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Abstract. By studying infinite clusters in the two dimensional ferromagnetic
Ising model some new results on the problem of existence of non-translation
invariant equilibrium states are obtained. Furthermore a new proof of a
theorem by Abraham and Reed is given.

1. Introduction

The existence of non-translation invariant equilibrium states for the two-
dimensional Ising model is a still open problem.

Dobrushin [1] first proved that the three-dimensional Ising model admits non-
translation invariant equilibrium states. Gallavotti [2] proved that the state
obtained by using boundary conditions analogous to those considered in [1] is
translation invariant at low temperature in two dimensions.

More recently the same state was studied at any temperature by Abraham and
Reed [3,4] : they proved that its magnetization is everywhere zero.

By using this last result and Lebowitz inequalities [5] Messager and Miracle-
Sole have shown that in the two-dimensional case a large class of boundary
conditions (including the ones studied in [2,3,4]) give rise to translation invariant
states [6].

These results strongly support the conjecture that all equilibrium states of the
two-dimensional Ising model are translation invariant.

The motivation of the present work was an attempt to prove this conjecture.
This goal has not been achieved, but some other related results have been
obtained; in particular we prove here that if an equilibrium measure μ is
translation invariant along one direction of the lattice, than μ is translation
invariant furthermore a new proof (which makes no use of direct computations)
of the result by Abraham and Reed quoted above is given.

We study the equilibrium states of the model by finding the probability of
suitable tail events. In other words we try to characterize pure phases by means of
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global features of their typical configurations. In our case, of n.n. interaction, the
most useful tail events are those related to existence of infinite clusters.

We remark that this approach is not new, but it goes back to Peierls [7] he
proved the existence of phase transitions by showing that for sufficiently low
temperature typical configurations are characterized by an infinite cluster to which
the greater part of sites belong.

The method used here, in our opinion, has the advantage to be strictly related
to the intuition; furthermore it allows to avoid direct computations in proving
some structural features of the model.

In a previous joint paper [8] a description of typical configurations of the
states μ+ and μ_ was given; we complete this description in Sect. 4. In Sect. 5 we
give a new proof of the statement, proved in [6], that once one has fixed the spins
on one axis equal to 1 the state becomes independent from boundary conditions. In
Sect. 6 we draw from the results of Sect. 5 some statements about infinite clusters
in typical configurations of a generic equilibrium measure of the model. A
representation of any equilibrium measure which is translation invariant along
one direction of the lattice is given in Sect. 7. Main results are exposed in Sect. 8.

All the proofs are based on Markov property and FKG inequalities [9,10].

2. Definitions and Notations

We consider the configuration space Ω = {— 1,1}Z2.
We define in Ω the partial order ^ by putting ω1 ^co2 if and only if VxeZ 2

ω1(x)^ω2(x) and we call positive [negative] an event A if its characteristic
function is non-decreasing [non-increasing]. We put:

EΛ

+[E;] = {ωeβ|ω(x) =![-!]}.

For every KcZ2 we call &κ the σ-algebra generated by the events E+, xεK.

We put 3$ = Π 36fc where K runs over the class of all finite subsets of Z2 (here
K

and in the following " ~" means complementation).
We are interested in some events in J*00. In order to define them we fix our

terminology as follows.
Two points in Z2 which differ only by one unit in one coordinate are called

adjacent they are called *adjacent if they are adjacent or such that both their
coordinates differ by one unit. A finite sequence (x1? ...,xn) of distinct points in Z2

is called a (self-avoiding) chain if x and x are adjacent if and only if \i—j\ = 1 and a
circuit if for any je(l, ...,n) (xj9xj+ί, ...xπ, x 1 ?...x7._2) is a chain; *chains and
^circuits are defined in an analogous way. A subset YcZ 2 is connected
[^connected] if, for all pairs x, y of points in Y, there is a chain [*chain] made up of
points in Y having x, y as terminal points.

The boundary [^boundary] of a given subset 7CZ2 is the set dY[d*Y~\ of all
points in Z2\Y that are adjacent [*adjacent] to at least one point in Y. Note that
the external boundary of a connected set is *connected and the external
*boundary of a ^connected set is connected.
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If ωeΏ, the ( + )cluster in ω are the maximal connected components of ω" 1(1);
given KcZ2 we call ( + )clusters of K in ω the maximal connected components of

; ( — ), ( + *) and ( — *)clusters are defined in the same way. We put:

= {ωeΩ\mω there is an infinite (±)cluster [(+*)cluster]}

ω there is an infinite ( + )cluster [(±*)cluster] of K} .

