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Invariant Measures for Markov Maps of the Interval*

Rufus Bowenf

Abstract. There is a theorem in ergodic theory which gives three conditions
sufficient for a piecewise smooth mapping on the interval to admit a finite
invariant ergodic measure equivalent to Lebesgue. When the hypotheses fail in
certain ways, this work shows that the same conclusion can still be gotten by
applying the theorem mentioned to another transformation related to the
original one by the method of inducing.

It is often difficult to decide whether a given map / : 1^1 of an interval admits an
invariant measure equivalent to Lebesgue measure. Piecewise differentiable /
which are expanding [i.e., inϊ\(fn)'(x)\>l for some ή] have such measures under
mild additional hypotheses [1, 11, 8, 13,16]. This paper gives sufficient conditions
for certain nonexpandings maps to have invariant measures. This result unifies a
number of examples and its conditions are quite computable.

A map /:/—•/ of the interval J = [α, b~\ is Markov if one can find a finite or
countable collection {/J of disjoint open intervals such that

a) / is defined on vlk and /\u/ fc has measure zero.
b) f\Ik is strictly monotonic and extends to a C 2 function on Ίk for each k,
c) if/(/ f c)n/. + 0, then f(Ik)Dlp and

R

d) there is an R so that (J fn(Ik)Dlj for every k and;.
« = l

A measure μ on / which is equivalent to Lebesgue has the form μ(E) = J p(x)dx
E

where p(x) is a positive measurable function. We will be trying to understand and
apply the following result of Adler [1, 2] 1 .

f"(z)Adler's Theorem. Let /:/-•/ be Markov, M = s u p sup
Ik y,zelk f'(yf

< + oo and

λn = inϊ\(fny(x)\>l for some n. Then f admits an invariant finite measure
X

dμ = p(x)dx with p(x) bounded away from 0 and + oo.



dμ = -j—^ — — while /2's invariant measure is infinite.

2 R. Bowen

Let us recall two well-known Markov maps which have invariant measures but
are not expanding. The first one is/1(x) = 4x(l — x) on [0,1]. This is not expanding
because x = f is a critical point. The second example is on / = [0, oo] :f2(x)=ί/x
on [0,1] and /2(x) = x — 1 on [1, oo]. This map is not expanding because x = oo is a

/ x \
fixed point with slope 1 to see this change the variable to u = . This example

\ 1 + X/
is of course related to continued fractions: x = [α0, av a2,...] where the α/s are the
number of iterates fkx of x that are in [1, oo] between visits to [0,1], It is
customary in studying continued fractions to use instead of f2 the map f3 of [0,1]
defined by /3(x) = fractional part of 1/x. One reason for this is that f3 is expanding
while f2 is not; another is that f3 admits the finite invariant measure

1 dx

Γn2 T + x
The relation between f2 and f3 is that f2 induces f3 namely, for xe [0,1], /3(x)

is the first iterate /2(x) which lies in [0,1). Adler invented the hypotheses of his
theorem to apply to /3. The main thrust of our result is that his conditions in fact
hold for f3 because of the way it is derived from f2. Furthermore, not only the
fixed point + oo with /2( + oo) = 1, but also the critical point x = \ for /x(x) can be
"induced away". The shift to infinite measure accompanies sources of slope 1 but
not critical points (answering a question of Adler [1]).

Before stating the theorem some acknowledgements are in order. Adler and

Weiss [3] studied Boole's mapping /(x) = x but didn't get the condition

M < oo above because of the interval they induced on. Ruelle's paper [12] giving a
value Rφ4 for which fR(x) = Rx(l — x) has an invariant measure led me to see if
inducing would work for critical points. After formulating this paper, I learned
that Bunimovich [for /(x) = qπ sin (x) (mod π)] [5] and Jakobson and Sinai [7]
[for fR(x) = Rx(l — x) for certain K's] had already induced near a critical point.
Jakobson and Sinai certainly know all the ideas we present, and Jakobson has now
gone much further than we have. Our paper is mostly calculus and takes a
computational approach.

1. Statement of Theorem

Throughout the rest of the paper / will always be a map of 1 = [a, b~] which is
Markov with regard to a finite set of open intervals Il9..., Id. The function fn is then
continuous on each open interval Iionf~1Iiin...nf~n+1Iini and extends to a C 2

function on the closure of such an interval. If x is not in such an open interval, then
x is an endpoint of two such intervals (unless x = a or b). fn(x) then has two values,
which we denote by fn(x —) and /"(x +). One naturally thinks of such an x as
being two points, x + and x —. Number the Ik = (ak,bk) so that bk = ak+1, for
l^k<d. We will consistently think of ak+1 and bk as distinct points, so that f(p)
makes sense for any peS = {aί,bί,a2,b2,...,ar9br} and f:S^S because / is
Markov. By this convention notice that if fnp — p with peS, then one must have
(/")'(p)^0. The height H(p) of peS is the smallest n ^ 0 so that fnp is periodic under
f:S->S.
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To formulate the theorem one needs a couple of calculus lemmas. The function
/[[x^xJ-^IR is not flat at x0 if for some r ^ l , /(r)(x0)Φθand / is Cr+1 on

Lemma 1. Suppose f: [x0, x j ->IR is not flat at x0. Then for U = (x0, x0 + ε) with ε
small

A(U)=M
Γ(χ)(x-χ0)

/(*)-/(*<>)
>0 and sup

xeU

f"{χ)(f(χ)-f(χ0))
<oo .

