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Abstract. We study the quasi-classical limit of the quantum mechanical
scattering operator for non-relativistic simple scattering system. The con-
nection between the quantum mechanical and classical mechanical scattering
theories is obtained by considering the asymptotic behavior as # — 0 of the
quantum mechanical scattering operator on the state exp(— ip-a/h)f(p) in
the momentum representation.

Introduction
Let us consider the Schrédinger operator

hZ 2 62
Hi=— A+ V(x), 4= 0

—+ ..+ 0.1
2m 6xf+ +6xf ©.1)

h2
in the Hilbert space # = L*(R") and let Hj = — 2—41. Here h = % and h is the
m

small positive parameter called Planck’s constant. We assume the potential V(x)
to satisfy the following condition.

Assumption (A). (1) V(x) is a real valued infinitely differentiable function on R".
(2) For any multi-index «, there exist constants m(x) > || + 1 and C, > 0 such that

O

Under this condition HY and H" are self-adjoint operators with the domain
Z(H}) = Z(H") = H*(R") = the Sobolev space of order 2. Furthermore it is well
known that the wave operators W defined as

Wix =s— lim eitHh/he—itHg/h
- t—=t oo

< 1+ |x) e

exist and are complete:
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AW!)=RAW")=the spectrally absolutely continuous subspace of #
w.r.t. H".
(See Agmon [1]and Kuroda [10] for more general results.) The scattering operator
S" for the system is defined as

Sh= (W w”

and is therefore a unitary operator on #. We shall study the asymptotic behavior
of the operator S"*as h — 0 and its relation to the corresponding classical mechanical
scattering theory for the Hamiltonian

H(x, &)= &2m + V(x). 0.2)

In the classical mechanical scattering theory, the following results are well-
known under the Assumption (A): i) For any (a,#)eR" x R"(y # 0) there exists a
unique solution (x_(t,a,n), ¢ _(t,a,n)) of the equation of motion

dx ¢ d¢ _ )
aw as grad V(x) (0.3)
such that

lim |x_(t,a,n) — tn/m —a| =0,

1= —w

lim [¢_(t,a,n)—n|=0;

1= —x

0.4)

ii) there exists a closed null set (i.e., Lebesgue measure zero) e = R" x R” such that
for any (a,n)¢e, there exists (a, (a, 1), 7, (a,7))€R* x R" such that

lim|x_(t,a,7) — m {a,n)m — a, (a,n)] =0,

=

lim|&_(t,a,n) 1 (a,n)] = 0;

t—> w0

(0.5)

iii) the classical scattering operator S¢ defined on R" x R"e as S%Ua,n)=
(a,(a,n),n.(a,n))is a C'-canonical mapping.

We define as e(a) = {neR"; (a,n)ee} L {0}. Obviously e(a) is a null set for almost
all aeR", i.e., e(a) has Lebesgue measure zero in R”. (See Herbst [6], Simon [12]

. . . d . dé

and Huniziker [9]). We write as X(t) = d—); and &(t) = d—i

It will be proved that for any aeR",5_(a,%) and a (a,n) are smooth functions
of yeR™ e(a). We define as

e(a)™ = {neR™e(a): det[0n , (a,n)/on] = 0} U e(a). (0.6)

For any f e #, let us write as £(7) = e~ "“""f (). Our main theorem can be stated
as follows.

Theorem. Let Assumption (A) be satisfied. Let acR" and let e(a)*™ be defined as
(0.6). Then for any f € # with supp f a compact subset of R"\e(a)*
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. p~ iinds R i —n h
lim “ (Shfah) (’1) _ Z ellnd Y1)/ 2 +i(SM,n,) —n-a+(a,n,))/
2y n=1+(a,n,)

‘| det[on (a,m/on]l,—,, |~ (r,0m) “ =0, ©.7)

where the summation is taken over all n;'s satisfying n =1n_(a,n,).
Here S" is the scattering operator in momentum representation: ‘S 7 FhSh(Fh)~1

F'f(n)=h""?fe” ™ (x)dx; (0.8)

Ind y(1,7,) is so-called Keller-Maslov-index of the orbit {x _(t,a,n;),¢_(t,a,1,)};
S(n,n;) is defined as

‘ ; . s
St.ny) = }iri {5 L(x(u, a,n,), X(u, a,n;))du +5n;n, —5’;17 } 0.9)

where L(x,x)= gl—icz — V(x) is the Lagrangian of the system.

The connection between the quantum mechanics (0.1) and the classical mecha-
nics (0.2) has been discussed since the advent of the quantum mechanics and there
are several mathematically rigorous arguments. The refined form of WKBJ-
method by Maslov [11] and the rigorous form of Ehrenfest’s theorem by Hepp [4]
seem to be outstanding, among others. However, unfortunately, these works are
mostly concerned with the dynamics in finite time and the connection of the
scattering theories has not been discussed (see, however, Hepp’s unpublished
note [5]). In this paper we study the connection of these scattering theories using
the WKBJ-method which seems to be fit best for the purpose. The main tools
for proving the theorem are the approximate fundamental solution constructed
by Fujiwara [3] and the [*-boundedness theorem for certain kind of oscillatory
integral operators by Asada-Fujiwara [2].

Before proceeding to the text we want to discuss here about a meaning of the
theorem. For a smooth real function S(y), we can consider the wave function
e~ SR () to represent, asymptotically as 7 — 0, the ensemble of classical particles

oS )
(5’;(17),17> with momentum distribution | f()|*dn. Hence by taking e™™""f (i)

as an initial state, we prepare it as to represent the ensemble of particles concentrat-
ed at the configuration x = ¢ with momentum distribution | f(#)|*dy. Thus the
incoming particles are prepared as x(t) ~ a + tm/m, &(t) ~ n at remote past. What
the theorem says is that the final state $"(e ™"} is asymptotically represented as
the incoherent superposition of the wave functions

on
det(ﬁ(a, ] j)>

0
("‘ %(S(rlﬂb) - ’7‘a+(a, ”j))5 ’7) = (a+(a’ 7]j)7’1+(a7 ’1,))

—-1.2

fln;)

i Indyinny)n/2 +i(S0nny) —nra @ny)h

which represents the particles
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with the momentum distribution

on, -
det <7577}— ) (a,n,)

Moreover, since a,(a,n,) # a,(a,n;) for j# k, by the canonical property of s,
this incoherent superposition turns to the coherent one, as h — 0. Thus we may say
that the classical mechanical scattering can be represented as a limit of h— 0
of the quantum scattering theory.

The plan of the paper is as follows. In Sect. 1 we shall study the asymptotic
behavior as h — 0 of the wave packet

| f1)2dn = | f (1) *dn;.

—LtHO/hf fh(x —n/2 j‘eirn/h h(ﬂ)d’l

In Sects. 2 and 3, we shall prepare the materials from the classical mechanics which
are necessary in the following sections. In Sect. 4 we shall study the asymptotic
behavior of W"* In Sects. 5 and 6, we shall study S"" In the last section, 7,
some remarks will be given. Especially a result which is related to Dollard’s cone
scattering theory [13] will be obtained.

We list here the notation and the conventions used in the paper.

For domains Q, and Q,,Q, < < Q, means that Q, is a precompact subset of
Q, and Q,, the closure of Q,, is contained in Q,. [*(€) is the Hilbert space of all
square integrable functions on Q equipped with the inner product and the norm as

ff x)dx, | f | = (LN

If Q = R*, we simply write as [*(R") = #. For x = (x,,...,x,)eR" | x| =} x})'""*
is the Euclidean norm. For the multi-index (x;,...,%,) = 0,eN, || = Zocj.

X =x" x™ and (9/0x) = (0/dx )" ... (0/ox, " dx = dx, ...dx,. B(R") is the

n

space of all C*-bounded functions with their derivatives. For vector-valued

d of .
function f (x),ai stands for the matrix <%> . For matrix 4= (a;),|A|=
X k/ jk

1/2
sup{ZaU} . For h>0, 7" is the Fourier transform defined by (0.8) and if

h=1, we omit the index h. For the Fourier transform we write as /"= Z",
= f"*f (TN Sl = e () and f = F

7, and m, are the projections from R" x R" to R": m,(x, p) = x and =,(x,p) = p.
For aeR" we define as n% (p) = (a,p) and 7n}(x) = (x,0). For an operator T in
a Hilbert space &', Z(T), %(T) stand for the domain and the range of the operator.
The constants appearing in the formulas are distinguished in one context but in
the other they are not distinguished and may be written by the same symbol if
it is clear that which constants are meant. We sometimes omit the indices and
suffices or other parameters if no confusions are feared.