We shall consider, in particular, infinite clusters of

x 2 ^ , π =

It is clear that all the events C1, C±*9 C|, C**, where K = π,π',β, belong to ̂ 00.
Furthermore we shall consider the events :

= {ωeΩ|(/,0) belongs to an infinite ( + )cluster of π[π']}

= {ωeΩ |(/,0) belongs to an infinite ( + *) cluster of π[π']}.

We call ( + )chain [( + ) circuit] in ω any chain [circuit] included in ω~l(l)ι ( — ),
( + *) and (— *) chains (and circuits) are defined in the same way. Note that ωeC+

if and only if there are in ω infinitely many disjoint ( — *) circuits surrounding the
origin.

If s is a ( — ) chain [( — *) chain] included in π with starting point (α,0) and
endpoint (fr,0) and a^j^b, we say that s is a ( — ) half-circuit [( — *) half-circuit]
surrounding (/,0) in π. Note that CUE Vj[_V*~] if and only if there is in ω some ( — *)
[( — )] half-circuit surrounding (/,0) in π.

We consider the ferromagnetic Ising model at zero external field, i.e., for each
finite A C Z2 the energy function UΛ is defined by

VωeΩ, UΛ(ω)= X -jω(x)ω(y) (2.1)
(*,y)

where the sum is over the pairs of adjacent sites in A and j is a positive real
number. We call M the set of Gibbs measures corresponding to the energy
function (2.1). μ+[μ_]eM is the Gibbs measure obtained by using +[ — ]
boundary conditions.

We shall consider the phase coexistence region of the model, i.e. we shall
suppose that) is great enough to have μ+ή=μ_.

We list below some known statements on which the proofs of the following
sections are based :

a) all measures μeM are one-step Markov,
b) all measures μeM are everywhere dense (i.e. if μeM, KCZ2 is a finite set

and Q^Aε 3$κ, then μ(A)>0),
c) if μ is an extremal point of M, 36^ measured by μ is trivial,
d) μ+ and μ_ are extremal points of M (in particular this implies that μ+ and

μ_ are ergodic with respect to any non-trivial subgroup of the translation group),
e) μ+ and μ_ are invariant under translation, rotations by right angles and

reflections.
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3. Some Preliminary Lemmas

In this and in the following sections we shall call Λn the square {xeZ2\ IxJ^n;
\x2\^n}.

A first example of the usefulness of infinite clusters in characterizing the
elements of M is given by the following lemma.

Lemma 1. 7/μeM, μ(C+) = 0, then μ = μ_.

Proof. We consider a negative event Ae&Λn. By the hypothesis, μ-a.s. there is a
(— *) circuit surrounding An then, given ε >0, we can choose N such that the event
"there is in ΛN\Λn a ( — *) circuit surrounding 0 = (0,0)" has μ-probability greater
than 1 — ε. We put :

Mf = {ωeΩ|in ω c is the maximal (— *)circuit surrounding 0 and contained in
ΛN}.

We have :

Σ ι4M?)>l-e.
CCΛN\Λn

On the other hand the Markov property and the FKG inequality imply that for
any cCΛN\Λnμ(A\M?)^μ-(A). Hence:

ccΛN\Λn

Another application of the FKG inequality shows that μ(A)^μ_(A). Hence we
have μ(A) = μ_(A). By observing that the measures of negative local events
uniquely characterize μ we get the lemma.

We shall see in the Sect. 8 that if μ(C^) = 0, then μ = μ_. Here we prove the
following weaker result :

Lemma 2. 7/μeM, μ(Cπ

+) = 0, then //(££) ̂ 1/2.

Proof, μ-a.s. 0 is surrounded in π by a (— *) half-circuit. Given ε >0, we choose an
integer N such that the event "there is in AN a (— *) half-circuit surrounding 0 in π"
has μ-probability greater than 1 — ε. We put :

M^s = {ωeΩ|in cos is the maximal ( — *) half-circuit surrounding Q in π and
contained in AN} .