Proof, By Taylor's formula there are ξ1,ξ2, £3e(x0, x] with

Λr+l)/e \

/(x)=/w(x)(x-xr+ ' ( ^ - v + 1

/'(x) =r/«(x o )(x-x o y- 1

J V / */ V \j / V / V \j / ' / -4 \ i

where r ^ l is minimal subject to / ( r )(x0)φ0. Letting

(x-xo)
r ι ,

one has

/'(x)(x-x0)

f(x)-f(x0)

1)!

r\fr)(x0)\-(r+ί)Cr+1ε

\fir)(x0)\+εCr+ι

>r\ l -
|/ ( r»(x0)|+εC r + 1

\fr)(x0)\! '

The sup in the lemma is finite provided

(*)

or

\f\xo)r\>(r+l)εCr+1(ε).

This holds for small ε and in particular whenever the expression (*) above is
positive. D

x0 is a source for/:[xo,x1]-^[xo,x2] provided/(x0)=x0 and lim/~"x = x0 for
n—• o o

x near x0. This implies that / r (x 0 )^ 1. The source x0 is called regular if either (a)
/'(x0) > 1 or (b)/'(x) decreases monotonically to 1 as x->x0. Taylor's formula shows
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that (b) holds for a source x0 with f'(xo) = l and f{r\xo)ή=0 for some r > l . For
t/ = (xo,xo + ε) and xeU, let mv(x) denote the smallest m>0 with fmxφU.

Lemma 2. Let x0 be a regular source for f and U = (x0, x0 + ε) with ε small There is
a constant B(U)>0 so that

(fmuix)ϊ(x)> B^U\ for all xeU .
\x — xo\

Proof First assume f(xo) = l and choose ε so that f'(x) is decreasing as x-»x0

with xeU. Then (fm)'(t)^(/m)'(x) for x o ^ ί ^ x and m^mυ{x). So

crxwix-xo)^ ϊ (r)'(ί)Λ=rM-/m(χ0)^β

Suppose /'(xo)>l. Choose ε so that i=infΓ(s)>l. Define ύf(x) = log//(x).
set/set/

Γfs)
Then g'{s)= J-~-j and so

^I^-^I for X,J;GC7,

where c= sup \f"(s)\. For ίe[xo,x] one has [/fcί,/fex]C C/ for all 0^
teU

Since /|C/ expands distances by at least λ, and m — k—1 iterates of \_fkt, fkx] lie in
U, \fkx-fkt\Sελ-m + k+1. Then

λk% =λ-ί

I CF \

Therefore (/m)'(ί)^(/my(x)exp -—- and
\λ— 1/

cε

D

Points peS with H(p)>0 will be assumed not flat for / A standard interval
U= Up is one satisfying the conditions of Lemma 1 [x0 —p and LΓ = (x0,x0 + ε) or
U = (x0 — ε, x0) depending on whether p is an ak or a b j . For pe S with //(p) = 0 and
having period r, we will assume p is a regular source for / r. A standard interval
U=Up for such a p is one with fr\U continuous,

1 on Uλ{p}9 lim(f-r)kx = p for xeU
y fe->oo
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and such that Lemma 2 holds for Up [here xo=p,fr is used in place of/, and
C/ = (xo,xo + ε) or (x o -ε,x o ) ] .

Theorem. Suppose that f is not flat at points peS where H(p)>0 and all the points
peS with H(p) = 0 are regular periodic sources. Suppose standard intervals Up, peS,
are given with

a) fUpCUfp when H(p)>0 and
b) length Up<A(Up)A{Ufp)...A(UfHlP)-lp)B{UfH{P)p)

whenH(p)>0.
Finally suppose that

λ* = inff max \(Π(x)\:xφU Up\>l
l l ^ n ^ N peS J

for some N> 1. Then f admits an invariant measure μ equivalent to Lebesque, μ is
ergodic for f and μ is finite iff all the periodic points in S are expanding (i.e.,
\(fy(p)\>l where fp = p).

2. Examples

A number of Markov maps have the property that for some n>0

I ( / 7 M I > 1 for all xφS .

For the theorem to apply here it is enough to see that the periodic points of S are
not flat. The condition above implies they are all sources, Lemmas 1 and 2
guarantee the existence of standard intervals, a) and b) hold by using small
intervals, and A* > 1 by an obvious compactness argument.

