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Abstract. A modification of XY —model is introduced for which Migdal
recursion equation are exact. High- and low-temperature fixed points of these
equations are investigated. As a result the existence of long-range order at low
temperature and its absence at high temperature are proved rigorously for the
model under consideration in the case when dimension d>2.

1. Introduction

The renormalization group method is widely used in physical works on phase
transitions (see for instance [1-6]). At the same time a rigorous application of the
method has been possible only for a narrow class of models (see [7-11]). But the
simplicity and generality of the main ideas underlying the renormalization group
provide a strong motivation for using it as a tool for rigorous investigations.

In this paper we shall use the renormalization group method to prove the
existence of long-range order at low temperatures in a modified d-dimensional
XY-model, when d>2. This model was first discussed in the papers by Migdal ([5,
6]) and was defined for all real values of the dimension d in the following way.

Let at first d^2 and v^2 be integers. We shall consider the hierarchical
sequence of cubes Vn,n = Q, 1,... in d-dimensional Euclidean space lRd:

For every n the whole space IRd is covered by cubes Vn am which appear as shifts of
the Vn by integer vectors am = mvn, meZd proportional to vn. Clearly, two cubes
Vn αm, Vn αm,, mή=m' either do not intersect or have a whole face in common.

Let us denote by S the set of closed (d— l)-dimensional elementary faces on the
lattice TLά. Each face seS is defined by an integer vector m^TLά (the point on the face
with least coordinates assuming that the lexicographical ordering is introduced)
and by the number i of the axis to which the face s in orthogonal. Thus each face
can be written as smj where we denote the configuration space of the functions
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18 P.M. Bleher and E. Zalys

defined on S and taking values on the circle S1, as

We call two faces s,s'eS equivalent and write s~s', if there exist n^O and cube
Vntam9 mE%d, am = mvn such that s and sf belong to the same face of this cube.

The configuration space of Migdal model Φ0 is a subspace of Φ consisting of
the configurations φ for which φ(s) = φ(sf) when s~s'.

The Hamiltonian of Migdal model is defined by the equation

H(φ) =~ Σ cos (<Xsm, j) - <5Φm + δ, j)) >
Sm.j Sm+^.jeS

where <5; is a vector with coordinates (5J , i = 1, . . . , d and δ^ is the Kronecker symbol.
It can be seen that for this model the interaction of opposite faces is the same as

for the XY-model, while equivalent faces interact in the not-random way.
If Vn is a finite volume we define the Hamiltonian as

Hvn(ψ) = - Σ Σ cos (<P(sm,j) ~ Ψ(sm + δj) ,
m^n Smj;sm+ δjJeS(Vn)

where S(Vn) is the set of the faces of S which lie in the volume Vn. The configuration
spaces in the cube Vn are

and

) = φ(S'), if s~s'} .

We define the Gibbsian measure on Φ0(Vn) corresponding to the Hamilton HVn(φ)
in the usual way

μVn(dφ β) = Ξ^ (β) exp ( - βHVn(φ))H

where the multiplication goes over classes of equivalent elements with respect to
~ , β is the inverse temperature and the grand partition function in the volume Vn

is equal to

We denote the boundary faces of cube Vn by s(Fnj,α), where α = 1,2 corresponds to
upper and lower faces and j = 1 , . . . , d is the number of the axis orthogonal to s. By
definition all the faces seS which lie on the same face s(Fπj,α) are equivalent, so
that for each configuration φe Φ0(Vn) all the values of φ(s\ ses(VnJ9 α) are equal, i.e.
φ(s) = φjΛ. We shall denote by Gn(x1 ) 1,x1 2,...,xd I 5xd 2;j8) the multidimensional
probability distribution of the quantities φjtΛ α = 1, 2 7 = 1, . . . , d :

Gπ(x l f !,..., xdf 2 ;)8)= $δ(φitl-Xιίί)...δ(φdί2-xdt2)μVn(dφ ,β).

The most important property of Migdal model is the existence of recurrence
equations which relate Gn and Gn+1.Ύo obtain these relations we fix the values of
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configurations φeΦ0(Vn+1) on the faces of cubes Vn flmC Vn + 1 (i.e. on the faces of the
7t-th level)and consider their joint distribution

where SVnf0m is the boundary of the cube Vn>am; the multiplication goes over all the
faces sedVn a (Vn Λ mC Vn+1) of n-ih level, which lie in the volume Vn+ί. As only
opposite faces interact, it's easy to see that the following equation holds:

One can obtain the function Gπ + 1 from the Gn+1 directly by integrating the
variables xs where seFπ + 1 but sedVn+1:

Hence we have the desired relation :

Gn+1({xs,sedVn+1};β)

= J Π Gπ({xs,sedVn,am};β) Π
Vn, αmC Fn + 1 SedVn

Presumably this equation can be obtained as a particular case of some general
renormalization group transformation which is applicable also to translation
invariant models (for this see [3]) but the exact definition of such a transformation
is not yet known.