Quasi-Classical Limit 105

1. Uniform Estimate for the Free Propagator

In Sect. 4 we shall study the asymptotic behavior of the wave operator W" on
the coherent state f. As a starting point we study here the asymptotic behavior
of exp(—itH}/h) fa” as h — 0. Actually we prove the following theorem, the essential
feature of which is that the estimate is uniform with respect to time ¢ outside t = 0.

Theorem 1.1. For any aeR" and t > 0 let us define the operator Té’,a(t) on # as
T (Of (x) = ™~ D20 igy12f (m(x — a)/t). (1.1)

Then

1) Té"a(t) is a unitary operator in # and is strongly continuous in t > 0;
2) for any 6 >0,

lim sup || e ™7" — T¢ (6)f || = 0. (1.2)

h=0 |t]=0

Proof. Since  exp(— itHp/h) fu(x) = exp(itHy/h) fo(x —a) and T} (Of(x)=
T} o(t)f (x — a), it is sufficient to prove 1) and 2) for the case a = 0. In what follows
we omit the index a = 0. Since the first statement is clear, we prove 2) only. Since
Th(t) and exp(— itH}/h)F"* are unitary, the standard limiting procedure shows
that it suffices to prove (1.2) for f'e C¥(R"). By the Plancherel’s theorem

e_uyg/rfh(x) - hvn/2 je(x~p—p2t/2m)/ "f(p)dp
_ h_n/zeimxz/zm!"e—it(p—mx/t)z/thf(p)dp
= "2 2 i) [ €™ () dy
= THO)S + ™2 mfit)>2m) ="
1
| [ (imhj2e)e™ mxlteimhsy 2, 2f (p)d yds.

0 R"

Hence by Minkowski’s inequality and the Parseval relation we get

| e AT — T | < (mh/20)|| ()| < (mh/20)]| £,
which implies the relation (1.2). (Q.ED)

2. Properties of Classical Orbit

In this section we study several properties of the motion of classical particle which
will be needed in the following sections. We write the canonical transformations
in the phase space R"x R" associated with the Hamiltonians H(x, &)=
E2/2m+ V(x) and H (&) = &?/2m as U(r) and U (t), that is,

UO(t)(xoa éo) = (x() + téo/ma éo) (21)
and

Ut)(xq,&,) = (x,, &), (2.2)
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where (x,,¢,) is the solution of the Hamilton equation
X(t)= c(t)/m, &(t)= — grad, V(x(t)),
xX(0)=xo, <0)=¢,. 2.3)

In the followings we always assume Assumption (A). For (a,7)eR" x R" we
write as U()Uq(s)(a,n) = (x{t, a,n), £ (L, a,m)).

Lemma 2.1. Let K = < R"\{0}. Then there exists a constant R>0 depending
only on K such Zhatfor s < 0 with sufficiently large |s| and any multi-index a, there
exists a constant C, such that for any neK and 0 < t <|s+ R|

a a ad
<~0~> x({t,a,n) — (s +tym™! m_
on/) °

on* o
<(2m)” ‘[s+t]—~‘+C[s+t| (2.4)
o0\ -
E(ta,n) — <C s+t (2.5)
an
HereE:min(m(l)—-l—lzI_S_|oc|)andm(l) max (m(e): || = I).

Proof. Since the case a #+ 0 can be treated in a similar way, we prove the case
a=0 and we omit the variable a in the following expressions. For simplicity we

also assume m = 1. Since V(x) satisfies the Assumption (A)’(gﬁ x(t,n) and
( > &(t,n) satisfy the integral equations
a a aaﬂ t a a
<5> (t,n)=(s+ l)gﬁa+£(t — u)<%> (— grad, V(x,(u,n)))du

(2.6)

=" T2~ erad, Vs

N 6“ N\an grad, V(x(u,n)))du
Let us write F(x)= — grad, V(x). By an elementary calculus we see that

a a o
= | F(x(t,n)) is the sum of _@_Ii fz x(t,n) and the terms of the form
611 Ox \on) *

aal 1 aajx 9,
a5 (55 )
where ]B[g2,ﬁ§a,5l+ ..+0;=|Bl,o,<a and }|g|d,=|a| Let us
take as ¢ = min(m(0) — 1,m(1) — 2) and R = sup{(max{C,,2nC,})"/ *9e~ 1/ +2

|~ B +e)d+e) ek
In| (1 +n])}

where C;=max C, and C,’s are the constants appeared in Assumption (A). We
lal=j
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first prove (2.4) for the cases o =0 and |a[ =1 then prove the general cases by
induction.
(a) The case o = 0. Put

t*=sup{0<t< —s:|xwn)—(s+um| <27 s+ulln|forO<u<t}
It suffices to prove t* = — s — R. By Assumption (A) and the definition of t* we get

[x %) = (s + 4] < €, J6* = w1+ |x,wm)]) > “du
0

l*
<C, e —w@ Y s+ulln]) 2 du
0

é C122+s|’1]~2—58'1(_ s — l‘*)_e.

Hence if t* < — s — R, the right hand side is strictly smaller than 27 '(— s — t*)|n|
which leads to a contradiction because x (t,#) is continuous in t.
(b) The case |«| = 1. By (2.6) we have the equation for g (¢, 1) = g—z(t,n) — (s + tle,

e= {5ij}ij’
! oF
gyt,m) = [t —u)= o (x(u, m)(s + u)edu + f (t— u) (xs(u, g lu, n)du.
0

For0 <t < — s— R, we get by the result for the case « = 0 that

f(t-—u oF (x (u, 7)) (s + w)edu

t
<nC,2 7 Yt —w)(—s—u) "> tdu
0

<nC,Q2 n)) 2 (=5 —0)" 2.7)

Let us define as
t*=sup{0<t< —s:|gwn| <27 s+ u| for 0Su=rt}.
Again it suffices to prove t** > — s — R. By (2.7) we have

lgst** 17)|<nC 1171‘) 3- s{ (——S—t**)_‘

prx
+(1/2) f E**—u)(—s—u) 3" H(—s— u)du}
0
3n
7(
Hence if t** < — s— R, the right hand side of (2.8) is strictly smaller than
27 1|s + r**|, which again leads to a contradiction.

<SC, QR | 3 (= s — 14F) (2.8)
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(c) The general case. Let us assume that the statement is true for all o <o, 2 < |

a

3_”/ x(t,n) satisfies the equation

70\ p OF J\
(%) xs(t’ 7]) = _f(t - u)a(xs(u’ ’1))(6—7]) xs(u, }'])du

0

p 0\ OF a\
+ g(t - LO{(E;;) F(XS(U, 77)) - a_x(xs(u9 U))(%) xs(ua n)}du

(2.9)
By the assumption of the induction and the remark preceding part (a), we can
easily see that

A

J \* F o \*
I<3—7’1> F(x,u,n)) — ghx(xS(u’n))<6_n> x,(u, 1)

<Cls+u|?* forOSu<—s—R, nek.

Hence using other constants M, and M, , we get

a a
(52 e

t
SM|s+t|F+ Myfls+ul "
0

du

t
SM[s+t|  +M,[(t—uw|s+u|27¢
0

0 \*
5;] xs(ua 17)

Therefore by Gronwall’s inequality we get

a a
() en

a a
<%> x,(u, 1)

du.

t

§M1(—S—t)-e'f'M:,_'MIHS—{-u]_l‘%ecltﬂl‘“du
0

SM|s+t| 75+ M,|s+1t] 2
§M4[S+ tl‘s’

which proves the general case.
The second relation (2.5) is obvious by virtue of the estimate

j (%)aF(xs(u, &))du

0

SMls+¢|'7° for0<t<—s—R (QE.D)

Corollary 2.2. For sufficiently large — s,
rUOU, )3, j=1,2and 0 <t £ —s—R,

is C*-diffeomorphism from K to its image.
This is a well-known consequence of (2.4) and (2.5) (see also Hérmander [8]).
The following lemma is concerned with the existence of the wave operator in
the classical mechanics.

Lemma 2.3. i) For any aeR" and neK <= = R"\{0},

s}vir—noo ((%)axs(_ N R’ a, ;7)7 <a—a17>aés( —S— R’as ’1)>
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exists for any multi-index o. Furthermore the convergence is uniform on K. Hence
W o= lim U(—s—R)Uqy(s)

5= —w©
is a C®-canonical transformation from n% K to its image.
i) anf“chj,a = Qﬁ’_"(j =1, 2) is a C*-diffeomorphism from K to its image.