Then we have :

Σ μ(M£s)>l-ε. (3.1)
SC Λ.]VΓ>7Γ

We call sf the *half-circuit obtained by reflecting 5 with respect to the 1-axis and we
consider the events

E* = {weΩ|V.xesω(x)= -1 VxEs'\sω(x)=l} ,

E's={ωeΩ\Vxes\s' ω(x)= - 1 Vxes' ω(x)= 1} .
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We have :

_
sC Λ

μ(E0- |i\O =
B

where β runs over all possible spin assignments on s'\s. By applying the Markov
property and the FKG inequality we get

s

μ(£2Ί£s*)μ(Λθ.
sC ΛLίvnπ

Another application of FKG inequality and a symmetry argument show that

μ(E~_ I Es*) ̂  μ(Eo I E's) = μ(E + \ Ef) .

Hence

μ(£2Ί£s*)^l/2. (3.3)

The lemma is proved by collecting together (3.1), (3.2) and (3.3).

Corollary 1. μ+(Cπ

+)=l, μ+(F0)>0.

Proof. The phase coexistence region is characterized by spontaneous magneti-
zation hence from Lemma 2 and the extremality of μ+ it follows that μ+(C*) = 1.
The second relation can be easily proved by using the FKG inequality and b).

4. Typical Configurations of the Measures μ+ and μ_

It is known [8] (and it follows from Lemma 1) that, in the phase coexistence
region, μ+-a.s. there is an infinite ( + )cluster. Furthermore it was proved in [8]
that μ+-a.s. there is no infinite ( — )cluster. In this section we complete the
description of the typical configurations of the measures μ+ and μ_ by proving the
following proposition.

Proposition 1. μ+(C~*) = 0.

Proposition 1 in particular implies that μ+-a.s. the infinite ( + )cluster is unique.
The proof of Proposition 1 is based on the following lemma.

Lemma 3. μ+(C~*) = 0.

Proof. We consider the events V' = P^ n V'jt Translation and reflection invariance
of the measure μ+, the FKG inequality and Corollary 1 imply

Therefore, by Birkhoff s ergodic theorem, we have

ί . (4.1)
j<o } \i>o
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Now we suppose that

μ+(C£) = 0. (A)

(A) implies that μ+-a.s. any infinite ( + )cluster of π[π'] intersects the 2-axis. Hence
μ+-a.s. if coeVj (j>0), there is in ω a ( + )half-circuit surrounding 0 in the half-
plane {x1 ^0}. This, by rotation invariance of the measure μ+, ends the proof in
the case (A).

If (A) does not hold, the extremality of μ implies

l. (B)

We consider the events :

= {ωEQ\(j,ϋ) belongs to an infinite ( + )cluster of the quadrant

In the case (B) translation and reflection invariance of μ+ 5 the FKG inequality
and b) imply μ+(Wj')^μ+(W0)

2>0. Hence, if B) holds, μ+-a.s. infinitely many of
the events W? occur. On the other hand it is easy to realize that if ωeWj(j>0),
then μ+-a.s. there is a (H-)half-circuit surrounding 0 in the half-plane {xί ^0} (it
suffices to observe that μ+-a.s. there is no infinite ( + )cluster in the strip 0^x1 5Ξj).
This ends the proof in the case (B).

Proof of Proposition 1. It is enough to prove that μ+(C^"*) = 0, where
Co* = {ωeί2|in ω 0 belongs to an infinite ( — *)cluster}. Lemma 3 implies that
μ+-a.s. the infinite ( + )cluster of π[π'] is unique. It is easy to see that this implies
that, for any pair of positive integers (/', fe)

On the other hand (4.1) implies that

U V-^VΛ=l (4.2)

and this proves Proposition 1.

5. Uniquenness of the Semi-Infinite State

We call μπ

+[μ~] the measure on Ωπ = { — 1, l}π obtained by using the following
"boundary conditions"

ω(x) = 1 if

ω(x) = l[ω(x)= — 1] if

Proposition 2. lim μ^ = lim μ~ .
n—* co M—» co

Proposition 2, by FKG inequality, implies that once one has fixed equal to 1 the
spins on the line x2 = — 1 the state becomes independent from boundary con-
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ditions. A discussion on this point was announced by Dobrushin in [11] in [6]
the Proposition 2 is proved as a direct consequence of the translation in variance of
the state μ± defined in Sect. 8 in this paper the Proposition 2 is proved by using
direct computations by Abraham and Reed [3,4].

By following a reverse way, we shall use Proposition 2 in the sequel of the
paper (in particular in proving the result by Abraham and Reed) in this section
we give a direct proof of it based on the analysis of the infinite clusters.