The initial condition for the recurrence relation (1.1) has the following form

= (2πΓdΠP0(xΛ 1-xλ 2;)5), (1.2)
j=ι

where
π

P0(x ;β) = LQ1 exp (β cos x) L0 = J exp (j8 cos x) Jx .
— π

It is evident that the function G0 is written as a product of the functions P0

which correspond to each of the d coordinates. We shall show that all the functions
Gn can be represented as products of the corresponding functions Pn :

Gn(x β) = (2π)-" Π Pa(xj 1-Xj2;β) (1-3)
j = ι

] Pn(x0;β)dx0 = ί ,
— π

where x = (x 1 > l J . . . 5 x d f 2 ) an<^ Λifco + ̂ π) = ̂ nC^o) ^s a periodic function of XQGlR 1.
This relation shows that spin variables corresponding to the faces of different
directions are independent. We shall assume that this property is valid for the
function Gn and substitute (1.3) into the Eq. (1.1):

Gn+1(*;/?)=f Π (2πrdf[pn(χ^-χ^ ,β) Π &),
Vn,amCVn+ί j=ί sεdVn+ί\

2π/
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where we denote by xffl (resp. xffi) the spin variable on the lower (resp. upper)
7-th face of the cube 7Λ'βm so that x^+^is identified with xf^\

It is easy to represent the last integral as the product of integrals corresponding
to each direction. Moreover, it can be seen, that each such "directional integral"
can be rewritten as the product of vd ~ 1 identical convolution type integrals

ί - ϊ Vl\Pn(yk-yk+1;β)dyk=(p^..^pn)(Xu-xjι2 ,β).
—π —πk=l

As a result we obtain that

j=ι
where

(1.4)

A,+ι(/0= (Pn*...*PnY
d-\x-J)dx . (1.5)

π

Let's now expand each of the functions Pn(x β) in Fourier series with respect to x
in the interval [ — π, π]

j= -CO

Then according to (1.4), (1.5) we have

Given Fn(j ,β) = (Pn(j;β)Y and m = v l i~1 these relations can be written as

Zn+l{j;β)=(iF.FJ(j β)γ , (1.6)

β ) . (1.7)

One can choose the initial conditions for these recursion equations as

\m

where /7 (z) is the modified Bessel function (see [12]). In such a case in fact

or
π

pQ(x jg) = const - (Z_ x)
m = const exp (β cos x) j P0(x β)dx = 1

— π

in agreement with (1.2). For convenience in the sequel we shall write Zn+1,Fn+1

instead of Zn,Fn, n = Q, 1,... and rewrite the initial conditions as

(1.8)
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It is noteworthy that the Eqs. (1.6)-(1.8) make sense for all the integers m^2 and
for any real value of the dimension d. Initially they were introduced in paper [6] as
approximate equations for the usual XY-model. As far as our model concerned
they are exact when d and v are integers. In the sequel we shall regard these
equations as the definition of the model discussed in this paper. The same
equations occur also in the gauge lattice models (see e.g. [5] and [18]).

The main purpose of this paper is the investigation of long-range order in the
Eqs. (1.6)-(1.8). More precisely, we prove that these iterations behave differently
when n-*ao at high and low temperatures.

In the sequel we shall assume that m^2, d>2 are integer and real fixed
numbers respectively, otherwise arbitrary. It is possible to show that the functions
Fn(j β) are positive definite in the argument 7, so that Fn(j β) ̂  Fn(0 ;/?) = ! for all j.

As usual we denote with || \\tί the norm in the space l±

k=-oo

Let δ(j) be the function concentrated at the origin :

f l , 7=0

m v 2

The following two theorems are the main results of this paper.

Theorem 1. Let

isfy the estimate

Theorem 1. Let d>2, 0</?^ — exp - - -I . Then the functions Fn(j;β) sat-

where
(4

In [-β
m

Theorem 2. There exists β0 > 0 such that for all β > β0 there exists a sequence of
positive numbers y±(β\ y2(β\ tending to zero such that

\Fn(*/yn β) - exp ( - x2)| < exp ( - 0, 3 (In β + n)) .

Besides, when n— >oo

where c(β) J/2J8->1 when β-»oo.

