
Communications in
Commun. Math. Phys. 71, 59-64 (1980) Mathematical

Physics
© by Springer-Verlag 1980

On the Relation Between Classical
and Quantum Observables

Abhay Ashtekar

Departement de Physique, Universite de Clermont-Fd., F-63170 Aubiere, France

Abstract. For systems with a finite number of degrees of freedom, the relation
between classical and quantum observables is analysed. In particular, a precise
statement of the correspondence limit is obtained.

1. Introduction

Consider a physical system with n degrees of freedom. Let us suppose that in the
(non-relativistic) classical description, one can introduce a smooth, n-dimensional,
orientable manifold C (without boundary) to represent the configuration space of
the system. Then, the cotangent bundle Γ over C represents the phase space. This
Γ serves as the arena for classical mechanics: points of Γ describe the permissible
classical states while suitably regular functions on Γ describe the classical
observables. Dynamics manifests itself via a Hamiltonian vector field. The space of
classical observables is endowed with two interesting mathematical structures. The
first of these is the structure of an associative Abelian algebra, available on the
space of functions on any manifold, while the second is the structure of a Lie
algebra induced by the Poisson bracket which itself arises due to the presence of a
natural symplectic structure on Γ.

In order to "quantize" this system, there is available the Dirac prescription [1] :
Replace the Poisson brackets between classical observables by (h/i times) the
commutators of the corresponding quantum observables. Although the intuitive
idea underlying this prescription is transparent, the precise "method of replace-
ment" is not. What does "corresponding quantum observables" mean? Indeed, the
well known factor ordering problems arise precisely because classical observables
do not, in general, have unambiguous quantum analogues. For the class of systems
described above, is there perhaps a universally available set of classical observ-
ables which does have its quantum analogue? More generally, what is the precise
relation between classical and quantum observables? In the classical limit, does
the commutator between two quantum operators vanish or is it related to the
Poisson bracket between the corresponding classical observables? Is this cor-
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respondence well defined? That is, in the classical limit, does each quantum
observable give rise, unambiguously, to a classical observable? What is the precise
statement of the "classical limit" as far as the observables are concerned?
Although these questions are rather elementary, and the answers probably well
known among experts in geometrical quantum mechanics, to our knowledge, a
detailed analysis of these issues - particularly of the mathematical structures
involved - has not appeared in the literature1. The purpose of this note is to fill this

gap-

2. Schrodinger Quantum Description

In this section, we briefly review2 a geometrical formulation of quantum kine-
matics. This discussion will also serve to fix notation to be used in the main
analysis in Sect. 3.

Consider the space D of all complex valued, smooth scalar densities of weight
1/2 and of compact support on the configuration space C. This D is a complex
vector space. Next, introduce an inner product, <,>, on D as follows: Set <tp,tp>
= J ψ*ψ, for all ψ and ψ in D where the integral extends over all of C and where ψ*
is the complex conjugate oft/?. (Note that we do not need any additional structure
such as a metric or even an alternating tensor in order to define the integral this is
why we began with densities of weight 1/2 rather than functions on C.) The
Cauchy completion D of the pre-Hilbert space (D, <,» is the Hubert space of
quantum states. Next, we introduce certain operators which will represent, at the
kinematic level, the basic quantum observables. Given a real-valued, smooth
function / of compact support on C, define a configuration operator Q(/) as
follows: Q(f)ψ:=f ψ for all ψ in D. Similarly, given a smooth vector field of
compact support on C, define a momentum operator P(V) as follows :
P(V): = h/ίtSfvιp, for all ψ in D, where <gv denotes the Lie derivative by the vector
field K Each Q(/) is a bounded self-adjoint operator on D while each P(F), with
domain D, is an essentially self-adjoint operator on D. The configuration and
momentum operators have several interesting algebraic properties which will play
an important role in our discussion of Sect. 3. First, they are linear in their
arguments :

and, P(V+rV) = P(V) + rP(V) (la)

for all scalar and vector fields /, / and Fα, Va and for all real numbers r. Next, they
satisfy the anti-commutation relations :

{Q(ΛQ(/)H2Q(/ /); and, {Q(/),P(F)H2P(/ F) (Ib)

1 The text book treatments are generally incomplete and often misleading or even erroneous
2 For details, see, e.g., [2-4]. Note that in the present paper we are concerned not with the
mathematical problems associated with the choice of a polarization on the phase space but rather with
the relation between the classical and quantum observables of simple systems which already posses a
natural vertical polarization
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and the canonical commutation relations :

[Q(Λ Q(/)] =0; [P(n Q(/)] Ch/iQ&yf);

and, (2)

where we have set {A,B}=A B + B A and [A,B~\=A B-B A. Note that
Planck's constant h appears only in Eq. (2). Hence one might expect Eq. (1) to
hold, in an appropriate sense, in classical kinematics as well. We shall see in the
next section that this expectation is correct. If C is chosen to be the Euclidean
3-space, commutation relations (2) above imply, in particular, the usual canonical
commutation relations between position and momentum operators as well as the
commutation relations of these operators with the angular momentum operators3.
Finally, note that in the above discussion only the geometrical structure naturally
available on the manifold C has been used; in particular, no preferred choice of
coordinates is necessary in the transition from classical to quantum description.