We start by collecting in a lemma some statements which easily follow from the
definition.

Lemma 4. The limit

μ~= l im/V (5.1)
n— >• oo

exists μ~ is reflection invariant with respect to the 2-axis and translation invariant
along the 1-axis. & ̂  measured by μ~ is trivial

Proof. For any positive local event A the sequence μ~(A) is eventually non-
decreasing; this implies the existence of the limit 5.1 (in the vague topology of
measures). By using FKG inequality it is easy to see that μ~, as a measure on Ώπ, is
an extremal equilibrium measure with respect to the energy function obtained
from (2.1) by adding an external field —j in the sites on the line x2 = Q.

Taking account of this remark the other statements can be proved in the same
way as the analogous statements for the measure μ_. (See for example [12].)

LemmaS. μ~(Dk)^(ί/2)μ+(V0) where

Dk = {ωeΩ\(^k) is ( + *) connected with the 1-axis}

(here and in the following two sets A,BcZ2 are said ( + ) connected
[( + *) connected'] in ω if there is in ω a ( + )chain[_( + *) chain] starting in A and
ending in B).

Proof. For a given positive k we consider the events

It is easy to realize that, by ergodicity, μ~ ί (J (Bk_.nBk.,)\ =ΐ. Hence for any
(jj'>o ]

ε > 0, we can choose M such that

Σ /Γ (£*,<)> l-ε (5.2)
-M^7<0</^M

where

Bkjj, = {ωεΩ\(jJ') is the maximal interval containing 0
and included in ( — M,M) such that ωEBkr\Bk,} .

We call yjf the chain (j, k) (j, k - 1). . .(/, - 1) (j + 1, - 1). . .(/", - 1) 0", 0). . .0", k) and
we call y'^ , the chain obtained from y... by a reflection with respect to the line
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x2 = k+ 1/2. In the same way as in the proof of Lemma 2 we get

μ-(DJ* Σ μ-(Dk\Bk

jf)μ-(Bk

jf)

ί; Σ MDt|£*,.)/r(B*,) (5.3)

where μ is a generic equilibrium measure (the conditional probability in (5.3) does
not depend on μ) and E* = {ωeΩ| Vxey^ , ω(x) = — 1 Vxe y^ ω(x)= 1}.

We call F+[F~] the event "(0,fc) is surrounded in the rectangle {j^x1</;
— l^x 2^2/c + 2} by a ( + *) circuit [( — *) circuit] ( + *)connected[( — *) connected]
with yjf[yf

jrT' It: is easY to verify tnat F+vF~ =Ω (note that F+nF~ Φ0).
Furthermore we have

The last inequality follows from an argument similar to the one used in Lemma 2
using the FKG inequality and the reflection and change of sign symmetries. Hence

The lemma is proved by collecting together (5.2), (5.3) and the last inequality.

Lemma 6. /Γ(F*)>0

Proof. We put :

,/c) is ( + *)connected in π with the non-negative
[non-positive] 1 -half-axis} .

By Lemma 5, the reflection invariance of μ~, and the FKG inequality we get:

(5.4)

We consider the events

Pk — {ωeΩ|Q belongs to a ( + *)cluster of π of size greater than k} .

It is easy to check that, by the FKG inequality,

Hence we have :

μ-(V*)=\imμ-(Pk)^μ+(V0)
3/l6.

k^oo

Lemma 7. μ ~ ( C ) = 0.
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Proof. Lemma 6 and the ergodicity of μ~ with respect to the translations along the
/ 00 \

1-axis imply that /Γ (J Vf = 1.
u = ° /

Hence, given ε>0, we can choose N such that

μ-l(jvA>ί-e. (5.5)
V / = o /

We consider the event

GN=:{ωeΩ|there is in {Q^xi^N}nπ a ( + *)chain connecting the two axes}.

We call G^ the event obtained by reflecting GN with respect to the line xί =N/2.
μ~-a.s. no infinite ( + *)cluster is contained in the strip Org q 5^AT; hence

\JvA=l (5-6)
-7=1 /

By using (5.5), (5.6), reflection invariance of μ~ with respect to the line x1 =
and the FKG inequality we get:

/Γ(GJ>l-ε1 / 2.

The last inequality proves the lemma.

Lemma 8. μ~(C~) = 0.