A. Continued Fractions
x

Using the variable u= e [0,1] the map f2 of the introduction changes to

-u for we[0,£]

- M " 1 for M G [ ^ , 1 ] .

Here S={0,^ — , | + , 1}, \(f2)'(u)\>l except for u = 0,1, and u = l is the only

periodic point of S. The point u — 1 is a regular source since f'(u)= —τ decreases to
u

1 as u-»l. Thus the theorem applies. f2 is closely connected with the action of
GL (2, Έ) on IR as linear fractional transformations. It seems likely that to any
Fuchsian group of the first kind one can associate a natural Markov map of the
real line2.

B. Renyfs Example

Define / 4 on [0, oo] by

-^— for xe[0 , l ]
1 —x

x—1 for x e [ l , oo] .

This is in fact the case see Comment 2
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X
Using again the variable u = , /4 becomes

J. |~ X

\τ^r for W

The periodic points in S = {0,^ — ,^ + , 1} are the fixed points 0, 1. They are both
regular sources with slope 1 and | / 4 (M) |>1 for M + 0,1. The theorem applies, the
invariant measure being infinite in neighborhoods of 0 and 1 (this is not stated in
the theorem but is in the proof). Now /4 induces on [0,1] the map

x
x-> fractional part of

1-x

It follows that this map has an infinite ergodic invariant measure. This fact is due
to Renyi (see [1,11]).

C. Boole Mappings

Adler and Weiss [3] showed that /5(χ) = χ is ergodic on IR. Here we use the
x

/ i \
variable u = arctanxe [—§,§]. Then /5(u) = arctan (tanu— - ) and one com-

1
T h i s s h o w s f&u)

The periodic points in S are + f, both regular sources of slope 1. Thus f5 (and so
f5) admits an infinite ergodic measure equivalent to Lebesgue.

The generalized Boole mappings are

N

f{x) = x-

where the pt are positive and η1<η2< ...<ηN. These examples have been studied
by Schweiger [14], Lie and Schweiger [9] and Adler and Flatto. Here /'(χ) = l
+ Σpi(χ ~rli)2>l a n d one sees that each of the intervals from the partition — oo,
ηί,...9ηN,+oo are mapped monotonically onto (— oo, + oo) by / Choose
J = [ — A,A]D[ηί —1,^ + 1] so that |/(x)|^|x| for xφJ and choose the constant
c>0 so that

For B large choose a C00 diffeomorphism h of IR onto a finite interval / so that
a) Λ(χ) = χfo

b) h\)

c) /ι'(x)^^for |x|^B, and

d)
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Choose B large enough so Bc>\ and JC[ — B,B~\\ set f = hofok~1. For
one has

if

\f(u)\ = \f(u)\>l if \f(u)\£l

and

~ , _ , , . „, „„ B

For ueI\J one has h~ί(u)φJ, |/(^~1(w))|^|fe"1(w)| and

^ [ / ' ( / Γ ^ M by d).

Condition b) says that h(x) differs from by a constant on each of the intervals

(— oo, — IB) and (21?, + oo). Plugging this into the expression for f(x) one sees that
/' = 1 at each end point of /. These endpoints are sources for / because + oo are
for /; they are regular because / is analytic and not constant near them. Thus the
theorem applies and we recover the results of [9].

Another example with nonexpanding sources was handled by Bogoyavlenski
[18, p. 21]. The second class of examples are those with critical points.
Bunimovich [5] verified the hypotheses of our theorem when

/π(x) = nπ sin x (mod π)

on [0, π] and n ̂  2. The proof given in the next section has much in common with his
construction of an invariant μ for these /n's. The best known example with a critical
point is f(x) = 4x(l -x) on [0,1]. This / has an invariant measure because it is
conjugate by an absolutely continuous homeomorphism to a certain piecewise
linear map [15].

Let us see how the theorem applies to /(x) = 4x(l —x). This is purely
computational. Here S = {0, |±, 1}. Set Uί/2_ = [ | , | ] , l / 1 / 2 + = [ i f ] , ^ = [{§,1]
and U0 = [0,\~]. Then f{Uί/2±)cU1, /(UJCUQ and the formulas of Lemmas 1
and 2 give

Conditions a) and b) of the theorem are easily checked, as is λ\ > 1.
A computer program was written to check the conditions of the theorem for

smooth f(x) with a single critical point x0 and fn(x0) periodic for some n>0. The
conditions were checked for fR(x) = Rx(l — x) with the value # ~ 3.67857 found by
Ruelle [12] as well as over 120 other values of KG [3.5,4] with f\\) = fm{%
n<m^lO. Among these values of R, almost all possibilities n < m ^ l θ occurred;
we did not worry about roundoff errors, but these were probably not significant
since A* > 1 with n ̂  6 for most all but three of these R's. Jakobson and Sinai [7]
and Pianigiani [17] have shown that fR has an absolutely continuous invariant
measure for countably many values of R. Jacobson has now shown this is true for
uncountably many R's.