Thus by Theorem 1 the functions Fn(j\β) tend "double exponentially" to a
^-function when β is small enough, while by Theorem 2 for large β the functions
Fn(j β) tend to 1 on every compact with exponential rate. The limit functions -
(5-function and 1 - are high and low temperature fixed points of the trans-
formations (1.6), (1.7). We need to note that these transformations are not defined
for Fn = 1 but it will be shown during the proof of Theorem 2 that if the function Fn

is close to 1 in an appropriate sence then the function Fn+ 1 is closer to 1 then Fn is.
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At low temperatures it is natural to introduce the renormalized functions
fn(x β) = Fn(x/γn β) which tend to exp ( — x2) when «-» oo according to Theorem 2.

The Hamiltonian of the model under consideration is ferromagnetic for integer
values of d and v (v^m1^"1) so the Griffiths inequalites hold for it (see [14]).
From these inequalities it follows the monotonicity of Fourier coefficients Fn(j, β)
in β for fixed jφO and n. Apparently this property is also valid for all real values of
d and v (e.g. this was discussed for m = 2 and some values d>2 in the paper [15]).
Using Griffiths inequalities it is possible to show the existence of weak limit of
Gibbsian measures limμ^μ^, to prove the following estimate of binary

n-* oo

correlation function

<cos (φ(s) - φ(5'))>μoo ̂ (f[Fn(l'9 βX
Wo /

for all s,s'eS and to obtain some useful corollaries of Theorems 1 and 2. In
particular it follows from Theorem 2, that for sufficiently low temperatures the
quantity 1— Fn(ί \β) is exponentially small in n, so

i.e. the values of binary correlation function are strictly positive, which means the
existence of long-range order in this model. The other general result which is valid
for the model under consideration is the Lee- Yang theorem (see [16]). Using it one
can prove the absence of phase transitions for non-zero external field h and, by
Theorem 2, show the existence of a jump in the magnetization for h = Q and low
temperatures. This means that the phase transition is of first order in h.

However it is necessary to point out that both the Lee- Yang theorem and the
Griffiths inequalities are applicable in our model only when d and v are integers.

The critical point of the model: T= Tcr,h = Q was considered in the paper [6]
using perturbation theory and numerically in [15]. The main conclusion of the last
paper was that the critical temperature tends presumably to zero when d-+2 (the
calculations were performed for m = 2).

The idea of the proof of the Theorems 1 and 2 consists in a detailed
investigation of the non-linear transformations (1.6), (1.7) in a neighborhood of the
high- and low-temperature fixed points.

The reader can easily find that the proof of Theorem 2 involves some technical
ideas of the papers [7-11]. During the proof we discuss the case m = 2 only. More
general case can be treated by obvious modifications.

We shall prove Theorem 1 in Sect. 2. The proof of Theorem 2 is more
complicated and it will be discussed in Sects. 3-5.

2. High Temperatures

Proof of Theorem L At first we rewrite the function Fn(j;β) in the following form

; β ) , (2.1)

where hn(j\β) is an even function of j, and /ιπ(0;β) = 0 because it follows from the
definition that FΛ(0;j8)=l. Then the substitution of (2.1) into the formula (1.6)
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(recall that m = 2) gives:

zn+1=(Fn*Fny=(δ+2hn+hn*hnγ.
Now we formulate two inequalities from which we shall derive Theorem 1:

|| l / ϊ Π l ^ r g l l / ί H ^ . (2.3)

The first one is widely-known, the second one is obtained in a simple way:
00 CO

-1 V \Ui\\ <^ II U i v - l I

j = - 00

Let us denote

It is evident that

| |Λ B + 1 | | I l ^| |2Λ I 1 +

Moreover in view of hn*hn(Q',β)^Q the following estimate is true

Zn + l ( 0 ' 9 β ) = (ί+hn*hn(0;β)Y^ί.

Hence for the function h n + ί ( j ; β ) which is defined by the relations

F n + 1 { j ; β ) = Zn+1{j

h n + , ( J l β ) = hn+1d;

we have the estimate

which gives the possibility of proving our theorem by induction. According to
(1.8), when m = 2, Z0(/ β) = Ij(^β). Using the properties of the modified Bessel
functions (see e.g. [12]) we easily obtain that

Z0(7 β) = Z0( - β), Z0(0 ;β)>ί, Z0(j;β) = e"2 .

Hence

The last inequality is valid for all the values of β which satisfy the condition of
Theorem 1, which guarantes the initial step of the induction proof. Assume now,
that

HΛJI^expί-CJ, C n > l .

Then



24 P.M.BleherandE.Zalys

where Cn+ί = vCn — v. The solution of this recurrent equation is

As we have seen above it is possible to take C0 = |ln(2/?)|. It follows from the
condition of Theorem 1 that

so due to the last inequality

what completes the proof of Theorem 1.