Proof. 1) is known for || < 1, see Simon [12] and Herbst [6]. For general || = 2,
we can mimic their proof. ii) is an immediate consequence of i) and Collorary 2.2.

(Q.E.D)
Remark 2.4. Lemma 2.3 and its proof show that for any (a,n)eR" x (R"\{0})
there exists a solution of (2.3) such that

lim |x(t) —a—tm/m|=0, lim |&t)—n|=0. (2.10)

We write this solution as (x_(t,a,n),<_(t,a,n)).

The important theorem in the scattering theory of the classical mechanics
is the one by Hunziker and Siegel on the completeness of the scattering states.
In our context it may be stated as follows (see Hunziker [9] for the details and the
proof).

Theorem 2.5. (Hunziker-Siegel) Let Assumption (A) be satisfied. Then there exists
a closed null set e = R" x R" such that the following statements hold: i) For any
(a,n)eR*"\e there exists (a,(a,n),n,(a,n))ER*" such that the solution (x(1), (1)) =
(x_(t,a,n), & _(t,a,n)) satisfies
lim|x(t)—a, —n,t/m|=0, lim|&t)—n, |=0. (2.11)
t— o0 t— oo
i) Themapping S defined as S(a,n) = (a . (a,n), n,(a,n))is a C'-canonical mapping.
Hence by Fubini’s theorem, we get the following result:

Corollary 2.6. For any acR", let us define e(a) = {neR": (a,n)ee} U{0}. Then
the statement of Theorem 2.5 holds for any (a,n) with neR"\e(a) and e(a) is null
set for almost all aeR".

Remark. If n=1, we can easily prove that e(a) is closed null set for all aeR". We
believe that this is true even for n > 2. However we could not prove it.

Now we study the asymptotic behavior as t — co of the solutions of (2.3) which
satisfy Theorem 2.5. The study has been intensively done by Hérmander [8] and
others [6],[12] in other contexts, however, we need a slightly different estimates.

Lemma 2.7. Let acR" and K = = R"\e(a). Then the following statements hold.
1) n_(a,n) and a_(a,n) are infinitely differentiable functions of ne K.

i1) There exists sufficiently large t, >0 such that for any o> 0, there exists a
constant C, independent of ne K such that

(%)a(x_(t, a,n) —n(a,nt/m —a_(a, n))} =Gt (2.12)

<Cy ' (2.13)

<(r}i> (é_(tsa’n) - ]/'+(a’ VI))
n

Jort>t,.
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Proof. We mimic the argument of Hunziker [9]. We set m = 1. For ¢t >0,
let us write as C,={neRMela):x_(t,a,n) x_(t,a,n) = (t/2)|n|* and
Coll +|x_(am|) ™ + C,(L+ |x_(tam) ™ V|x_(t,a,m)| <27 [n]|*} (et us
remark |n,|=|n| by the conservation of energy). Since for x(t)=x_(t,a,7),
27 Yd/de)x(t)* = x(t)- x(t)
and
27 MdPfde)x(1) = |n|* — {2V(x(t)) — F(x(1)) x(t)} ,

C, is monotonically increasing in ¢t >0 and by Theorem 2.5 | ] C,=R"\e(a).
t>0

Since K is compact, there exists a constant ¢, > 0 such that C,, > K, which implies
the existence of (another) constant ¢, such that

|x_(t,a,m)| =27 |nlt, forneK andt>t,. (2.14)

Now let us note that x_(t,a,n) and £_(t,a,7) satisfy the integral equations (see
Simon [12]):

(oo}

x_(tan)=a, +n.t— f(t —wF(x_(u,a,n))du, (2.15)

t

£ (tam)=n. — | Fec_(u.a,n)du 2.16)

as well as the equations

x_(t,am)=a+tn+ i (t — wF(x_(u,a,n))du, (2.17)

¢ (Lan)y=n+ j F(x _(u,a,n))du. (2.18)
Hence

a,(la,n)=a-— ? w F(x_(u,a,n))du, (2.19)

M@ =n+ | FGc_(uan)du 220)

Therefore Lemma 2.1 and 2.11 show the continuity of a_ (a,n) and 1 _(a,%). Now

J\* .
differentiating (2.17) by (5}}) and using the Gronwall’s inequality, we can easily

a ax
(55) x-(ban)

and with Lebesgue’s dominated convergence theorem implies that

(‘%)a T uF(x_(u,a,n))du and <a—€1)a _TwF(x_(u,a,n))du

see that for any 0 < «, is majorized by C,¢. This with Lemma 2.1

— o0

exists. This completes the proof for 1).
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For proving i), it suffices to prove (2.13), since (2.12) can be obtained by integrat-

6 a
ing (2.13). Differentiating (2.16) and noting l<a—ﬂ> x_(t,a, n)l < C,t, we have

a 24 [ee] a o
(56) C_an—n)=] (@) Flx_(u, a,n))du.

t

Since

<~(%> F(x_(u,a, 17))1 < C|u|~ 27" by virtue of the remark given in the proof
of Lemma 2.1, inequality (2.13) follows obviously. (Q.E.D)
Let us define the scattering operator S¢' with index aeR" as

S =n(a,n).

3. Properties of Action Integrals

In this section, we shall study several properties of the solutions of the Hamilton-
Jacobi equation

<%§[>(t’ x) + (2m)~ '(grad, S(t, x))* + V(x(t,x)) = 0. (3.1

We first discuss them in the region (— oo,t) with — t sufficiently large, using the
estimates of Lemma 2.1.

Lemma 3.1. Let K = = R"\{0} and let R > 0 be the constant determined in Lemma
2.1. For —s>R let us define the function S(t,x) on the domain 2 (K,a)=
U ) xn, UOUys)n% K = R x R"as

0=t -s—R

S

t
S((t,x)= 5;1;'75(@ a,x)* + | L(x(u, a,n(t,a, x)), % (u, a,n(t,a, x))du, (3.2)
0

where L(x,x)=mx?/2— V(x) is the Lagrangian of the system and n(t,a,x)=
(m, UOU,(s)m5 )~ 'X. Then the following statements hold
1) S,(t,x) is an infinitely differentiable function of (t, x) on 2, (K, a).
it) S,(t, x) satisfies the Hamilton-Jacobi Eq. (3.1) with the initial condition
S0, x) = m(x — a)*/2s. (3.3)

iti) Let us define as

K (t,x)= — 2m)~* [(4.8)(u, x(u,nt,a,x)))du, (3.4)
0
then there exists a constant C > 0 such that
ZK(t,x) SCls| s+t (3.5)
dy
62
a—ng(r,x) < Cls| s+t (3.6)

where y = sy (t,a,x) + a.
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s> - \ 0X

. . Y
iv) For any multi-index o, lim <6 )SS(—S——R,XS(—S—R,G,H)) exists uni-

a 22
formly on K, and lim (—) S{(—s—R,x) exists on Q’f;‘i(K) uniformly. We

5= — oo \ OX
write as

SR _(x)= lim S(—s—R,x).

§—= —

Proof. Since the case a #+ 0 can be treated similarly by changing the variable x
to x — a, we assume a = 0 in what follows and omit the variable a. We also assume

m = 1. Statement i) is obvious and ii) is well known (see Landau-Lifschitz [15]).
Let us prove iii) and iv).