The program was also used to check the conditions of the theorem for
/(x) = l-2 |x | k on [-1,1] for 2^/c^ll here λ*>ί with n^Ί.
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3. Proof of Theorem

Throughout, / satisfies the hypotheses of the theorem. For K C [α, b~\ and xeK we
let nκ(x) denote the smallest n > 0 with fnx e K, and fκ(x) = fnκ{x)x. The domain of/κ

is a subset of K.

Lemma 3. // SnK = 0, there are M and λ>\ so that (fκ)'{x)\>λ whenever

fϊ = (fκ)Mxίs defined.

Proof. First consider x e f = [j Up; say xeUp and q = fH(p)p has period r. Then
peS

fH(p)xeUq and let m be the smallest positive integer such that frm{fH(p)x)φUq.
Then, by Lemmas 1 and 2 and condition a) of the theorem

H(p) - 1

B(Uq)
 g W-

H ( p ) χ<7l

When iί(p) > 0, condition b) of the theorem says that this quantity is bigger than
some constant v1>ί. When H(p) = 0, then q = p and \(frm)'(x)\>v2 for some
constant v2>ί because (/ r ) '>l on ^-{<?}. For xe% let gf(x) denote frm+H(p)x.
There is an integer ΛΓ

1 independent of x so that the following is true: if fkxeK is
on the /-orbit between x and g(x), then rm + H(p)<k + Nv This follows from the
fact that KnS = 0 and implies that the /-orbit between x and g(x) hits K at most
Nx times.

For xφ^KjS one lets g(x) be fnx with ne[l,iV] minimal subject to
\(fn)'(x)\ίiλ§. For any xφS, g(x) on the forward /-orbit of x is defined; \g'(x)\^μ
= min{υ1,ι?2,Λ$}>l and the /-orbit between x and #(x) hits K at most
AΓ2= max {iVjiVj} times.

Now suppose xeK and (fκ)
Mx is defined. The /-orbit between x and (fκ)

Mx
does not hit S since f(S)cS and Sni£:=0. Thus there are defined g{x\g2(x)
= β(g(x))> •> ^'(^λ ^ + ^^ί with / / x on the /-orbit between g\x) and gfJ"+ :(x). Now
M^N2(j+1) and the number of points on the /-orbit from f^x to gfJ'+1(x) is at
most N2 hence, if α = sup \f'{y)\,

For M large this is bigger than 1. •

Lemma 4. Let V be a small open interval with periodic source peS as an endpoint.

Then V contains a point of S= I) f~kS.
k = 0

Proof, lϊ xφS, then gjx above is defined for a l l7^1 and so

sup |(/7(x) |= + oo.
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If the present lemma were false, by induction one would have that f\fmV is one-to-
one and continuous and that fmV is an interval for all m > 0 (/ is a homeo-
morphism on any interval disjoint from S). Since / T J V (here frp = p\ one gets
that VcfrVcf2rVC ... is a strictly increasing sequence of open intervals. / m T h a s
endpoints p and qm = fmrq0- The sequence qm is strictly monotonic; let q = limqm.
Then frq = q by continuity and fr'.[_p,q]^>[p,q] is a homeomorphism. Since

4 = lim fmrqφ q is a sink for / r and (/ r) '(#)^l. Then
m —• o o

sup|(/7(ήf)|= sup |Cf)'(β)l<°o
n>0 0</7<r

and so qeS, i.e.,fkqeS for some /cΞ̂ O. Then qeS because q is periodic a n d / S c S .
This is a contradiction since all periodic points of S are sources. •

Let s denote the number of periodic orbits in S. Let rί,...,rs be their periods
and choose points p l 5 . . .,p s on them. By Lemma 4 one can find points yieSnUjPι

arbitrarily close to pv By making the y. very close to the p. one may assume that

fk~riy^Ufkpt for O^k<r £ (1)

and

z(p) = ΓH(p)z(fHip)p)εUp for peS, H(p)>0 (2)

are well defined: For (2) we are using that fH(p): Όp->Όfmp)p is one-to-one. Define

Wp = (zip\p\ [or [p,z(p))] for peS.
Let;© be the largest j^0 with fjy^S and let

Then S, T and Z = {z(p):pG<S} are pairwise disjoint. We may assume that

Tn [J Wp = 0 by using f~Mriyt (M large) in place of yt if necessary. Let
peS

S' = SuTuZ partition [α,fo] into the intervals {Jl9...,./t}. We claim that / is
Markov with respect to these intervals. That f(S')cS' and / is Markov using
{/l5...,/d} imply conditions a)-c) in the definition of Markov. There is Q so that

R + Q

fQS'cS; then (J fn{Jk)^Jj where R is from condition d) for the /fc's.
n—\

The Wp's (peS) are among the Jfc's, as are the intervals ^ = 0/^^)] . Setting
q^Γ'-'Pt, one has / ( ^ J ^ u ^ and f(Wp)=Wfp for p e S - ^ , . . . , ^ } . Let
X = [α, fe] \ (J Wp and / x be the map induced on K by /, as defined earlier. K is the

\peS

union of certain JJs.