3. Pre-observables, Quantization, and the Classical Limit

In this section, we introduce a * -algebra stf which, in a certain sense, encompasses
the algebra of classical observables as well as that of quantum operators and
facilitates the analysis of the relation between the two. In essence, one can regard
j/ as the structure which synthesizes mathematical properties common to both
classical and quantum observables, i.e., properties which are independent of the
value of the Planck's constant h. When the information on h is supplied, j/ admits
a natural reduction to the *-algebra of configuration and momentum quantum
operators introduced in Sect. 2, while if h is set equal to zero, j/ reduces to the
algebra of classical observables. Hence, elements of s$ ("self-adjoint" under the
*-operation) will be referred to as "pre-observables". The introduction of the
*-algebra of pre-observables serves two purposes: first, it rigorizes the Dirac
prescription for passage from classical to quantum observables, and second, it
makes transparent the mathematical structures involved in taking the classical
limit.

Consider a smooth function / of compact support on C. Denote its pullback to
Γ by q(f). Next, consider a smooth vector field Va on C. In an obvious fashion this
Va defines a function, linear in momentum, on Γ. Denote this function by p(V). The
q's represent classical configuration observables while the p/s, classical momentum
observables. These observables may be regarded as the "basic" ones; sums of
products of q f s and p's generate the algebra of all classical observables. The space of
q's and p's has a natural vector space structure. Denote this (real) vector space by B
and its complexification by Bc. The *-algebra of pre-observables will be con-
structed from this Br. 00

Let j/ denote the tensor algebra over BC:J/:= (4) Bf k. Thus, a typical
k = 0

element A of a is a string with a finite number of non-zero entries, A = (v0,

3 Choose for/the coordinate functions x, y, and z, and for Va, the Killing fields on Euclidean space.
This of-course requires a trivial extension of our definitions of Q(/) and P(F) where the requirement of
compact support on / and V are dropped
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vί9 ...,vn, ...,0, 0,...), where v0 denotes a complex number and vn a n-th rank
(contravariant) tensor over Bc. The set of these strings has a natural vector
space structure. The associative product is defined in an obvious way: If A is as
above and J? = (w0, w 1 ?...,w f c, 0, 0,...), then^4 jB = (ι;0w0, v0wί+WoV1,...,v0wm

+ tf1®wm_1 + ... + i;m_1(8)w1+w0i;m). Thus, j/ is an associative algebra. Next,
introduce a ^-operation on s$ as follows: Demand that the action of the
^-operation on Bc be the complex conjugation and extend its action to all of j/ by
requiring anti-linearity, i.e., (λA + μB)* = λ*A* + μ*5*, and the product rule, (AB)*
= J3* Ά*, for all A and # in sf and complex numbers λ and μ, where /I* denotes
the complex conjugate of λ. Then it is easy to verify that the ^-operation
automatically satisfies (A*)*=A; it is thus an involution on the algebra s#. To
obtain the *-algebra j/, we need to introduce on stf conditions analogous to Eq.
(Ib). Recall that each basic classical observable q(f) and p(V) belongs to B and
hence also to Bc. Consider the *-ideal / of sϊtf generated by elements of the type (0,
2q(f f) + 2p(gV)9 q(f)®q(f) + q(f)®q(f) + q(g)®p(V) + p(V)®q(gl 0, 0, 0, ...,0,...)
where /, /, and g are arbitrary smooth scalar fields, and Fα, an arbitrary vector
field, of compact support on C. Set <stf = s#/I. This j/ is the required *-algebra. An
element A of s$ will be called a pre-observable if A = A*.

It is easy to verify that each q(f) and p(V) gives rise, unambiguously, to an
element of stf: Since the only element of s$ of the type (0, v, 0,..., 0,...) which
belongs to / is the zero element, two distinct elements of B can not find themselves
in the same equivalence class after the quotient operation. Denote by Q(f) the
element of j/ corresponding to q(f) and by P(V) the element corresponding to
p(V). Then, by the very construction of s^ it follows that Qfs and P's satisfy Eq. (la,
b): (la) is "built in to" the introduction of sέ as the tensor algebra over Bc while
(Ib) is incorporated via the operation of taking quotient of s$ by'/. Thus, g/s and
Pfs satisfy the usual algebraic relations between quantum configuration and
momentum operators except ofcourse the canonical commutation relations which
require the knowledge of ft. Hence, Q's and P/s may be regarded as the basic pre-
observables.