3. Low Temperatures

We shall prove Theorem 2 also by induction. First we formulate some inductive
assumptions for the functions Fn(j;β) and show that if they are valid for n = nQ,
then they are valid also for n = n0 + m where m = m(n0) = [ω(ln/? + n0)], ω=10~3.
After that we verify these assumptions for the initial function F0(j β). As a result
they hold for the sequence of numbers n0=Q9nί9n29... 9ni + ί=ni + m(n.). Finally we
consider the behaviour of the functions Fn(j β) for the intermediate values n^n^n
<ni+ί.ln this section we give the exact formulations of the inductive assumptions
and main lemmas and derive Theorem 2 from the lemmas.

Let us start with some notations. Let n be fixed and γn9 0 < yn < 1 be a real
number. It is useful to represent the function Fn(j β) in the following renormalized
form (in the sequel for brevity the dependence of β is not indicated):

jeZ 1, (3.1)

where rn(yj) is an even function. We consider below also the function fn(x)
= Fn(x/yn) and the corresponding representation for it:

/n(x) = Lπexp(-x2)(l+rn(x)), (3.2)

where the variable x belongs to lattice <% = {x = kAn,keZi}cR1, the lattice step Δn

of which is equal to yn. Let us denote

00

*„(/)= Σ Fn(k)Fn(j-k). (3.3)
fc=-oo

Then
/X(i}\v

Zn+1(j)=Xl(j) ZΛ+1(0)=XJ(0) Fn+1(j)= - . (3.4)

Since Fn(j) = fn(yj\ given t = kγn, we obtain, that

.(l+rn(t))(l+rn(yj-t))Δn.
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So according to (3.4)

where L(^+1=LnZn+\(0). Denoting yn+l=\/j',x = yn+J', fn+ι(^) = Fn+l(x/yn) we

come to the relation

x) / i /Λ \ \ v

Ϋ f \x\--t\ fn(t)An) (3.5)
\ί=-oo \ ]/ V I I

or

where

x \ 2\ / / i /2 \\ V

^(^-^(^^(i+^^l/--.))^.
(3.7)

The set {x :\x\<Dn = D j/ln β + n} will be considered as the one of typical values of
the variable x (here D is an absolute constant; for example, all the subsequent
considerations are valid for D = 10). Equation (3.7) will be fundamental for the
estimate of the error rn(x) on the set of typical values.

Now let us formulate the inductive assumptions on the function Fn(j). Denote

1 , const

and introduce the auxiliary function (xn > 0)

"{ ' n) - n - - n n , n .

1 /v\° 9n

Condition V(w). There exist constants Ln > 0 and yn, 0<yn< —=, - such that the

function fn(x) = Fn(x/yn) can be written in the form (3.2) with the estimates :

vj K(x) |^^ n =(2v)- ( 1 -^ ? ω^lO-3 (3.8)

when x belongs to the set of typical values, i.e. \x\<Dn

v2) |/π(x)|^(x,10Dn), for \x\*Da . (3.9)
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For the functions which satisfy the condition V(π) we shall formulate three
lemmas, from which Theorem 2 follows directly. We note that all our assertions in
these lemmas should begin with the phrase: "There exists an inverse temperature
β0>0 such that for all β>β0... ."

It means that all lemmas of this section are valid only for sufficiently large β.

Lemma 3.1. Condition V(M) implies V(n+m\ for m = m(n) = [ω(ln/? + n)], ω=10~3.
Besides,

m/2

For any integer p,Q^p<m = m(n) we shall consider the function fn+p(x)

v\p'2
= Fn+p(x/yn+p) where yn+p = I- yn. Now we represent it in the following form

x2)(l+rn+p(x)) . (3.10)

Lemma 3.2. // the condition V(n) holds then the functions fn+p(x), Q^
can be represented in the form (3.10) so that

Pi) \rn+p(x)\£(2v)« + 0»*δn9 for \x\<Dn+p;
p2) for \x\^Dn+p the inequality (3.9) is valid where n is replaced by n + p.

Lemma 3.3. The initial function F0(j β) satisfies the condition V(0) where

We shall prove these lemmas in §§4 and 5. Now we obtain Theorem 2 as a
consequence of Lemmas 3.1-3.3.

Proof of Theorem 2. From these lemmas it follows that the condition V(π) holds
for the sequence of numbers rc0 = 0, nί,n2,...9 which are defined by the recurrent
relation ni+1=ni + [ω(ln β + n.)]. It means that there exists a sequence of numbers
y n _>0, ί=l,2,... such that

where Ln.>0 are some constants and all the functions rn.(x) and fnί(x) satisfy the
estimates (3.8), (3.9) for n = nt. Now define the quantities yn and δn for the
intermediate values n; n^n<ni + 1 as

Then combining both Lemmas 3.1 and 3.2 for all n = 0,1,2,... we have the
following representation

Fn(*M Ξ /»(*) = Ln exp (- x2) (1 + rn(x)) (3.11)

in which Ln>0 are some constants and rn(x\ fn(x) satisfy the estimates (3.8), (3.9)
respectively. Since n — nf < ω(ln/ί + n) it's easy to obtain for δn that

n.v\-u-<°)n (2vΓ° 9n

-(2v)2^-^<^T7^ . (3.12)
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In conclusion for any n = 0,1,... the representation (3.11) holds with the estimates
(3.12) and (3.9).