Lemma 5. fκ:K-+K is Markov.

Proof. Notice first that fκ is defined on K\f~xS. For 1 ̂  i g s let Wt = | J P^/kp..
~ ~ /c = 0

Then / : FJ^->ί^ul^isa homeomorphism use the branch of / " x here to define L 7
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= f~jVinWiΐoτjtl. For O^k<rt one has

Since/is Markov with respect to the intervals {Jl5..., J J , it is Markov also with
respect to {Ju>v = Jur^f~1Jv'Λ^u,vSt};fJuv = Jv when JM>ί; + 0. When Ju is some
Wp(peS), then J u > ϋ φ0 for only one υ and that Juv = Ju=Wp.

For peS let i(p) be the i so that fH{p)p is on the orbit of pt. If JMjt;Φ0 and
Jυ=Wp(peS), define JUtυ9j =

 Jutυ
nf~1f~H{JP)Li{p)s τ h i s i n t e r val will be nonempty

for those /s congruent mod ri(p) to some fixed integer e(p). We claim that fκ is
Markov using the intervals

/ = {JMft;:neither^ nor J y is a VP;}

W W ^ n o t a Wp,Jv i s a ^ }

Notice first that / covers K except for at most countably many points. Also nκ = 1
on an interval Juv of the first type in β and then fκ(JUfV)=f(Ju>v) = Jv On an
interval JUtVjef one has nκ=j+l+H(p) and fκ(Ju>vJ = Vψ

For any J e / , / K | J = / " | J with / k J an interval and/ |/V monotonic and C2

for each 0^k<n. It follows that /K |J is monotonic and C2. Finally, /K(J) contains
some Ju and so

K + Q+l /K + Q \

U fza nii u fm(ju))nκ=κ.3 D
«=1 \w=l /

Lemma 6. Lei U bea standard neighborhood of a regular source x0 for f There are
constants C(U) and D(U) so that if x,yeU with mu(x) = mu(y\ then

\x-x0\^C(U)\y-x0\
and

\(fy(x)\SD(U)\(fky(y)\ for l^fc^m^x),

{recall mv(x) = inf {m >0 :fm{x)φ I/}.)

Proof Since mu(x)=mu(y) either y<x<f(y) or / ~ 1 y < : x < } ; I n t n e first c a s e

|x —xo|^|j;—xo|sup|/r(x)| in the second \x0 — x\ S\y — xo\. Here we are assuming x0
zeU

is the left endpoint of U the changes are obvious for the other case.
In the case f\x0) > 1, the second statement follows from the proof of Lemma 2.

Suppose x0 is a regular source with /'(χo) = l. If y>x, then for O^j^fe one has

Py>P^ f(fjy)^f'(fjχ) and (fk)'(y)= Π f\fjy)Ufk)\*\ Uy<χ, then f(y)>x
since m^y) = mv{x) and J=°

\(fk)'(y)\ > kϊi
.7 = 0

Let
sup/'(z)

inf/'(z)
zεί/

One checks easily that condition (d") for Markov maps also holds
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Lemma 7. Let x0 be a regular source with standard neighborhood U. Then

Proof. Consider yeU with mu(y) = mu(x) = n. If g(x) = log/'(x) as in Lemma 2 and
d=sup\g'(ξ)\<co, then

ξeϋ

700l^ Σ \fky-fkχ\ -
fc=O

Let C7 = [xo,jB]. Then x,ye(f-nβj~n+1β'] and

\fky-fkχH\(fkϊ(t)\dt^\y-x\ sup \(fy(t)\
x te[x, y]

Therefore

Now β-f~1β = (f~n+1β-f~nβ)(fin~1)ϊ(w) for some w with nv(w) = n. Now, for
some w with mv(w) = n one has

κ/")'M-(/")'ωι=ι

Putting together inequalities

x—y \p~j PI

Now (fn~1)'(w)^(fny(w) since / ' ^ l on U; letting y->x we get (sung Lemma 6)
K/TWI UK(U)dD(U)3\(fn)\x)\2, where Ĵ (C7) is a constant depending only on β and
[7.

Lemma 8. h = fκ:K^K satisfies the hypotheses of Adlefs theorem.