Proof. Let n be a positive integer. By the Lemma 7 and the FKG inequality we can
choose k>n and N>k such that the event "in both regions (Λk\Λn)nQ and
(AN\Λk)r\Q there are ( + *)chains connecting the two positive half-axes" has
μ~ -probability greater than 1/2. We put:

Es[Es] = {ωeΩ|s[S] is the minimal [maximal] ( + *)chain connecting the
two positive half-axes contained in (Λk\Λn)nQ[[ΛN\Λk)nQ]}

EsS = Es^ES-

We have

X /Γ(EJ>l/2. (5.7)
sC(Λk\Λn)nQ

k)nQ

Now we consider the events

Dr

k n[Dl

k n~] = {ωeΩ\(Q,k) is ( + *)connected in π\An with the non-negative
[non positive] 1 -half-axis} .

By using the same argument of the proof of Lemma 5 it can be proved that

Then (5.7) yields

μ~(Dr

k,n)^ Σ
SC(Λk\Λn)nQ
Sc(ΛN\Λk)nQ
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We consider the events:

^ = {ωeί2|there is in Z2\An a ( + *)half-circuit surrounding (0) in π}.

By using the FKG inequality and the reflection symmetry of the measure μ~ we
get:

Therefore

ΐ l U = l i ι

Since P) Rne^^ we get μ~ Q Rn =1 and this ends the proof.
n = l \ w = l /

Proof of Proposition 2. By using Lemma 8, Proposition 2 can be proved in the
same way as Lemma 1.

6. Infinite Clusters in a Half-Plane

In this section we consider a generic measure μeM (not necessarily extremal) and
we draw from Theorem 1 some statements about typical configurations of μ.

Proposition 3. For any μeM μ-a.s. any infinite cluster^ cluster] of π intersects
infinitely many times (i.m.t.) the ϊ-axis.

Proof. We consider infinite ( — ) clusters. The proof works in the same way for ( + ),
( — *) or ( + *) clusters. Let G be the event "there is an infinite ( — ) cluster of π non-
intersecting the 1-axis". We have:

G= U Π (P^HX)
x:x2>0 k=ί

where

Pk

χ = {ωeΩ\x belongs to a ( —)cluster of size greater than k]

Hx = {ωeΩ\iherQ is in π an infinite ( + *)chain separating x from the 1-axis}.

Therefore

μ(G)ί X lim μ^nHJ. (6.1)
x:x2>0 k-*oo

In order to prove that μ(G) = 0 it is enough to show that if for some x μ(HJφO then

lim μ(Pk

x\Hx) = ΰ. (6.2)
k-+oo

For given x and k let n be such that Pk

xeέ%Λn. We can write:
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where B runs over all boundary conditions on dAn. By using the Markov property
and the FKG inequality it is easy to verify that for any B

Hence :

Then the Proposition 2, the FKG inequality and the Proposition 1 imply

lim μ(Pk

x\Hx)^ lira fi+(Pk

x)^ lim μ+(P%£μ+(C-*) = Q.
fc->oo fc-»oo fc-»oo

Therefore μ(G) = Q. We consider the events

Gπ = {ωeΩ|there is in ω an infinite ( — )cluster of n\An

non-intersecting the 1-axis}

E+n= {ωeΩ\\fxeAn ω(x)= 1} .

Another application of the FKG inequality shows that

0 = μ(G) ̂  μ(GnπE+) = μ(Gn)μ(E^ \ Gn) £

From the last inequality we have, for any n, μ(GJ = 0 and this proves the
proposition.

An useful corollary of Proposition 3 is the following

Proposition 4. For any μeM μ-a.s. there is at most one infinite cluster [* cluster] of
π of each sign.

Proof. We call Ω' the set of full measure for which Proposition 3 holds, and we
prove that for any ωeΩf there is in ω at most one infinite ( — ) cluster of π. If in ω
there is no infinite ( + *)cluster of π, then the statement is obviously true. Suppose
that there is some infinite (+*) cluster of π. Then, by Proposition 3, we can suppose
that there is an infinite ( + *) cluster of π intersecting i.m.t. the negative 1 -half-axis
then it is easy to realize that all infinite ( — ) clusters of π contain at most a finite
number of points of the negative 1-half-axis. Hence all infinite ( — )clusters of π
intersect i.m.t. the positive 1 -half-axis and this implies that they actually coincide.

7. 1 -Invariant Equilibrium Measures

In this section we give a representation of the measures μeM which are translation
invariant along one direction of the lattice.