Proof of iii). Since as is well known, (8S5/0x)(u, x,u))= &u,n(t, x)), (4.S)
(u,x (u,n(t,x))) = zn: 08,;/0x; = ' i (0y,/0x)(08,/ 0y,), where y = sn(t, x) and x =
x,(u) = x(u, ns(t,x)])._ il"hen by elJ:r;;ntary calculations, we get
(0/0y, ) A S)(u, x{u, (1, x))
= ). (0%,/0y,)(0%y,/0%,0%,)(0¢,;/0y,) + j%(@yk/@fc O?E;/09,0y,,), (3.7)

(0%/0y,, 0y )(A.8) (u, x (u, n(t, X))
=Y (82%/09,,09,)(8%, /0% 0%)(DE,/0,)

Jiksl

+ Z (5561/@%,,)(03? i/ay,,)(ag'yk/aiz@iﬁi;) (35,/6)’;()

Jik,Li

+ Z (321/5,\?,,,)(52));(/5561556;) (azfj/@ykayn)

Jkl

+ Y (0%,/0%,0%)(0X,/0y,)(0%,/0y,0y,,)

Jokil

+ 2. (09,/0%)(*¢,/0y,0y,,0,)- (3.8)

J:k

Since X = x(u,y/s), Lemma 2.1 and simple calculations show that for y= sy
and X = x(u,n)

|(@y/0x)| £ Cs||s+u| ™1,
[(0*y/ox)| < C,ls||s +ul 77 o] 2 2. (3.9)

Thus using (3.9) and Lemma 2.1, we get from (3.7) and (3.8) the estimates
[(0/0y WA S)u, x(u))| < C|s| ™ Y|s+u| 27"

and
|62/29,07,)(4,8) . x(u))| £ C[s| 2[5 +u| 727,

from which the desired results (3.5) and (3.6) follow by integration.
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Proof of iv). We prove only the case o = 0. Other cases can be proved similarly.
By the definition of S (t, x) and the law of conservation of energy, we have

S,(t,x) = t{n,(t,x)*/2m + V(sn(t,x)) }

t

= 2§ V(x,(u,n(t, x)))du + (sn(t, x))*/2sm

0

= (s+ 0 (t, x)*2m + tV(sn(t, x)) — 2j V(x,(u,nt,x)))du.
0

Therefore

S(—s—R,x)=—Rn(—s—R,x)*2m+(—s—R)V(sn(—s—R,x))
-s—R

-2 | Vixun(—s— R, x))du.
0

Take K, such that K = < K, « = R"\{0}. For xeQ} _(K),n(—s— R,x)eK, for
sufficiently large —s. lim n(—s—R,x) exists and lim (—s—R)V x

(sn(—s—=R,x))=0 uniformfywon K, since (n,U(—s— R)Uo(s)7—t’2‘"a)‘ ! converges
uniformly on QF (K). Now Lemma 2.1 and Lebesgue’s dominated convergence
’ s—R
theorem imply the uniform convergence of the integral f V(x (u,n(—s—R,x))du
(4]
as s > — 2. This completes the proof.

(QE.D)
Remark 3.2. We remark here that for x = QF“(n),
~R n?
S* _(x)= lim { | L(x_(u,a,m), Sc_(u,a,n))du-#%s}. (3.10)

Now we turn to the study of the solution of (3.1) in the region (¢, o0) with ¢ > 0
sufficiently large. We take K < < R"\e(a)** and take K, suchthat K c =« K, = =
R™\e(a)°*. Then obviously there exists a constant ¢,, > 0 such that

|det(On ,(a,n)/on| = 6, neK,. (3.11)

Therefore the mapping S¢% =5 (a,n) is a locally uniform diffeomorphism
on K, and for any i, € S¢K, there exists a small neighbourhood U, (1,) = S9K,
such that the inverse image (S¢)"*U, (1) consists of a finite number of disjoint
components {U,(1,)} on each of which S¢ is diffeomorphism. Thanks to the
property (2.12), the correspondence from 7 (a,n) to x_(t,a,n) is diffeomorphism
for sufficiently large t >t,,t, is determined only by K. So that the mapping
x_(t,a;) for t > ¢, is also diffeomorphic on U,(n,). Let us take such U,(y. ) for
cach 1, €SYK. Obviously {U,(n,),n, €S¢K} forms an open covering of K. Then
a simple compactness argument shows there exists a finite number of relatively
compact open covering {U,} of K such that U, = K, and on each U,,S¢ and the
mapping x _(t,a, )(t >t,) are diffeomorphisms. Let us take one of these U,’s
and label it as U.
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Lemma 3. 3. Let Assumption (A) be satisfied. Let K = < K, = = R\e(a)”™. Let
us take U and t, > 0 as in the preceding remark and define the function S(t, x) on the
domain 2(t,,U)= | ) {t} x 7, U(t + R)W* pn5 U as

t2to

S(t,x) = jL(x_(u,a,n(t,a,x)), x _(u,a,n(t,a,x))du

+ SR _(x_(— R,a,n(t,a,x)). (3.12)

where n(t,a,x)eU is determined by the relation x = x_(t,a,n(t,a,x)). Then the
following statements hold :

i) S(t,x) is an infinitely differentiable function on 2(t,, U).

1) S(t, x) satisfies the Hamilton-Jacobi equation (3.1) on the domain 2(t,, U).

i) (0S/0x)(t,x)= ¢ _(t,a,n(t,a,x)).

iv) Let us define the function K, (t,x) on the domain 2(t,, U) as

K, (t,x)=—(Q2m)" f(A S)u, x _(u, a,n(t, a, x)))du. (3.13)
Then for any multi- mdex o there exists a constant C, > 0 such that

|(6/ayy K, (t,x)| £ C, log, (3.14)
where y = x_(t,,1(t, a,x)).

Proof. Statements i), i) and iii) can be easily checked. We prove iv) only. As in

the proof of Lemma 3.1, we can easily get the following estimates from Lemma 2.7
and (3.11):

|@/ox)yy(t,x)| S Ct P, =1y, |a|=1; (3.15)
[@/oyyx(t.n(ty,a, )| S Cot. 121, || 21; (3.16)
[@/ayy(E_(tnlty,a M S C, t 210, || =15 (3.17)

Since (0S/0x)(t,x) = & _(t), we can use the formulas (3.7) and (3.8), and after a simple
calculation we get

|(0/yY(A,S)(y, a, x_(u,a,n(t,a,x)))| < Cu ™, (3.18)
for any u =1, and multi-index o, from which the desired estimates follow by
integration. (Q.E.D)

4. The Asymptotic Behavior of the Wave Operator W"

In this section we study the asymptotic behavior of the wave operator W" on the
coherent state f. The crucial step of the study is the following theorem.

Theorem 4.1. Let Assumption (A) be satisfied. Let K = = R"\{0} and R be the
constant determined in Lemma 2.1. For f € A with supp f < K, let us define the func-
tion f, (t,x) fort £ —s—Ras

Just:X) = (m/is)"2f (n(t, a, x) ). (4.1)
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Then
lim sup sup ” e—izyh/th’a(S)f _ eiSs(t,x)/hfa (t,%) “ =0. 4.2)

B0 —szZRO0St<-s—R
Proof. For simplicity we assume a =0 and m = 1. First of all we remark that by
the well known result exp(2K(t, x))dx = dy, for y=sy(t,a,x) (see for example
Maslov [11]), weeasily see || £(¢,x)| = | f || Since exp( — it H"/h)T" is also unitary,
it suffices to prove (4.2) for f € C7*(K). Since, as can be easily checked, f(z, x) satisfies
the transport equation

0 " [0S 0
éﬂw““)§<aiﬂﬁﬁﬂmw+2*u§mmmmw=a “3)
we get
L0 W . .
<1h ot EA - V(x)>e‘S‘(”")/"fs(t, x) =27 th2eSIM(4_£)(t, x). (4.4)

Since exp(iS,(0, x)/h) £.(0, x) = Ti(s) f, we get by (4.4) and Duhamel’s principle that
” e-ith/th(S)f . eiSS(t’x)/hfs(t, X) ”

s(h/2)

t
[ e OHN I iSs DI A ) (11, x) )du
0

< 2] [[(A,£) w, x) | du. 4.5)

In what follows we omit the index s. Let us write sy (u, x) = y(u, x) and g(y/s) =
s~ (y/s).
Then
A, f(u,x) = 4,5 Dg(y/s))
= 2(4.3) 1 (OK/3y g(y/s) + 5~ '(0g/dy,) (y/s) } X
k

+ 2 (O9,/0x,)(@y,/0x) [ {0K/0y,)(OK/0y,) + (0*K/0y,0y,)9(v/s)}

k.j,i

+ 571 (6g/0y)(v/s) (0K /0y, + (0g/0y)0K /0y,) }
+57%(0%g/0y,0y) (y/s) Je" . (4.6)

Now remembering that || exp(K(u, x))s"?h(y/s)|| = || 7| for any he [*(K) by the
preceding remark, we get by Lemma 3.1 and (3.9) that

1A f )| < Clss+ul 27 s s+ ul s [+ s 1S
+IsPsHu s s e T2 s TP s ke TR S s A1)
<Cls+e7?] 11, @7
Therefore for 0 <t < |s + R|,

W) || Af u,x)||du < Ch| £, [ |s + u| 2du
0 0
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< Chlflls+el"t = Chl SR,

which proves the desired result. (Q.E.D)
Now we can state and prove the main theorem in this section.