Proof. The proof of Lemma 3 shows that inf|/z/(x)|>0. Since h is C2 on any

h"(z)
J(Jef), one has β(J)= sup

y,zeJ h'(y)2
< oo for any Jef. By Lemmas 3 and 5 we

only need to show supβ(J)< oo. If / is not flat at x0 [i.e., / ( r )(χo)φ0 some r with /

locally Cr+ x at x0], then Taylor's formula shows that for any constant C2 >0 there
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is a constant Cγ so that

\fx-fxo\^C2\fy-fxo\=>\x-xo\SC1\y-xo\

for x, y near x0. If x, yeJuvJ, then this remark plus Lemma 6 gives a finite sequence
of constants C1 ?C2,... so that

(*)\fk(fx)-fp\^Ck\fk(fy)-fkp\ for O^k^

f'(x)(x-x0)In Lemma 1 we saw that is bounded away from 0 for x near a non-

flat point x0 by using Taylor's formula. The same type of argument shows this
quantity is bounded away from oo. This means that \f'(x)\ differs from
f(χ)— f(χ )

0 by a multiplicative factor bounded away from 0 and oo. Lemma 6
x-xn

and the inequalities (*) above now show that

f^E for all ί^k^nκ(x), x,yeJuυj,
(f)'(y)

where £ is a constant independent of x, y, j , u, v. It is therefore enough to bound

yeJ h'(y)2 '
G, then

H"(x)(Hx-Hx0) _ F"(Gx)(F(Gx)-F(Gx0))

H'(xf F\Gx)2

F(Gx)-F(Gx0) G"(x)(Gx-Gx0)

(Gx-Gxo)F{Gx) G\x)2

Provided one stays near non-flat points, Lemma 1 gives a bound on

F(Gx)-f(Gx0)

(Gx-Gxo)Ff(Gx)

and thus a bound for the expression on the left for H = F°G in terms of those for F
and G. Lemma 1 says this type of expression is bounded near a non-flat point and
Lemma 7 says it is for fm«ix) near a regular source. These combine to give a
universal bound on

h"(x)(Hx)-f- V)
h'(x)2

for xeJu v , Jv= Wp. As \hix)-fJ+Hlp)+1(p)\ ^ inf\z(p)-p\>0, we get that β(J) has a
' ' peS

uniform bound over all JM>t,s/s. This is enough as there are only finitely many other
J's in / . D

Adler's theorem gives a measure dμ = p(x)dx on K, invariant and ergodic under
h = fκ, with c1 ^p(x)^c2 for some positive constants c l 5c2. For Ec[a,b^\K define

E={xeK:fnxeE for some 0<n<nK(x)} .
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Call E singly visited if

xeE, fmxeE, m>0^fkxeK some 0<k<m .

The sets Ltj and Wp with H(p) > 0 are all singly visited. There is a unique measure μ
on [α, b~\ so that

μ\K = μ9 μ(E) = μ(E)

for singly visited sets
00 \

, and μ([α,6]\ (J / " * = 0

\ 0 /

This measure is seen to be σ-finite, equivalent to Lebesgue, invariant and ergodic
for /, and finite on every singly visited set.

Finally, note that μ is finite iff £ μ{LUj) < oo for each I Now LUj is the union
j

over certain w, v of the interval J* v j= u {Ju υ k:k ^ j , fe =7 (mod r f)}. If J v = F^p, then
J*υ > J. is mapped by fH^+1 onto \_f~jynfΛVΪ) where O ^ α < r ι satisfies
j + α = 0 (mod r.). Since / H ( p ) + x is not flat at the endpoint qoϊJuv with /g = p, there
are positive constants dvd2 and an integer n so that

\fmp)+1χ-f%\ Γ , , Ί

for x near ^. Hence J* v y. has length in the interval

\Γjyt-f*Pi\1/nίdϊ1/n,dl1'"]

and μiJtvJ differs from \f~jyi-fapi\
lln by a factor in ίd-1/nc1,d;1/nc2]. Hence

μ(Lit^=μ(Lit^ is a linear combination ]Γ cU)V\f~jyί — fΛpi\
llnu>υ where the nonzero

cM υ are bounded away from 0 and + 00. That ]Γ μ(L ^ < 00 iff the periodic source p.

is expanding follows now from

Lemma 9. Lei x 0 be a source for f9y near x0 and n^.1. Then

00

Σl/"^-^ol1/π<°o iff l/'WI>i.

Proof. We are assuming / is C 2 near x0. If \f'(xo)\ > 1, then |/'(x)| ̂  /I > 1 for x near
00

x 0 and \f~ky0 — x0\^λ~k. The result holds since £ (/I"1'")-7' converges.
7 = 0

Suppose |/'(Xo)l = l We may assume n = l 5 / /(x0) = l and xo = 0. Then

f~1(x) = x + ε(x)x2 where limε(x)<oo.
JC^ O

Let yj = f~Jy. Then



14 R. Bowen

fc-l

and so yk = y0 Π (1 + ε();;)3;./) Since 3>fe-»0 as fc-»oo, we must have
00 J = 0 00

Σ IΦ., ) J > . / I = ° ° a n d s o Σ bj i=°° •
7 = 0 ; = 0

4. Final Remarks

Adler showed that maps satisfying his conditions are much more than ergodic,
namely their natural extensions are Bernoulli [1]. The maps in our theorem are
therefore loose Bernoulli [6]. Ratner [10] and this author [4] have shown that
expanding maps of the interval are Bernoulli when they are ergodic, under some
mild hypotheses.