By definition FΛ(0) = 1, so Ln = (l+rπ(0))~1 and hence

rπW-rΛ(0)|

Therefore, for |x|<Dn we have

-0.9n

β
O.l

From (3.9) the same estimate is easily obtained for |x|^Dπ. Therefore the main
part of Theorem 2 is proved. In conclusion we discuss the estimation of γn. By

/ iM'1

definition for all n\ ni^n<ni+1 we have that yn ?„_! /- =1. According to

Lemma 3.1 for n = ni

sO.8

= l+ε n ; \εn\<δ°n

 s. Hence

k=l

It is evident that c0(j8)->l when jδ-»oo. From Lemma 3.3 it follows that
1/2. Therefore

W

and c(β) J/2J8-»1 when /?->oo. Theorem 2 is proved.

4. Proof of Lemmas 3.1 and 3.2

The proof of these lemmas is carried out in the following way. First we estimate the
function rn+p, p = l,29...,m on the set of typical values {\x\<Dn+p} under the
assumption that the external estimate p2) holds. The crucial point here is the proof
of the inequality v^ while the rough estimate pj of Lemma 3.2 is obtained rather
easily. Next we prove the validity of the external estimate v2) [and also p2)] for the
function fn+p, l^p^m under the assumption that the function fn+p_ί(x) satisfies
the conditions of Lemma 3.2. One can see that combination of these results gives
the proof of Lemmas 3.1 and 3.2. Indeed, first we prove Lemma 3.2 by induction
and after that, using the external estimate obtained for p = l , . . . ,m—1 verify the
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inequality v j for the error rn + m(x). In conclusion the external estimate v2) is
proved.

It is noteworthy that almost all the considerations below are valid only for
sufficiently large β, but as a rule we dont indicate the exact values of β for which
the estimates are satisfied. We would like to note also that when v tends to 2 the
estimate for β becomes non-uniform in v. The last fact is completely natural
because critical temperature tends presumably to 0 when v->2.

Rewrite the recurrence relation (3.5):

Σ /.

= JLB + 1exp - -t

--t\\Δ.
V

(4.1)

where

71 = -ί

'= Σ /„

Using the external estimate (3.9) and inequality \fn(x)\ ^ 1, we obtain that (here and
further the symbols c1,c2>... denote some positive constants)

because for |x| <Dn

1/2V

Σ exP(-1.97(-^=-f
_ / . i N V \]/2v

-=
K 2 /

and

<c1e~""^'

<2exp -
v

Σ fλΛ-t- Jn\ \l v

ΛW4
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Both the inequalities are evidently valid for D = 10. The variables ί, x / te Tnx

belong to the set of typical values, therefore we can use inequality v x) for an

estimation of the errors rn(t) and rn Ix / 1 . In what follows will be essential the

property: if |x| < Dn +1 = D ]/ln β + n +1 and

-t

2v

1

2v

-t then t e T Λ f X . Indeed

Taking this into account we have for \x\<Dn+l that

-t \Δ

where
V2v

exp — 2 — =
\|/2v

-t Δn=o exp -|DΠ

2 .

It is sufficient to take D = 10 to bound

have, that

Σ exp(-2u2)An= Y

with δ*. Putting u= ——= —t we
2v

We shall show below [see (4.21)] that the error arising from the substitution of the
sum by the integral can be bounded by δ*. Moreover, it is evident that

with an analogous estimate of the remainder term R(

n

5+v

Similarly one can obtain that

-ί| \Δ
ίeΓn,x

= Σ rj
\t\<Dn

where |Λ^!(x)|<^. For the last term of the Eq. (4.1) r.h.s., inequality v j gives
that

Σ rn(0rn -2
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Taking into account all the relations obtained above we have for |x|<Dn+1 that

X ^rn(ί)exp -2 -/=-ί J.+^^x) , (4.2)
n \ \l/2v

where |^ 7 ^MI<^y + 5 < 5 . Furthermore using the formula (l+α)v = l+vα

+ o(α2) we can write the following representation

fn+ί(x) = Ln+ίQχp(-x2)(l+rn+i(x)), (4.3)

where

rB+1(x) = 2 v - Σ ^ ( O e x p - ^ - z l ^ ^ ^ M (4.4)
2v

and

\Rn+1(x)\<5δ2

n . (4.5)

Introducing the linear operator

we rewrite (4.4) as

Since

for \x\<Dn+1 it follows from (4.5) that

Repeating these considerations p times we shall obtain the estimate pj of Lemma
3.2.

