα, (n + l)α).

From the preceding discussion it becomes clear that the appropriate generali-
zation of the conventional collapse postulate to observables with continuous
spectra should involve a completely non-trivial generalization of Eq. (2.3). Several
other arguments in favour of this point have also been provided by Davies [27].
It would be appropriate here to recall his conclusion ([27], p. 58) that "... in
measurement theory discrete and continuous projection-valued measures have
very different properties. This runs completely counter to the frequent suggestion
that for foundational purposes one need only consider discrete observables, the
continuous ones being approximated by discrete ones in some manner".

III. The Basic Framework for Generalizing the Collapse Postulate

In order to gain an insight into the problem of generalizing the conventional
collapse postulate, it is very necessary to first analyse its essential mathematical
features as contained in Eqs. (2.2) and (2.3). It was noted by Schwinger [28] that
the collapse or measurement transformation p -> ΆA(A)p as given by (2.3) can be
viewed as a positive linear transformation on the space of trace class operators.
Later, Haag and Kastίer [29] introduced the notion of an "operation" which
incorporates all the essential mathematical characteristics of such collapse trans-
formations. In order to define the notion of an operation, let us consider the
Banach space £Γ{$F) (under the trace norm) of all trace class operators on 2tf.
The set 9~*(#C} of all non-negative trace class operators is a norm-closed cone
in y(#e\ An operation Ά is a linear self-adjoint positive map SL : y(3tf) -> y(tf\
which is also norm-non-increasing, in that

Tr(<2(ι?))^Tφ) (3.1)

for all ve^Γ+(^f). It is easy to see that the transformations p -*QA(Δ)p as defined
in Eq. (2.3) can be uniquely extended into operations. We shall denote the set of all
operations associated with 2tf as £L(2tf\

It was noted by Davies and Lewis [9] that the statement of the conventional
collapse postulate essentially associates an operation-valued measure with each
observable. An operation-valued measure (on the real line) is an association
A -> &(A) oϊB(R) into Ά(tff) such that the following properties are satisfied:

(3.2)