We consider the following events :

Note that if μeM, ^eJ*^, μ(A)>0, then μA = μ( \A)eM.
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The events A + , A_, A19 A0 belong to 38^ and they form a partition of Ω; hence
each measure μeM has an unique decomposition of the type

μ = a+v+ + a_v_ +aίv1 +a0v0 (7.1)

where the v's belong to M and v + (A + ) = v_(A_) = vί(Aί) = VQ(A0) = l.
If μ is translation invariant along the 1-axis the decomposition (7.1) can be

better specified for this we need some lemmas.

Lemma 9. If μ is translation invariant along the 1-axis, then a1 = Q.

Proof. We call ^+[^~] the event "fc is the least integer such that (fc,0) belongs to
an infinite + [ — ] cluster of π" and we put Vk=Vk

+vVk~. The proof of
Proposition 4 shows that

k=-ao

The 1-invariance of μ implies that μ(Vk) does not depend on fe; hence, by the
finiteness of the measure μ, we have μ(Fk) = 0, μ(C + nC~) = 0. In the same way we
get μ(Cπ

+,nC;,) = 0; hence a1=μ(A1) = ΰ.

Lemma 10. If μ is translation invariant along the 1-axis then v+ =μ+, v_ =μ_.

Proof. By Lemma 1, it is enough to prove that v + (C~) = 0; on the other hand, by
Proposition 3, v+-a.s. any infinite ( — ) cluster intersects i.m.t. at least one of the two
1 -half-axes. Hence it suffices to prove that v+(N) = Q, where

N = {ωeΩ|there is in ω an infinite ( — )cluster intersecting i.m.t.
the positive 1 -half-axis} .

We have :

where

Λ/\ = {ωeί2|there is in ω an infinite ( — )cluster intersecting i.m.t.
both 1-half-axes}

JV2 = JVn{ωeΩ|in ω at most a finite number of points of the negative
1-half-axis belong to an infinite ( — )cluster intersecting i.m.t.
the positive 1 -half-axis}

N3 = {ωeί2|in ω infinitely many points of the negative 1 -half-axis
belong to different infinite ( — ) clusters intersecting i.m.t.
the positive 1 -half-axis} .

Furthermore we consider the event

N4 = {ωeΩ\for any n there is in ω an infinite ( — )cluster
of Z2\An intersecting both 1-half-axes} .
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Note that v + , v_ are obtained by conditioning μ with respect to 1 -invariant events
therefore they are 1 -in variant measures.

By using 1 -in variance in the same way as in the proof of Lemma 9 we get
v + (N2) = 0 furthermore it is easy to verify that N3CN4CA+; since v + (A + ) = 1 we
get

v + (N2) = v+(N3) = v + (N4) = 0. (7.2)

Suppose v + (JV)>0; since N belongs to OS^, v' = v + (-\N)eM and (7.2) implies
v/(JV1) = 1, v'(JV4) = 0; on the other hand, by using b), one can prove that if v'eM,
v'(N4) = 0, then v'(JV1)<l. This contradiction shows that v+(N) = 0.

Lemma 11. 7/μeM, μ(Cπ

+) = 0, then for each XEZ2μ(E~)^.

Proof. This lemma is a simple extension of Lemma 2. It suffices to prove that if
μeM, μ(C*) = 0, then μ-a.s. there is no infinite ( + )cluster of the half-plane
x2 ̂  — 1 then, by applying Lemma 2, the lemma follows from an inductive
argument. Given a positive integer n, we consider the events :

R'n = {ωeΩ\ihQΐQ is in ω a ( — *) half-circuit surrounding (0, —1)

Rn

s = {ωeΩ\s is the minimal ( — *) half-circuit contained
in Z2\Λn surrounding 0 in π} .

The hypothesis μ(C*) = 0 implies Σμ(R") = l. Therefore, by using the Markov
s

property and the FKG inequality we get

p2>o (7.3)

where p > 0 is the probability that ω(x) = — 1 conditioned to the event "ω(y) = 1 for
any n.n. y of x".

/ 00 \

Suppose μ P R f \ < 1 and put μ' = μ R'n I Since f| R'^Λ^ μ' is an
n=l / n=l\ n = l

equilibrium measure such that μ'(C+) = 0 therefore (7.3) holds for μ! on the other
hand the definition of μ' implies lim μ'(R') = 0. This contradiction shows that

n-»oo

/ oo \

μ P R'n\ = 1 and this proves the lemma.