In connection with this estimate we indicate a useful inequality which is valid
for all p; O Ξp ϊm

(2v)(1+ro)p<5m<^0 002(2v)0 003"<<5Π-0 1 . (4.8)

Let's go to the proof of the estimate V j ) for the error rn+p(x). By (4.6) the function
1Π+ι(χ) = ̂ ίnrn(χ) can be defined for all the real values x. Besides

dχk *»* Σ rM 3 "«
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SO

\\qn+ι(x)\\ck(*)<c(?δn, cf= Σ c<3'> (4.9)
O^l^k

for any fc = 0, 1, . . . . It's evident that the constants 4fc) do not depend on both β and
n.

For p=l, . . . ,m we use a recurrence relation which is analogous to (4.7):

) , (4.10)

where according to (4.5), (4.8), and pj

. (4.11)

In the sequel it will be more convenient for us to introduce an integral operator
instead of a difference operator. Namely we denote rn+p(x) = qn+p(x) + Rn + p(x) and
rewrite (4.10) as

p+ι(*) ' (4 12)

where

v^'+^ΛWv-ΊΓ' (4Λ3)

p(x). (4.14)

The linear integral operator si is compact and selfadjoint in the Hubert space (see
e.g. [13])

=

Its spectrum consists of the infinite sequence of numbers 2v, l,(2v)"1,.... The
corresponding eigenfunctions are the even normed Hermite polynomials G2fc(x;y);
||G2fc(x;y)|| = l , f e = 0,l,....

Now we expand the functions qn + p(x)9 p = l,2,... in terms of Hermite
polynomials G2k(x y) up to some large order N:

W*)= Σ &?ipG2

where βπ+p(x) = ^ ^k+pG2fc(x y). The integer N is an absolute constant which
k = N+l

will be chosen below [see (4.37)]. It follows from (4.13) that

(4.16)

(4.17)
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To obtain the analogous recurrence estimate for Rn+p+1(x) we note that for

^ sup |
l* l<0n + p

<4 sup

Σ exp -2 -=-t
!<!<£.„ \ \l/2v

(4.18)

Besides

- Σ Λ- ί

- J «Λ+pWexP(-2(-?=-f) U .
|ί|^βn+P \ \ l/2v / / J

(4.19)

For the estimation of the error arising from the substitution of the sum with the
integral we use the following formula (see, e.g. [17])

]f(x)dx= X f(a+jA)Δ+Rf,NA=b-a
a 7=0

in which

\Rf\<cf\\f\\ckίίaMΔ«+ sup |
a<x<a+kA

Hence we have that

S=( Σ Δn~ I
\t\<Dn + p \t\<Dn +

sup |/(x)|.
b<x<b+kA

2v
-t

So for \x\<Dn +p+1

(4.20)

Because An+p = γn+pit follows from the condition V(n) that

r1/2

' 2

0.45(M



Long- Range Order 33

As we can choose the constant k sufficiently large (k depends only on v) taking
D = 10 we obtain that

Since for each p' : 1 ̂  p' < p

then taking into account (4.8) it follows from the inequality (4.9) that

In an analogous way it is proved that

f -2— =-f dt
l/2v

(4-22)

(4.23)

Now from the inequalities (4.11) and (4.21)-(4.23) we directly obtain the recurrence
estimation

\Rn+p+1(x)\<4 sup \Rn+p(x)\ + δϊ* . (4.24)
W < D n + p

From here and the inequalities (4.5) and (4.8) it is easy to deduce that

\Rn+p(x)\<4"(5δ2

n+δ1

n

 8)<δ^ . (4.25)

Next using the (4.9) we obtain estimates of the quantities b(®+1 and Qn+ί(x)

ί ™p(-yχ2)dχ<c10δn.

Hence

, k=0,...,N, (4.26)

(4.27)

The estimates (4.25)-(4.27) were obtained for an arbitrary p=ί,...,m. Now we use
them for p = m. Namely

/π+»=A,+mexp(-*2)(l + rn+mM) , (4.28)

(X) (4.29)

with the estimates listed below

(4.30)

(4.31)

sup (4.32)
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It is easily seen, that

sup Σ b<&m

<clsδnN(2vΓ(m+i} sup sup \G2t(x;y)\
^k^N \x\<Dn +

where δn+m = β-ll2(2vΓ(1~ωHn+m^ Let g = lnβ + n. Then

where c17 does not depend on β and n. Hence it follows that

when β (and consequently g) is sufficiently large.
Similarly one can show that

sup
\χ\<Dn + m WΛ \fc = 2

Now we obtain an estimate of Qn+m(x)

It follows from (4.31) that

where

K = (In β + n) (ωN In (2v) - D2y) .