Theorem 4.2. Let Assumption (A) be satisfied. Let K = < R"\{0} and fe# have
supp f < K. Let us define as

(Wf,Rf)(x)~e'5‘f i [det (0Q4 (n)/0(n) |QRa T AR2F((Q%) 1x).
Then

hm “ eiRHh/ﬁW;:f;h . W?_ ,Rf “ =0 (48)
h O
Proof. From (4.2) we get
0=1lim lim H eu(s+R)H”/h —isHE /ﬁfh tSs(~SvR,x)/Ffa S( —s—R, XT) N ) (49)
Blo s- - oo ’

The first summand in the right of (4.9) converges to exp(iRH"/A)W" f" and the
second to W . fas s— — oo by virtue of Lemma 2.3, Lemma 3.1 iv) and the
relation exp(2K(t x))dx = dy, y = sn{t,a,x). This proves the theorem. (Q.E.D.)

5. Approximate Fundamental Solution and the Stationary Phase Method

Continuing the approximation scheme, we study here the asymptotic behavior
of the solution e~ *#"/"W* fh as h — 0 for sufficiently large ¢ > 0. The fundamental
tools in this section and the next section are the approximate fundamental solution
of the Schrodinger operator due to Fujiwara [3], the L*-boundedness theorem
for some oscillatory integral operators by Asada-Fujiwara [2] and the stationary
phase method. We first review results of Fujiwara [3] and Asada-Fujiwara [2].

Theorem 5.1. (Fujiwara). Let V(x) be a real valued infinitely differentiable function
on R satisfying the condition

a A€
(&) V(x)

Then there exists a constant 6 > 0 such that the following statements hold:
i) For any te[ — 0,0] and x,yeR", there exists a unique solution of the equation
of the classical motion (2.3) such that x(0) = y, x(t) = x.

(©) <C, for |o| 2 2.

i) Let S(t,x,y)= jL x(u, ), x(u, y))du be the action integral along the classical

orbit and let ¢(t, x,y) = tS(t, x,y). Then

(2, x, »)eC*((— 3,0) x R" x R), (5.1)
[(@/0xy @)y bt x, )| < C,y i || +|B] = 2. (5.2)
|det(@2/ox0y) (6, x, )| = 27, (5.3)
|(@/exy(0/oyV(A d — nm)| < C,pt, (5.4)

where (0%$/0x0y) in (5.3) is the matrix {¢*/0x,0y,} -
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1it) Define as
a(t,x,y) = e~ " *(m/2n|t| y'?
1 t
'exp< ~3 [m=14_S(u, x(u), y) — n/m)du).
0
| t l n/2
Then the function P alt, x, y)is an infinitely differentiable function on ( — 9, 0) x

R* x R" satisfying the following conditions:

|@/oxP @/ ale,x, )| < C ]2, (56)
|(0/0x)(0/0y)P A alt, x, )| < Caﬂ[tl"/” L (5.7)
iv) Let E(t,h) be the integral operator (te[ — d,0]) defined as
Et,h)f (x) = h~"2 [ eSCxDg(e s y)f (y)dy, for feCE(RY). (5.8)
s
Then the operator E(t,h) can be extended to a bounded operator on # and statifies
|Eeh|sC, —-0<t<96; (5.9)
s — }Lng E(t,h) = 1,1 is the identity operator. (5.10)

v) Let T>0 and O0=t,<t, <...<ty=T be an arbitrary subdivision of [0,T]
such that 6(A) = max|t;, ; —t;| <. Then for 0<h=1,

J .
H E(ty —ty_;-h) ... E(t, —ty,h) — e tH'/M H < Cy 4h (5.11)
and moreover

lim || E(ty — ty_y»h) ... E(t, —ty) — e ™| = 0. (5.12)

HA)—0

For the proof and the details, see Fujiwara [3].
The following theorem on the boundedness of certain integral operators due
to Asada-Fujiwara [2] also turns out to be quite useful.

Theorem 5.2. (Asada-Fujiwara) Let ¢(x,0,y) be a real-valued infinitely differen-
tiable function on R" x R™ x R" (the case m = 0 is not excluded) such that

[(0/0x)(0/00)(0/0y)Y d(x,0,y)| < Cypo if loa| +|B|+ o] = 2, (5.13)
there exists a constant 6 > 0 such that
* det[(ﬁsz)/@x@y) (624)/6)(09)}
(C2p/000y) (02 ¢/0000)
and let a(x, 0, y)e B(R" x R™ x R"). Let us define the integral operator A(y) as
AR (x) =92 [ 4Da(x, 0, y)f (y)dydo. (5.15)

Then there exists a constant C >0 determined by a finite number of C,;.’s and
6 > 0 such that

lamrisclrl foryzt (5.16)

>5>0, (5.14)
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Furthermore if a = 0 in a neighbourhood of C, -

Cy=1{(x,0,y)eR" x R™ x R":0¢/30 = 0}, (5.17)
then for any M > 0, there exists a constant C,, > 0 such that
Iy =™ 1l izt (5.18)

See Asada-Fujiwara [2] for the proof, the rigorous definition of the integral
(5.15) and the details.

For aeR", let us take the domain U = = R"\e(a)** and t,€R" as in Lemma 3.3.
Let fen have supp f = U. We study the asymptotic behavior of exp(— i(t, +
R)H"/hyw™" ™. ' We write as T = to + R. Choose N sufficiently large such that
T/N =t < J, where 0 is the constant appeared in Theorem 5.1. By Theorem 5.1
and Theorem 4.2 we have

lim “e—ion"/hW}: fah _ e—iTH"/ﬁWI_z af ”
hlO ’

= lim|| e~ "yt {1 — E(x, )VWR f || = 0. (5.19)
hi0
We write as
WE flx)=¢ STy (),
= [det(@F _()/an)|— gre |~ 2em M ((QFL) T x). (5.20)
Then
N
E(t,h"W" f(x)=h=N"2 | exp<ih'1 Y S(r,xj,xj,1)>
RN j=1
N
[Ta(t,x;,x;_ )exp(ih™'S® _(xo)hg(xo)dx, ... dxy_y, (5.21)
j=1

where Xo=),Xy=x. Let us write 0=(xy_,....x,) and ¢, (x,0,y)=
Z S(r,x;,x; )+ SR _(x,). We want to apply the stationary phase method to the

jexpressmn (5.21). For each xeR", the point of stationary phase (0, y) is determined
by the equation

dig ,(x,0,y) =0, (522)
which is equivalent to the system of equations
08/0xy_ (T, %, %y _ 1) + 08/0xy_ (T, Xy_ 1, Xy_,) =0,

0S/0x (1, x,5,%,) + 08/0x (1, X, , )
0S/0x(1,x1,X) + OS® _(x,)/0x, = 0.

Lemma 5.3. For each xen U(T)W"Rn JU), there exists a unique (0,y)=
(Xy_1s- .,xl,y)e RN such that (0,y) satzsfles the equation (5.22) and such that
yern, W gn% (U), and for x¢n U(T)W* g% (U) there is no point of stationary
phase such that yem, W* RT3 (0).

If
=)

(5.23)



Quasi-Classical Limit 119

Proof. Since (a) — 0S/0y(t, x, y) and 0S/0x(t, x, y) are the initial and final momenta
of the particle which starts at the point y at time zero and reaches the point x
at time 1; (b) 0S® _(y)/dy=¢_(— R,a,n(— R,a,y)); (c) the mapping Usn—
x(ty,a,n) is difftomorphism; (d) for any fixed yeR" the mapping R*sx —
0S/0y(t, x,y)eR" is a global diffeomorphism by virtue of (5.2) and (5.3), we can
conclude that for any x,em, W< n% (U), the solution of (5.23), considering
(%,Xy_y,...»X;)as an unknown variable and x, = y as a parameter, is determined
uniquely as x,=x_(—R4+rt,a,7(—R,a,%y)),....Xy_; =%x_(— R+ (N = 1),
a,n(— R,a,x,)) and x = xy = x_(— R+ Nt,a,n(— R,a,x,)) = x_(ty,a,4(t,,a,x)).
By virtue of Lemma 3.3 the mapping Q’f;"_(U)ax_(— R,a,n)— x_(ty,a,n)e
nIU(T)WC_” &7 (U) is a difftomorphism, this implies the lemma. (Q.E.D)
Let us define C,(U) as

Cy(U) = {(x,0,y)eR" x RO R d \d(x,0,y) = 0,yeQ" (U)}  (524)

and the mapping i: C4(U)— i(C4(U)) = A4U) as i(x,0,y) = (x,0¢/0x(x,0,y)) =
(x,&_(ty,a.n(ty,a,x))). Then we have the following lemma.

Lemma 5.4. C,(U) is n-dimensional C*-manifold immersed in R™ """ and is
precompact.