Problem 1. Suppose / on [α,b] is Markov with a finite number of intervals and
has the following property: for every nonempty subinterval J, [a, b] — fnj is finite
for some n = n(J). Does / admit an invariant measure equivalent to Lebesgue?

Problem 2. Suppose / on [α, b~\ admits an ergodic μ equivalent to Lebesgue. Is μ
loose Bernoulli?

References

1. Adler, R.L.: F-expansions revisited. Springer lecture notes 318, 1-5 (1973)
2. Adler, R.L.: Continued fractions and Bernoulli Trials. In: Ergodic theory. Moser, J., Phillips, E.,

Varadhan, S. (eds.). Lecture notes. New York: Courant Inst. Math. Sci. 1975
3. Adler, R.L., Weiss' B.: The ergodic infinite measure preserving transformation of Boole. Israel J.

Math. 16, 263-278 (1973)
4. Bowen, R.: Bernoulli maps of the interval. Israel J. Math. 28, 161-168 (1977)
5. Bunimovich, L.A.: On transformation of the circle. Math. Notes Acad. Sci. USSR 8, 204-216

(1970)
6. Feldman, J.: New X-automorphisms and a problem of Kakutani. Israel J. Math. 24, 16-37 (1976)
7. Jakobson, M.V., Sinai, Ya.: Oral communication
8. Lasota, A., Yorke, J.A.: On the existence of invariant measures for piecewise monotonic

transformations. Trans. AMS 186, 481-488 (1973)
9. Li, T.Y., Schweiger, F.: The generalized Boole's transformation is ergodic. Manuscripta Math. 25,

161-167 (1978)
10. Ratner, M.: Bernoulli flows over maps of the interval
11. Renyi, A.: Representations for real numbers and their ergodic properties. Acta Math. Akad. Sci.

Hungar. 8, 477-493 (1957)
12. Ruelle, D.: Applications conservant une mesure absolument continue par rapport a dx sur [0,1].

Commun. Math. Phys. 55, 47-52 (1977)
13. Sacksteader, R.: On convergence to invariant measures. Mimeographed notes
14. Schweiger, F.: Zahlentheoretische Transformationen mit cr-endlichem invarianten Maβ. S.-Ber.

Ost. Akad. Wiss. Math.-naturw. Kel.Abt. II. 185, 95-103 (1976)
15. Ulam, S.M., Neumann, J. von: On combination of stochastic and deterministic processes. Bull.

AMS 53, 1120(1947)
16. Wong, S.: Thesis, Berkeley (1977)
17. Pianigiani, G.: Absolutely continuous invariant measures for the process xn+1 =Άxn(l — xn).

Preprint
18. Sinai, Ya.G.: Introduction to ergodic theory. Princeton: Princeton University Press 1976
19. Bowen, R., Series, C.: Markov maps associated with Fuchsian groups. I.H.E.S. Publications 50 (1979)

Communicated by J. L. Lebowitz

Received May 31, 1978



Markov Maps of the Interval 15

Afterword

Roy L. Adler

IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, USA

This paper was submitted by Rufus Bowen. When he learned that it overlapped
some unpublished work of Leopold Flatto and myself, it was Rufus's wish that it
be revised as a joint work. But his sudden death intervened, and the prospective
co-authors decided that the original work should be published.

First, I must say something about the history, so far as I know it, of the
so-called Adler's theorem which considers the question: under what conditions
does a mapping on the interval admit a finite invariant ergodic measure (by
measure we shall mean one equivalent to Lebesgue). The theorem gives three
conditions which persist under iteration and which are sufficient: a Markov
condition, an expansive condition, and a second derivative condition. Although it
appears in an article of mine in a 1972 conference proceedings (ibid), I would never
claim it as my own. I first learned it from Flatto in the fall of 1969. He learned it
during the previous summer from Benjamin Weiss. So perhaps it should be called
the Weiss theorem, but then Weiss believes that he may have extracted it from the
work of Sinai [Construction of Markov partitions. Funct. Anal. Appl. 2, 245-283
(1968)]. Although Krzyzewski and Szlenk who also give credit to Sinai [On
invariant measures for expanding differentiable mappings. Studia Math. 33, 83-92
(1969)] come close, I have not yet discovered to my satisfaction the theorem
explicitly stated before 1972. Since attribution remains difficult and I believe many
people have independently discovered some version of it, I shall henceforth refer to
it as the folklore theorem.