Next, we introduce a Lie bracket on jtf. The key idea is to exploit the fact that
the vector space B, regarded as a sub-space of the space of all classical observables
is invariant under the operation of taking Poisson brackets: We have

\:q(f) + p(V\q(f) + p(V^P.E=q(^J-^yf) + p(^vV) (3)

for all /, / and Ffl, Va. This enables us to introduce a Lie bracket, [, ]L, on s$ as
follows. Set

[β(/) + P(V\ Q(f) + P(F)]L = Q(&yf - &yf) + P(^VV) (4a)

and require, for all A, B, C in £/ and complex numbers λ, that the following
conditions hold:

\_A,B\L=-\_B,A\L, (4b)

D4 + λB
9
 C]

L
 = IA, C]

L
 + λlB, C]

L
, (4c)

[_AB, C]
L
 = A - [5, C]

L
 + ίA, C]

L
 B. (4d)
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We claim that Eqs. (4a-d) unambiguously define a Lie bracket on j/. This [, ]L is,
furthermore, a natural extension to sύ of the Poisson bracket on B.

Thus, j/ now has the structure of an associative non-Abelian *-algebra, as well
as that of a Lie algebra. In the introduction of these structures, we have used only
those properties of the given system which are associated invariantly with the
presence of a natural (classical) configuration manifold C.

So far, the two structures on &ί are quite independent of each other: the Lie
bracket [, ]L is in no way related to the commutator bracket of the associative
product. "Quantization", from an algebraic point of view, consists of introducing
relations between the two structures. Consider the *-ideal «/ft of stf generated by
elements of the type A-B — BΆ — h/i[A, B~\L where A and B are arbitrary elements
of J2/ and h any fixed real number. Set &tfh = s$/J>h. Then ^ is a *-algebra.
Furthermore, it is straightforward to verify that s$h is in fact naturally ίsomorphίc to
the *-algebra generated by the operators Q(/) and P(F) (together with the identity
operator on D) introduced in the previous section4. (Here, we consider Q(/) and
P(F) as having the common domain in D. The isomorphism sends the equivalence
class to which Q(f] [resp. P(F)] in j/ belongs to the operator Q(/) [resp. P(F)] on
D.) Thus, j^ is precisely the *-algebra of quantum operators!5 The Dirac
prescription of setting the commutator equal to (h/i times) the Lie bracket is indeed
unambiguous when applied to the *-algebra jtf of pre-observables (rather than to
the algebra of classical observables). Finally, note that while sf is equipped with two
distinct brackets - the commutator and the bracket [,]L - J/Λ inherits only one: it is
precisely the quotient operation needed in the transition from pre-observables to
quantum operators which identifies the two brackets.

What happens when h is set equal to zero? The ideal J 0̂ is generated by
elements of j/ of the type A B — BΆ. Hence, j/0 =^/^0 is an Abelian, associative
*-algebra. Again, it is easy to verify4 that J3/0 is naturally isomorphic to the algebra
of complex-valued smooth functions on Γ which are polynomials in momenta and
are such that the projection to C of their support is of compact closure. [Ofcourse,
the isomorphism sends the equivalence class to which Q(f) in s$ belongs to the
classical observable q(f), and similarly for P(F).] Furthermore, the ^-operation on
j/ corresponds to the complex-conjugation operation on the space of functions on
Γ. Thus, J3/0 is just the complexiflcation of the algebra of classical observables. What
is the status of the Lie bracket [,]L? Now, since h is set equal to zero, the
commutator and the Lie bracket [,]L are not identified in the quotient con-
struction. Furthermore, this bracket does give rise to an unambiguous Lie bracket
on the *-algebra <s/0. (That is, </0 turns out also to be a Lie-ideal on j/.) This Lie
bracket on ja/0 is precisely the (image under the natural isomorphism, just referred
to, of the) Poisson bracket on the space of functions on Γ!4 Thus, the quotient
operation is such that, for any non-zero value of ft, j/h inherits only one of the two
brackets - or, equivalently, Lie algebra structures - of j/5 while j/0 inherits them
both the commutator bracket induces a trivial Lie-algebra structore on j/0 and
the Lie bracket [,]L induces the Poisson bracket.

4 Proofs of these assertions are omitted because they are straightforward and long
5 Indeed, using j/ft one can construct the Hubert space of states via the Gelfand-Naimark-Segal [5]
construction
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To summarize, both quantum and classical observables arise as equivalence
classes of pre-observables: j/ft = j//«/ft and j/0 = j//t/0. However, since the ideals
involved in the two quotients are distinct from each other, there is no simple
relation between the two sets of equivalence classes (see Fig. 1). In particular, there

Fig. 1. jtfΛ = jtf/Sh and s/0=^/^0. Hence, although there exists a natural *-algebra homeomorphism
from j/ on to j/ft as well as on to j/0, there does not exist a natural mapping from j/ft to jtf0 or vice

is no natural mapping from j^0 to j/ft or conversely from j</fi to j/0: just as
classical observables do not, in general, have unambiguous quantum analogues,
quantum observables do not, in general, have unambiguous classical anal-
ogues. Nonetheless the correspondence limit can be expressed by noting that for
each real number h, jtfh = ̂ /^h is a *-algebra j/0 is the (complexified) algebra of
classical observables and when h has the value of Planck's constant, stfh is the
algebra of quantum operators. This formulation has the advantage that, at the
algebraic level, it is easy to see what is preserved in the classical limit and what is
not since all observables, quantum as well as classical, are obtained from a single
structure.
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