Proof. Since C4(U) is determined by the equation d(g’y)qb(x, 0,y) =0, for proving
the first statement it suffices to prove that d(0¢/00,),...,d(0p/d0 ),
d(0$/dy,),...,d(0¢/dy,) are linearly independent at each point (x,0,y)eC4U)
as elements of T*R*™* 1 that is,

(5.25)

@iy 2afeyay greyan
T g2/0x00 92pjoyo0  *¢l0600 | ="

Since S(t,x,y) and S(t,x,y) + S® _(y) satisfy the condition (5.3), the remark of
Asada-Fujiwara [2] (at the end of Sect. 2 of [2]) shows

detl:ﬁqu/@x@y 62¢/606x] 0.

32000y  0%p/0000 (5.26)

at each point (x, 0, y)e C,(U), which obviously implies (5.25). The second statement
is obvious. (Q.ED.)

Lemma 5.5. The mapping i: C,(U)— Ay U) is Lagrangian immersion. The pro-
Jection

m, Ay U)3(x,0¢/0x) - xem, (4,(U))
is a diffeomorphism.

Proof. The first statement is proved by Hérmander [7] (see also Asada-Fujiwara
[2]). The second is obvious by Lemma 3.3. (Q.E.D)

Lemma 5.6. There exists a constant k > 0 such that on C,(U),

|det Hess, , (¢)(x.0,y)| = k>0,
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0% ¢/0ydy aZqﬁ/ﬁﬁﬁy} (5.27
82¢/oyo0 920000 | 27)

Proof. By virtue of Lemma 5.5, dx,,dx,,...dx, are linearly independent on
C4(U). On the other hand on C,(U),d ¢ =0 and d(0¢/c0,)...,d(0d/00y_ ;)
d(0¢/dy,)...,d(0¢p/0y,) are linearly independent in T*RV"* D, Therefore dx,,
dx,,...,dx,,d(0¢/00,),...,d(0¢/dy,) span the whole T¥, R"™*1. This implies
obviously that det Hess, ,(#) # 0 on each (x, 0, y)e C(U). On the other hand the
function Hess, ,(¢) is continuous on C,(U) and C4(U) is compact. Combining
these facts, we get easily the desired constant x which satisfies (5.27). (Q.E.D.)
Now we can state the main theorem of this section.

Hess(a, y)(qb) = [

Theorem 5.7. Let Assumption (A) be satisfied. Let f € # be such that supp f < U.

Then
lim sup || e~ "W fh— o= det (Ox(t, a,n)/on)| "M
o t=to
e U (R ES)) “ -0, (5.28)

Here S(t,x)= 3 L(x_(u,a,n(t,a,x)), x_(u,a,n(t,a,x)))du+S® _(x(—R,an(t,a,x)))

-R
and Ind,y(x) is the so-called Keller-Maslov index of the path y,= {(x_(u,a,x),
¢ _(uya,n(t,a,x))): — oo <u <t} and is defined explicitly in the proof.

For proving the theorem we need the following lemmas:
Lemma 5.8. Let alt,x,y) be the function defined in Theorem 5.1. Fix yeR"
and consider alt, x, y) = alt, x(1,y),y) as a function of t and § = — %g(t, x,y). Then
a(t, x(t,n, y), y)2dx(t,n, y) = e~ "™ %dn for any 0 <t <.

Proof. We first prove that a(t, x(t,n), y)*dx(t,n) is t-independent n-form. To see
this we differentiate this n-form by t and get

dita(t, x(t,1, y), y)?dx(t,n) = 2((6a/0t) + i ((3a/0xj)(dxj/dt)>a(t, X, y)dx
j=1

ne

+ alt,x,y)* Y. dx; A ... A di;(dxj) Ao Adx
j=1

Since d/di(dx ;) = d(dx;/dt) = d(@S/@xj(t, x,y)= Y. (02S/6xj6xk)dxk, the right hand
k=1
side is equal to a(t, x, y)dx multiplied by

2<6a/0t + Zn: (0aj0x;)(0S/0x ;) + 2~ 1(AS)'G>

ji=1
which vanishes identically by the definition of a(t, x,y). Since lim t™"dx(t,n) =
t—0
lim d((x(t,n,y) — y)/t)=dn and the construction of a(t,x,y) shows that
t—0
limt"2a(t, x, y) = e~ ™*, we get the desired result. (Q.ED)

t—0
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Lemma 5.9. For (x,0,y)eC4,U),
det Hess(@,y)(¢) (X, 99 J/)

N
= det Hess(g’y)< Y S, x;x; )+ S8 w(y))

j=1

= det(dx/0y)-det (32S/dxydxy_,)... det(@2S/0x0,x,)-det (62S/6x,0y).
Proof. Since d, ,(x(y), 0(y), y) = 0, ye Q¢ (U), we have for j=0,...,N — 1,

(0/0y)(00h/0x (x(1). 0(), y) = . 0*p/éx 0, 0x, /0y

k=0
=0, where xy = x,x, = J.

Hence for 1 =,

(028/0x 0, (T, %, (1), X {(y)):Ox;,, /0y
+(07S/0x7) (T, x; 4 1 (v), x{(v))-Ox;/By
+ (07S/0x3) (T, x (), x; 4 () 0x;/Dy
+(0%8/0x,0x;_ )T x(v), x; (1) 0x;_,/0y=0 (5.29)
and
0%8/0x,0y(t, x(y), y)-0x, [0y +02S/0y>(x, x, (1), y)
+ 52S§w/6y2(‘r,x1(y), y)=0. (5.30)
By definition
det Hess, , (¢) =
DR oy %Sjay *Sydx, O 0 .0
0*S/0x,0y 028/0x3(x,,y) + 0S/0x3(x,,x,) 0%8/0x,0x,-++-0
0 02S/0x,0x,  02S/0x3(x,.x,) + C7S/0x3(x5,X,) -+ O |.
0 0 = * * 0 028/0xp_ (X, xy_,) (5.31)

det

Multiplying the (j+ 1)-th column by 0x;/dy and adding those columns to the
first we get by (5.29) and (5.30) that the right hand side of (5.31) is equal to the
determinant of the following matrix:
[0 a%Sjoyox, 0

0 0*S/0x,0x, 0 0

O * x 0PS/0xy_0xy_,
L— 0%8/0x0xy_,"0x/dy % % *x * x|

which is equal to the desired quantity. (QEED,)
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Corollary 5.10
[det Hess(@)] " [ Jate,x,0)x;-, ()] = |det(@y/ox()] (5.32)

Proof. Since 628/6xj +10%;=— o¢ j)/0x;, 1, (5.32) is the immediate consequence
of Lemma 5.8 and Lemma 5.9. (QE.D)

Proof of Theorem 5.7. We first prove

lim H exp( _ itOHh/ﬁ)Wh f~h . eilnd(y)n/z+iS(ro,x)/h—inn/4
—Ja
hi0

‘|det(0x(ty,a,n)/on)| 2 ((ty,a,x)) | = 0. (5.33)

By virtue of (5.19), it suffices to prove (5.33) replacing exp(— itH"/R)W" " by
E(t,)"W?X f. Let yx(x,0,y) be an infinitely differentiable function on
R" x RV~ % R" with compact support such that x(x,0,y)=1 on a small neigh-
bourhood of C,(U). Using the function x(x,0,y), E(t, ) W® _f is divided into
two parts:
E(t,h)N W_R‘af
= 11(h)f+ Iz(h)f
=h N2 [N A(x, 0, y)y(x, 0, )hp(y)dydo

N2 [0 A(x, 6, y) (1 = 1(x, 0, ) hg(y)dydO, (5-34)

N

where A(x,0,y)= [[a(t,x;,x; ;). We first treat I,(h)f. Since d, ¢ # 0 on the

ji-1
support of 1 — x(xfg,ly), the first order differential operator
L=(|0p/00* +|0p/0y[*)~1(0h/00-3/00 + d¢/dy-0/dy)
has a meaning on the support of 1 — y(x, 0, y), and
_ ih,L(eid)(x,B,y)/h) = ib(0.3)/h