Examination of the fundamental paper of Renyi [ibid] on the topic reveals
almost the same theorem (stated in different notation) except that another
condition, called condition C, is used instead of the second derivative one. Renyi's
theorem was also discovered independently in 1960 by Richard Scoville who was
then a graduate student at Yale. When he learned, with great disappointment, of
Renyi's prior claim, he had to change his thesis topic and abandon this nice result.
Renyi's condition C states that, for x,y restricted to the same interval in the
Markov partition for /", the quantity \fn'(x)/fn'(y)\ should be uniformly bounded
independently of n and the interval chosen. This condition plays an important role
in obtaining invariant measures and is the main idea in Renyi's paper. However, it
is not readily checkable since it involves an infinite number of iterates of/ Renyi
did not address this problem, and perhaps it was no obstacle to him. In contrast
the second derivative condition seems to be more satisfactory because it does not
involve higher iterates of/ Any such condition must allow for unbounded /"(x) in
order to handle maps with infinite Markov partitions such as the continued
fraction transformation. The previously stated one can be improved to read

S U P \f"(χ)/f'(χ)2\ < °° This fact was known to Bowen and used by him in the
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n - l

chain rule equation, /"'(x)= Π f'(fj(x)), a calculation shows that \fn"(x)/f"'(x)2\
j=o

can be bounded uniformly in n by a bound for \f"(x)/f'(x) I times a convergent
series of negative powers of a root of the expansive constant. It then follows, for
x, y restricted to the same interval of the Markov partition for /" (where we know
/"' does not change sign), that

which is another form of the Renyi condition (Notice for n = l we have that the
improved second derivative condition implies the "Adler's theorem" of Bowen's
paper). Thus we see how close the folklore theorem is to the original one of Renyi.

The present work is concerned with the method of inducing which is extremely
useful for dealing with mappings which fail to satisfy all the conditions of the
folklore theorem. Often the failure is due to trouble at some particular point. For
instance, there might be a fixed point at which the derivative has absolute value
one in which case the expansive condition cannot be satisfied or there might be a
point (not a fixed point) where the derivative vanishes or becomes infinite in which
case Renyi's condition will not hold. In such cases it may be possible to find an
induced transformation on an appropriate subinterval which will satisfy the
folklore theorem. There is then a formula relating the finite invariant ergodic
measure for the induced transformation to a σ-finite one for the original mapping.
Whether the sought after measure is finite or infinite depends on properties of the
original transformation like the existence of fixed points where the derivative has
absolute value one.

The method of inducing was applied in the present work to the class of maps
/ ( x ) = l — 2\x\k on [—1,1] for fe^2, and only partial success was achieved.
However, there is another method, "change of variables", which is more effective in
this case. Here the map g^hofoh'1, where

h(χ)= j {l-tψ-^dtj f (l-tψ-k)lkdt,
- 1 / - 1

can be shown to satisfy the folklore theorem for all k ̂  2. If μ is the invariant
measure for g then μoh is the one for /

This change of variables was devised particularly for the case fc = 4. It was
suggested by the fact that for fc = 2 the map hofoh'1 is piece wise linear
(furthermore the same transformation h "straightens" out all the Chebyshev
polynomials) and has Lebesgue measure itself as the finite invariant ergodic one.
The original purpose was to use the result for fc = 4 in connection with the map
fR:x-+Rx(l — x) on [0,1] for the specific value of R near 3.67 where / # 0 is a
fixed point for fR. For the second iterate of this map there is an invariant
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subinterval (in fact two disjoint ones) upon which fR°fR is a quartic. This quartic
transforms to x-^1 —2x4 on [—1,1]. Thus from the above considerations there
exists a finite ergodic invariant measure μ for fR°fR supported on the invariant
subinterval. Therefore (μ + μof^1)/! is the finite invariant ergodic measure f o r ^
which is supported on the nonwandering set. This is not the only way of doing this.
For instance, there are other changes of variables which transform fR itself to
satisfy the folklore theorem, and Ruelle [ibid] has given one of them.

We have also done similar things for other values of R with about the same
degree of success as in the present work. Serious difficulties developed for us in
trying to use the change of variable method for a countable number of values of R.
So inducing may be a better approach to the problem after all.

Additional Comments

Caroline Series

Warwick University, Coventry, England

1. Adler's Theorem

It was pointed out to us by Dennis Sullivan that the actual statement of Adler's
theorem in [2] applies only to maps which satisfy the Markov conditions a), b), c) and

d') f(Ik) = I for all/c.

It is not at all clear how to modify Adler's result so that d) is sufficient indeed it
seems doubtful that it is true. Exactly what Rufus had in mind, / do not know. For
the purposes of this paper it is enough to replace d) by

d") U / Λ is finite,
fc=l

where fk is the extension of / to Tk and dTk is the boundary of Ik.
It is possible to modify the proof of Adler's theorem in [2] to cover this situation.

The details are worked out in [19].

2. Examples

The idea mentioned in Example A, that to any Fuchsian group Γ of the first kind
acting on IRis associated a Markov map of IRis worked out in [19]. These maps/Γ

have the property that x = gy, gεΓ<=>fr(x)=fp(y) for some rc,m^O. If Γ contains
parabolic elements the Markov partition for fΓ is nesessarily countable, and the
results of this paper apply. Alternatively, in [19] we show directly by a simple
computation that one can induce away from fixed points with derivative one and get
maps satisfying the modified version of Adler's theorem above.