Lemma 12. The magnetization of v0 is everywhere zero.

Proof We prove that for each xeZ2 v0(Ex )^2. It can be proved exactly in the
same way that v0(£^)^|. We put:

The magnetization of the measure v0( |C^") is everywhere non-positive by
Lemma 11. Consider the measure v7

0 = v0( | C * ) since v'0(C^) = v;

0(A0) = 1 we have
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v'0(C^) = 0 (note that C+nC^nyl0 = 0). Hence by an obvious modification of
Lemma 11, the magnetization of the measure v'0 is everywhere non-positive, too.

We collect the results of this section in the following proposition.

Proposition 5. If μeM is translation invariant along the 1-axis, then μ has an unique
decomposition of the type :

μ = a+μ+ + a_μ_+a0μ0 (7.4)

where μ0(τ40) = 1 furthermore the magnetization of μQ is everywhere zero.

8. Main Results

Theorem 1 (Abraham and Reed). VxeZ 2 lim μ(E+ |E*)= 1/2 (where μeM and E*
-

. 2 + * =

is defined in Sect. 3).

Proof. By using duplicated spin variables it can be shortly proved (see [6]) that the
limit

|Es*) (8.1)

exists on the set of half-circuits ordered by "inclusion".
We put

the existence of the limit (8.1) implies

τx= lim lim μ(E^\EfJ= lim μ±(E+)
π-> oo k-» Gθ n-» oo

where the measures μ* are obtained by putting

Vx:x2 = nω(x)=l Vx:x2 = —nω(x)= —1 .

Let v be any limit point, in the vague topology of the measures, of the sequence μ *
(the existence of such a limit point follows from a compactness argument). It is
clear that v is translation invariant along the 1-axis hence the decomposition (7.4)
holds for v. Furthermore a symmetry argument shows that the v-mean value of
ω(0, — 1) -hω(0, 1) is zero and this implies that a+ —a_. Then, by Proposition 5, the
magnetization of v is everywhere zero and we get that, for any x, τx = v(E*) = ̂ .

By using Theorem 1, it can be proved by general arguments (see [6]) that

μ±=\unμ( \E?) = (μ++μ_)/2. (8.2)
5-»00

Lemma 13. //μeM and μ(C^) = 0, then μ = μ_.

Proof. We consider the events :

An = {ωeΩ\m ω there is a ( — )circuit surrounding Λn}

A™ = {ωeΩ\m ω there is in Λm a ( — )circuit surrounding An}
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We suppose μ(Aoΰ)<l; then the measure μ' = μ ( - \ A 0 0 ) is an equilibrium measure
and we have

lim μ>(An) = μ'(AJ = 0 μ'(Cπ

+HO. (8.3)
H-> oo

We choose n such that

X(Λ)<T6- (8 4)

Then, by Proposition 1, we can choose m>n such that

/U4Γ)>i (8 5)
(8.2) and (8.5) imply that there is M>m such that, for any half-circuit sCπ\ΛM

μ'(Aΐ\E*)>l (8.6)

On the other hand the second of (8.3) implies that we can choose N>M such that

Σ μ'(Λθ>ϊ (8.7)

(where the events M^s have been defined in the proof of Lemma 2).
By using the same arguments of the proof of Lemma 2 we get

Σ μ'(A-\E*)μ'(MNJ^6. (8.8)

Where we have used (8.6) and (8.7).
Since A™cAn (8.4) and (8.8) are incompatible. Hence we have ^(^4^) = !; this

implies μ(C+) = 0 and, by Lemma 1, μ = μ_.

Theorem 2. // μeM is translation invariant along the 1-axis, then μ is a linear
convex combination of μ+ and μ_.

Proof. By using Lemma 13 it can be easily verified that, for any μeM μ(^40) = 0;
then Theorem 2 follows from Proposition 4.

Lemma 13 in particular implies that if μeM, μ(A + ) = l, then μ = μ+.
Hence if μ is an extremal equilibrium measure and μφμ + ,μφμ_, then μ(A + )

= μ(A_) = Q, μ(Aί) = ί . By recalling the proof of Proposition 4 we get the following
proposition.

Proposition 6. If μ is an extremal equilibrium measure and μΦμ+, μφμ_, then μ is
neither translation invariant with respect to any direction of the lattice nor reflection
invariant with respect to any axis of the lattice.
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