Now we choose the integer N from the condition

ωAΠn(2v)-Z)2y>10.

Then

Further from (4.25) and (4.34)

d
sup

\x\<Dn +

^ sup

+ sup

+ sup
\x\<Dn +

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

-H Σ b™mG2k(X;y)

(4.39)
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From the Gaglίardo-Nirenberg inequality (see [19])

35

1/3
(A Δ.C\\
V j

Applying the estimate (4.32), (4.33), (4.40) to the relation (4.29) we have that

rn+mM= ΣbΐlMx ti + RΪU*),
k = 0

where \R^m(x)\<δ^m. Let us denote

Σ b^mG2k(X;γ) = a^m + a^mx2 , (4.41)
fc = 0

where

In order to cancel the term a(^lmx2 in (4.41) we introduce the renormalization of

the variable x putting x = x j/l+α

The quantity α is determined by the equation

in such way that

where
Then

where

x2)α^^

+4

m. Changing now Ln+m we eliminate the coefficient

and for |

Denoting fn+m(x) = fn+m(x j/l+α) we prove the estimate.
The estimates of Lemmas 3.1 and 3.2 for non-typical values of the variable x

are an evident consequence of the following statement.

Lemma 4.1. Let for n = 0, 1, . . .

Σ
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where
1 iv\OΛ5n

Ln + 1 = I Σ /n(0/«( ~ 0^ n | > ̂  < α« < ^π ' 9> ̂  < ̂  n < ~~FL Λ\ r i/jsw
αnJ

I 1 , , a =
VP

when \x\<Dn and 0</n(x)<J^(x;10Dπ) when \x\^Dn. Then there exists β0>0 not
depending on n and v such that for any β>β0 and \x\>Dn+1:

Proo/ Let χ(x) be a characteristic function of the segment [— 10Dn, 10DJ and

x \ ί x
,

l/2v(l+α,,)

where fnχ(x) = fn(x)χ(x), /„(! - χ) (x) - /w(x) (1 - χ(x)). The function fn(x) satisfies the
estimates (An is defined in Sect. 3):

fn(x) ^ U exp ( - Q.99Anx
2\ Dn^\x\< ίODn

Besides,

where χ(1)(x) is a [ — DΠ,DJ characteristic function. Now on the basis of the upper
bounds on fn(x) we subsequently prove that for \x\^Dn+ί

, 1Γ .

The proof of these estimates is not very difficult but rather long and technical and
so we omit it (for the details see [20]). Summing these estimates we prove Lemma
4.1. Thus the proof Lemmas 3.1 and 3.2 is over.

5. Initial Conditions

We now prove Lemma 3.3 for the initial function F0(j;β). For brevity in this
section we shall write β instead of β/m so that according to (1.8) we have

π

F0(j iβ) = K0 J exp (β cos α + ί/α)dα , (5.1)
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where X0 = [J exp^cosα^α]"1. It is obvious that such a change is unessential
because the Lemma 3.3 is formulated only for sufficiently large values of β. Given
a = tβ~112 we easily deduce the following expression for the initial function

a
--- J exp -

Λ ' (5 2)

where K0 = K0β~1/2expβ. Assume that

where y0 = (2/?)~1/2. Then from (5.2) we obtain that

Fo(/' β) = K0 exp (- (7α/)2) (1 + f0(Joj β)) .

From the definition of the function f(x) putting x = yj we have that

/ /
f0(x;β) = K0Qxp( — x2) J exp — π'x

\ + \ ̂  ~-\/~Ω \ \ 1

(5.3)

Now we represent the function 1 +r0(x;β) as a sum of two integrals

l+r0(x;β)= J exp - ίx-— 1 + —+.R1(ί;/ψί
24P

ί
exp I — I ix — ,

1/2,

Here R^t β) is the remainder term in the expansion of the function

/ / t t2\\ t6

exp β cos —= — 1 + 7̂7 and it's evident that \Rv(t β)\ ^ c -^ where c is a positive
\ \ yβ 2P// P

constant. Hence it is not difficult to obtain that

x;β)), (5.4)
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2π

2π i r i g / i
e x p - i x -

lA

t \2

S3(x;/?)=

exp - «-

Now from (5.3) it follows that

/0(x β) = L0 exp (- x2) (1 + r0(x β))

where L0 = ]/2πK0 and r0(x ιβ) = Sί(xιβ) + S2(x j?) + S3(x β) + S4(x β). We shall
investigate each integral S^x;/?),...,S4(x;β) separately for |x|<D0 verify the
validity of the estimate of the condition V(0).