Therefore

Jelm 1IN A(x, 0, y) (1 — x(x, 0, y)hg(y)dyd0
= — [ih L(e™ "N A(x, 0, y)(1 — 1(x, 0, y)hg(y)dydO
= — hfie™ "IN A(x, 0, ) (1 — 1(x,0,))hg(y))dydo (5.35)
Since hg(y) has a compact support and ¢(t, x, y) satisfies (5.3) we easily see that
L¥(A(x, 0, y)(1 — 7(x, 0, y)hg(y)
= B, (x, 0, Y)hg(y) + By(x, 0, ) Chy JO(y),

where B, (x, 0, y) and B,(x, 0, y) are the functions in the space B(R" x R*™~1 x R,
Therefore by using Theorem 5.1 we get the relation

| Ly | = Chll 1]l
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with suitable constant C. (For the rigorous justification of the step from the 2-nd
expression to the third in (5.35), the partial integration, we refer to Asada-Fuji-
wara [2]. Such a justification will be also necessary in calculations in Sect. 6,
though we shall not mention it there.) For I,(h)f we use the stationary phase
method. First of all we remark that supp I,(h)f is contained in the fixed compact
set {xeR":(x, 0, y)esupp x for some (0, y)e R"~ YN x R"}. There exists a constant
K >0 such that [det Hessy ,(#)(x, 0, )| = x on C,(U). Then the stationary phase
method implies
N

“ (h lnen(Hess (P)mij2 — inm/4 | ann/4 H (x) X. I(x))ei¢’(X,0(x)q}’("))/h
()
ji=1
|det Hess g ,, b(x, 0(x), y(x))| = V2he(y(x))| £ C b, (5.36)

where Inert (Hess(¢)) is the inertia of the Hessian of ¢ and C . is the constant

determined by a suitable Sobolev norm of hg, hence by the one of f. As

in the proof of Lemma 5.3, x;x)=x(— R+ jt,a,n(ta,x)),j=0,1,....,N — 1.
N

Corollary 510 shows [] a(z,x(x), xj_l(x))-ldet(Hess(e,y@(x, 0(x), y(x))|~1/? =
ji=1

e“iN""/“Idet(oy( )/ox)|”'/2. By the construction of S(t,x,y), it is obvious that

D(x, 0(x), 1(x)) = Y- S(t, x(x), x;_(x)) + S* _ (¥(x)) = S(t,, x). Therefore writing as

Ind, () = Inert(Hess ¢(x, 0(x), y(x)), we get for f€ CF(U)

lim || I,()f — eM90m2+5@xh -in7/3| et dy(x)/ox | 2hy(y(x))]| = 0. (5.37)
hl0

(5.37) obviously implies (5.33) for f € C(U). Since the relevant operators in (5.33)
are isometries, we can get (5.33) for general f € # with supp f < U by the standard
argument.

Let us now prove the relation (5.28). Let K, (t,x) = K(t,x) be the function
defined by (3.13). Then the definition of K(t, x) implies that we can write as

ZZ(t)f(x) = |d€t (6x(t, a, 7/)/6’7) l - 1/2e~ inn/AeiInd((y)n/z +iS“’x)/'f(r](l, a, X))
— eiS(t,x)/heK(t,x){ ldet (ax(to ,d, ’,I)/an)IA I/Ze‘ inm/4
@2 (e, a, x(ty 4, 1(t, 6, X)) }
= (ISt eK(z,x)g(y(t’ X)), (5.38)

where y = x(t,, a, #(t, a, x)). Then the similar argument used in the proof of Theorem
4.1 shows that

t
” o~ iH Ry ﬁh - Zﬁ(t)f H < Ch j ll A (" Vg(y(u, x)) ”du

to
+ [l 7 Zh o | (5.39)
By (3.14) through (3.17) and the similar formula as (4.6), the first summand of the
right hand side of (5.39) can be estimated as follows:

Ch [ || A5 “Og(y(u, x)) | du < Ch fu~? log(u)| g || ,du

to

to
< CMh| f

2 (5.40)



124 Kenji Yajima

where C and M are the constants depending only on ¢,. From (5.39), (5.40) and
the result of the first part of the proof of this theorem, we can get the statement of
the theorem by the standard argument. (QED)

6. The Quasi-Classical Limit of the Scattering Operator

Using the materials studied in the previous sections, we study here the asymptotic
behavior of the scattering operator S" = (W")*W" on the coherent state /. We
study it in the momentum space representation, that is, we study the asymptotic
behavior of

S'e™ " (p)) = F"S"F " (e~ (p)).

Under the Assumption (A), 1, =7, () is a smooth function of yeR"\e(a).
We define as

e(a)™ = {neR"\e(a) : det n ,(n)/on = 0} L e(a) (6.1)
Obviously the set e(a)* is a closed subset of R”.

Theorem 6.1. Let Assumption (A) be satisfied. Let K = = R"\e(a)**. Then the
following statements hold.

1) For any n,€SK), there exists at most finite number of n;=n,n.)eK such
that 1, = Sil(n).

2) Let fe A be such that supp f = K. Then

lim || $(7..) — L™ w2 [ det an , (/|22 0.,
hi0 j

. ei(S(n M) = as (0 + )))/"f(;/’j(yl + )) ” = 0, (62)

where Ind y(n, ,n;) is the Keller-Maslov’s index of the orbit (x_(t,a, n) ¢ _(tan):
— 0 <t < 00),

S(r]+,r])— lim {jL(x (u,a, 1), X _(u, a,n;))du + sn?/2m — tn /Zm} (6.3)

Proof. We assume m=1. Let us take K, as K < < K; = = R"\¢(a)*. Since K,
is precompact there exists a constant d, >0 such that (3.11) holds for every
nekK,. Then by the remark following (3.11), the first statement of the theorem
is obvious. As in that remark, let us take finite precompact subsets {U,} such that
{U,} is a covering of K and S¢' is a diffeomorphism on each U. It is sufficient to
prove the relation (6.2) for f €A with supp f< U;, for some U,. Moreover, since
in this case the operators appearing in (6.2) are isometric, we may assume that
feCP(U). By virtue of Theorem 5.7 and by the unitarity of the propagator
exp(iH},/h) and the Fourier transform ", we get

lim sup || Z e Hoie =il hyyh i grhithZM()f || = 0. (6.4)
hi0 t210

Here we used the notation in the proof of Theorem 5.7 for Z!(t). The second term
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of the left hand side of (6.4) can be written as
FrSMIZI ) f= eI F 71 | (6.5)

To the right hand side of (6.5) we apply the stationary phase method. Using the
notation of Theorem 5.7 and its proof, let us write as

h(t, x) = ™72 | det (Ox(t, a, n)/on)| 1 2e” " (n(t, a, x))
— eK(t,x)g(y(x’ I)) (66)
Then

FrZNEf (n)= b~ feh T ECDTID (e, x)dx. (6.7)

Making the change of variable x to xt and writing v=ht" ', ¢(t,x,n) =
(S(t,tx)t ' — xn), and h(x) = t"?h(t, tx), we have

F'ZX0)f (1) = 2mv) " [ 405 ()dx. (68)

For each neR" the point of stationary phase is determined by the equation
d ¢(t,x,n) =0, that is,

08/0x(t,tx) = 1.

Since 0dS/0x(t,tx)= & _(t,a,n(t,a,tx)) and the mappings n— ¢ (t,a,n7) and
n— x_(t,a,n) are both diffetomorphisms on U by Lemma 2.7 and Lemma 3.3,
we can easily see that if nen,U(t + R)W* r(U), there exists a unique point of
stationary phase x = x,() = x_(,a,%)/t and otherwise there is no point of sta-
tionary phase. Let us write as

C(U) = {(x,n,n) :nem, Ut + RIW* ((U)} (6.9)

By Lemma 2.7 and Lemma 3.3, we can see that there is a precompact subset

VR x R, W< Kc W, < K, such that ¥ is a neighbourhood of the diagonal

set of SS(W) x S(W) contained in SS(W,) x S(W,) such that (] C(U)=c V.
t=to

Let us take as infinitely differentiable function x(x,#) on R" x R" with compact

support such that y(x,7) = 1 on V. Using the function y(x, ) we divide Z"Z"(t)f (n)

into two parts:

FrZNOf (1) = Qrv) =" [ Sy (x, )b (x)dx
+ (2my) =2 [T I — y(x, m))h,(x)dx
=1, v)f () + L@t v)f (). (6.10)
We should remark here that in each integral of (6.10), there exists a compact
subset of R” such that the support of function h/(x) is contained in it for t > ¢,

by Lemma 2.7. We first study I,(z, v)f (). Define the first order differential operator
L, by

L=(2 @oioxy )

" @dfox,-o/ox,
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which satisfies
- ith(ei“" ‘¢(t,x,n)) = iV (X (6.11)

and

=L~ {( Y (aqb/ax,-)Z)*lm

n -2 n
-2(2 (aqs/axj)z) Yy (6¢/8xj)(3q5/@xk)(52¢/6xk0xj)} 6.12)

Jk=1
Hence writing the second term of the r.h.s of (6.12) as G(t, x, p),

Cry Lt v)f () = — ivey "2 LY 0) (1 — y(x,7))h(x)dx
= — vy W2 [V PRI P((1 — y(x, 7))k (x))dx
= vy M2 [ TIORD(] — y(x,m))L(h(x))dx
+ vy [ TR (1 — y(x, 1)) + G(t, x, 1) Ph(x)dx
=11, +11,. (6.13)

By Lemma 2.7 and Lemma 3.3 we can easily see that
Ll = x(x,n)) + G(t, x,n)e B(R" x R"),

uniformly in t >t,, and ¢(t,x,%) obviously satisfies (5.13) uniformly in 2= t,
(taking the number of variable 8 = m = 0). Hence by Theorem 5.2, we get

1L scvnx| s cv|nex)| vl (6.14)
To estimate I1,, we first note that, using the terminology (5.38),
8/0x (h(x)) = 0/0x (X" Ig(y(z, tx)) )t
= (0K /0x )eXg(y(t, tx) )t
+ eK(3g/0y) (e, tx))- tOy/Ox)e>.