In view of

00

J exp(-w 2)dw~f~ 1exp(-ί 2), when £->oo
ί

we can directly estimate S^x β) for sufficiently large β:

1 / £2\
J exp -— Λ<i/Γ1 / 2. (5.5)

' " ^'=J/2π

Further let us note that

00 / / ί
4 J exp - ix- —

so for the second term we have

i
exp — \ιx — + const

H4(x)

β

and next due to the relations

00

|ff4(x)| ^ const In2 β J u4 exp (- u2)du - ί3 exp (- ί2), when ί-> oo



Long-Range Order 39

for sufficiently large β we obtain the desired estimate

Now using the analyticity of R^t; β) and the change of variables u= —^ — ίx we

estimate S3(x β). By Cauchy theorem it follows that

β1/8 + ixV2 β1/8

+ ί + ί

It is evident that the following inequality is valid in the domain of integration

where c, cί are some positive constants. Therefore

con st
3

P μ^/?

Set t = α ]/jS and rewrite S4(x )β) in the following form

S4(x β) - -— exp x2 J exp ( - iαx ]/2β + jS(cos α - l))dα .
/2π π)S- 3 / 8 <|α |<π

(5.7)

Then from the inequality cosπβ 3 / 8<l — ̂ πβ 3/4 we have for the last integral
that

1 2 / / π }\ 1 - 1 / 2
4 ' = l/2π \ I 3β 3 / 4 //π/?-3/8<|α |< π

 4

(5.8)

From (5.4) and estimates (5.5)-(5.8) it follows the inequality v j of the condition
V(0).

To prove the inequality v2) of the condition V(0) we consider separately the
cases when D0 rg |x| < 10D0 and |x| ̂  10D0. In the first case we use the fact that for
M<1000

/0(x)<(l-r-o(^-1/2))exp(-x2)

which is a consequence of the above considerations. In view of the fact that

exp(-x2)<exp(-0.99x2)exp(-0.01£>2)

for \x\^D0 and lim exp( —0.011>o) = 0 we have
β-+ oo

/0(x)<iexp(-0.99x2)

if β is large enough, which is what we wanted to prove.
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To consider the second case we use Captain's inequality for modified Bessel
functions (see, e.g. [12]):

1 + 1 / 1 + 1^-
j

1-1/2

(5'9)

Since I0(β)>β~l/2Qxpβ we can obtain for the initial function of our model, that

F0tf ft S ' ' . (5.10)

/? 1 i /J^

Let us put x=j(2β)~1/2 and denote z= — = — / — . In the sequel we shall

/ 1 i f~R\

consider only the case x^lOD0 corr. z<z0= '/y > D0=D\nβ. The proof

when x ̂  — 10D0 is analogous. Using (5.10) for the function /0 (x β) we obtain the
inequality

z))x2) , (5.11)

where

φ2(z)=-2zln
1+/1+z 2

The following properties of the functions just introduced can be easily verified:
1) φ1(z), φ2(

z) are bounded smooth functions for z>0;
2) φ1(0) = 0,φ 1(oo)=-l;
3) φ2(oo) = 2, φ2(z)^ — 2zlnz, when z— >+0.

Let us denote

2(z),(φ(cQ)=l,φ(z)~2z\lnz\, when z->+0),

Φ(x) = φ(z)x2 , ψ(χ) = (10D0)
2 + x In x - 10D0 In (10D0) .

Now it remains to prove that

Φ(x) > Ψ(x), when x ̂  10D0 . (5.13)

It follows directly from

Lemma 5.1. For x^lOD0 the following assertions are valid

1. Φ(10D0) > Ψ(1QDQ) . 2. Φ'(x) > Ψ'(x) .



Long- Range Order 41

Proof. 1. From (5.12) we have

Q) = (10D0)
2 Φ(10D0) = <p(z0) (10D0)

2 .

Moreover from the definition of the function φ(z) it follows that φ(z0) > 1 if z0 > 1.
2. In view of

we need to prove that for z < z0

The last inequality follows directly from the validity of the next assertions :

A. F(z0)>0. B. -F(z)>0, when z<z0 .

The first assertion A is evident (β can be choosed a sufficiently large) and the
second one can be obtained in the following way. From the relation

-F(z)=γ2β(--
1

z

on can see that B is valid if 1 -(2β)~1/2> 1 -(1 +z2)"1/2. As z<z0 = ,,

the last inequality is obviously true for sufficiently large β.
Using Lemma 5.1 and according to (5.12), (5.13) we obtain from (5.11) the

following inequality:

-i(10D0^

Now due to the evident estimate ]/βexp( — 50Do)<l for sufficiently large β we
obtain the assertion v2) of the condition V(0).
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