Since (1 — x(x,n))(X(0p/dx )~ 0¢/0x,€ B(R" x R") uniformly in ¢;|0K/0x,|=
t|Y (0K /0y ) 0y, /ox)| < Ctt~ 1 logt— Clogt and t]|dy/ox| < C by Lemma 2.7
and Lemma 3.3, we get again by Theorem 5.2 that

11, || < Cvllogt [ h(x)|| + [|*(@g/oy) (e, x)) )

< ChjtQloge| £+ /1) (6.15)
Summing up the relations (6.14) and (6.15), we get
I, p)f || < Che~ logt| £ 1], (6.16)

Now we turn to the study of I,(t,v)f(n). Since C,(U) converges to C_(U), we
may assume that for any t > ¢, and nem,V, there exists x,(7)e S¢(W,) such that
0 =d. ¢(t, x,n),n). For (x,(n),n) the function ¢(t, x,#) can be written as

d(t,x, 1) = (2, x,(n),n) + (x = x, ()" Bt x, 1) (x — x,(n)). (6.17)



Quasi-Classical Limit 127

1
where B(t, x,1) = [(1 — u)0?¢/0x*(t, ux + x,()(1 — ), n)du. Since Hess_¢(t,x,n) =
0

i(Hess_S)(t,x) = (0¢_/x)(t, a,1(t, a, 1))
=08 _(6,a.1)/ 0N, paen HOX_(ta0)/00 ], i)™

Lemma 2.7 and Lemma 3.3 imply that the family {Hess, ¢(z, ...,)},.,, is equi-
continuous and are non-singular on V. Therefore by Morse’s lemma, implicit
function theorem and a simple compactness argument, it follows that there
exists a finite number of subsets V, of R" such that each V, is precompact open
set, UV, o V and on each V, there exists a change of variable x to y = y(x,t,7)
such that {y(x, t,n)},Z,0 is a bounded set of Z(R"x R") with its inverse,
yxm).t,n) =0, det ox/oy(x,(n),t,n)=1 and B(t,x,n)=2""Yd(t,n)y* where
dft,n)s are the eigenvalues of the matrix Hess ¢(t,x,(1),n). Let {d(x,n)} <
Cy(R"x R" be the partition of unity on V subordinate to the covering
{V,i}, 0,(x,m) = &,(x,n)x(x, n). Using the function w (x,#) we divide I, (1, v)f (1) as

L v)f () =21, {6 v)f (n)
k
=Y (2mv) "2 [T NGy (x )R(E, tx)" 2 dx
k
- 2(27'[\’)‘"/2 j‘eiv“ Lo, x (m),my+iv= 127 15d,y3
k

"2, (x(y, 1, £), WAL, tx(, 11, 1))- det (Ox/dy)dy
= Y e bRy T2 [ 12T LA (¢ p)dy, (6.18)
k

where hy(t,y, 1) = t"*w,(x(y,n, t), Dh(t, tx(y, n, t))det (0x/Dy).

Since (Hess, ¢(t, x,77)) ™! is uniformly bounded in (1, x,n)e{t = t,} x V, y(t,x,n)
forms a bounded set of #(R" x R")for t > t, with its inverse function. Furthermore
there exists constants C, and C, such that C; < ‘d 1t n)l < C, on the support of
hg(t, y,1). Therefore by a similar argument used in the proof of Theorem 1.1 we get

[ 1, E)f () —e™ ‘pwxi e +inm/dgn/2| det (Hess, (1, x,(n),7))|~"?
~,(x, ), (e, x,(n)t) |

1
< Cv | [ds[(vs) 2l AT Y 4, (2, 1) (7 /0y D)2, y, mdy H
0 1

1
<Cv) fds
10

(vs) "2 [ 0T @2 (e, v, )y U : (6.19)

Here we used that det(Hess, (t,x,(1),77)) > 0 which follows from Lemma 2.7.

After changing back variable y to x, the integral in the third of (6.19) can be
written in the form

Y (vs) TR [T xNg (1 x,1)(8/0x)h(t, tx)t"2dx,

lal =2

where the functions a,(t, x,%) are contained in a bounded set of Z(R" x R") for
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t>t,. Since (0/0x)*h(t, x)t"? = t"2{(0/0x) (e “g(y(t, tx)))} and |(0/0x)K(t, tx)| <
Clogt, we get |[(0/0x)g(y(t,tx))exp(K(t,tx))| £ Cllgl,=C| f], and
|| (0/0x)"h(t, x)t"* | < C logt. Therefore again by Theorem 5.2, we get that the
right hand side of (6.19) can be estimated by Cht™ !(logt). Combining these
estimates with the estimate for I,(t, v)f we finally get the following estimate:

lim sup || F"eHblhe = tH Ry fhiy )

hlO t2to

— inditn s )ein12+ 120 51(S (2,014 )) = x, (1 + )04 )/

|det an (6, a0 |y yoan |~ tan )| = 0. (6.20)

Since tx(n,)=x_(tantan))xmn, —m,/2—aan I, =x_(ta
nt,a,n,))—ty, —a,(a,n,))m, converges to zero as t — oo, we get the desired
relation, taking the limit t — oo in (6.20). (Q.ED)

7. Concluding Remarks

Remark 1. We first want to explain here the technical reason why we took
e~ ™l ¢ () as the initial state instead of ™% "f(x) which, in the limit & — 0, gives the
ensemble of the classical particles with the fixed momentum ¢ and the configura-
tion distribution density | f (x)]?. Indeed the fixed momentum scattering would
be more suitable in the classical mechanics because of its popularity. However, in
spite of the fact that as h— 0 the state ™ /f(x) is propagated by the free motion
exp(itHp: /h) as the ensemble of the classical particles with the fixed momentum &
in finite time region, it is not uniform in ¢t > 0 > 0. We can see it from the following
remarkable fact: for any f € #,

lim | etof (x) — (m/it)"2e™*2'f (mx/t)|| = 0. (7.1)

=T

The relation (7.1) implies that we cannot prepare the ensemble of the fixed momen-
tum incoming classical particles from the quantum mechanics, at least in
[?-theoretical framework.

Remark 2. In the theorem we have the finite sum over the incoming momentums
with the same outgoing one. These summands are asymptotically orthogonal
each other as h — 0. This can be casily seen as follows. Since the classical mechanical
scattering operator is a canonical mapping on R" x R"\e we have a, ()=

0 d
<__ %)(S(yh- s’?j) - a+(’7j)~?7+) :/: < - M)(S(}’h_ ’nk) — a+(’1k)'n+) — a+(7]k) if

1, # 1;. Therefore by the stationary phase method we can see that they are asympto-
tically orthogonal each other as & — 0. Hence if f € # has its support supp f < <
R™\e(a)*™,

lim [, [S"e™"*"f(-)))|*dn = | |f@)|>dn, (7.2)
k=0 (571D
and (7.2) is still true for f € # with supp f = R"\e(a)** (standard argument).
Thanks to this relation we may say that Y |dn, (1 )/on j]‘l gives the “differential

J
cross section” associated with this classical scattering process.
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Remark 3. If f e H*(R") and supp f < = R"\e(a)**, the theorem can be improved
so that the norm before taking limit h— 0 is estimated by a constant times h || f |, .
This is an obvious consequence of our calculus.

Remark 4. A more general situation where the initial state is e~ ™/*f(5) with
general Se C*(R") and V(x) is a long range potential will be discussed in the forth-
coming paper [14].
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