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Abstract. We study the (2 duster)->(2 duster) scattering amplitudes for dasses
of two, three, and four particle dilation analytic Schrodinger operators whose
two-body potentials fall off exponentially. As functions of the energy, these
amplitudes are shown to have meromorphic continuations on certain Riemann
surfaces. We prove that all poles of these continuations are necessarily bound
states or dilation analytic resonances [i.e., eigenvalues of H(θ) for some θ].

1. Introduction

Within the theory of dilation analytic Schrodinger operators there are two very
different definitions of resonances. A dilation analytic resonance is a complex
eigenvalue of an operator H(θ). A scattering resonance is a pole of the analytic
continuation of a scattering amplitude. Scattering resonances are directly related
to quantities measured in experiments dilation analytic resonances are easier to
estimate by numerical methods.

In this paper a connection between the two definitions is established. We study
classes of two, three, and four particle dilation analytic Schrodinger operators,
whose two body potentials fall off exponentially (Yukawa potentials are allowed).
On certain Riemann surfaces, we construct the meromorphic continuations of the
(2 cluster)-* (2 cluster) scattering amplitudes. Our main result (Theorem 3.1) is that
within the meromorphy domains which we obtain, every scattering resonance is a
dilation analytic resonance.

In the literature, previous results of this genre [2, 9, 12] deal only with the two
body case. Various subtleties of the different definitions of resonances are
discussed in [14] and in the references given there.

The paper is organized as follows: In Sect. 2, we establish notation, state
hypotheses on potentials, prove some preliminary lemmas, and recall the (2
cluster)-* (2 cluster) T-matrix formula of [8]. Our main result (Theorem 3.1) is
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proved in Sect. 3 by combining dilation analyticity with the Γ-matrix formula and
the two body ideas of [5, 6, 12].

2. Preliminaries

In this section we establish notation, state hypotheses on potentials, slightly alter
the resolvent formulas of [7], and recall the (2 cluster)-* (2 cluster) T-matrix
formula of [8].

A. Notation

The Schrodinger operator for N particles in m dimensions is

H = - 2 m 1 Δ + V ( r - r ) o n L2(R^).

We remove the center of mass motion from H to obtain H = H0+ Σ Vy on

X = L2(IR(jv-1)m).
A cluster decomposition D = {CJf=1 is a partition of {1, ... ,N} into k disjoint

clusters Q. We define HD = H0 + VD9 where VD is the sum of all Vtj with i and j in the
same cluster of D. jjf may be decomposed as

so that

The Hamiltonian h{ corresponds to the energy of the particles in cluster Q
alone. KD is the kinetic energy of the centers of mass of the clusters of D.

For each i, we choose eigenfunctions ηf of h{ so that {rff} is an orthonormal
basis for the subspace of ̂  spanned by the eigenfunctions of ht.

A channel α is a cluster decomposition D(α) together with an eigenfunction
k

η(ί)e{ηf} for each ht. The threshold corresponding to α is EΆ= Σ EH where htf(i}

i = l

= Efl®. We define ιpΆ = η(l}®η(2}® ... ®η(k\ and let Pα :^f->Jf denote the ortho-
gonal projection onto all vectors of the form tpα® φ, where φe J^(D(α)) is arbitrary.
We identify the range of Pa with j^ = j^(D(oi)) by identifying \pΛ®φ with φ. We let
PD be the sum of all Pα with D(α) = D.

When α is a 2 cluster channel we let Mα denote the reduced mass associated
with the coordinate ζ between the centers of mass of the clusters of D(α). We also
define φα°(X, k) = eίk^(xΛ\ where X = (xβ, ζ).

We refer the reader to [3,10,11] for definitions and theorems concerning
objects related to dilation analyticity (H(θ), σess(H(θ)), thresholds, etc.).

B. Hypotheses on Potentials

Throughout this paper we assume the following hypotheses :
(i) H=H0+ Σ λijVtj is an N particle Schrodinger operator on ̂ =

i<j
where N<4 and m>3.
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(ii) Each Vtj may be factored as V^U^W^ so that Utj and Wtj are dilation
analytic in Sθo = {θ : \lmθ\ ^00}, where θ0<π/2.

(iii) There exists y 0>0 such that ey°eθ][Xij]{Uij(θ,xi^ and e^^^^W^θ.x^) belong
to Lp(IRm,dx 7 ) for some p>m and all θeSθo.

(iv) Bound state energies of three body subsystems are non-positive when
N = 4.

Remark. Balslev [1] and Simon [13] have given sufficient conditions for hy-
pothesis (iv) to hold (see also [7, Theorem 11.10]). Yukawa potentials satisfy all of
the above conditions (i)-(iv).

C. Modification of Resolvent Formulas

In time independent scattering theory, scattering information is obtained from a
detailed analysis of the resolvent of the Hamiltonian near the continuous
spectrum. The resolvent is singular near the spectrum, and it is useful to obtain
resolvent formulas which isolate the singularities.

We will use the 2, 3, and 4 particle resolvent formulas of [7], which have the
form:

L(D)

(z-HΓl=Σ(z-HDTlP» Σ F<tDZ,tD(z). (2.1)
D «?=!

In these formulas, the singular part has been isolated in the factor (z — HD)~1 in the
sense that Z^ D(z) is fairly well behaved. More precisely, for each φ in a dense
subspace of J&9 Z^ D(z)φeJjf has continuous boundary values as z approaches the
continuous spectrum except on a closed set of measure zero. The F^ D factor is
multiplication by a function which falls off in some intercluster coordinate. The fall
off provides smoothness in momentum space, and this smoothness is used to make
sense of the restriction of the Fourier transform of PDFf DZ^ D(x ± iϋ)φ to the
surface which corresponds to energy x. All of the scattering information is
contained in these restricted Fourier Transforms (see [7,8]).

For our purposes, we apply the standard dilation analytic techniques [3,11] to
Eq. (2.1) to obtain:

L(D)

(z - H(θ)) ~1=Σ(^~ HD(Θ))" 1PD(Θ] Σ Ft i)(#)z<f D(°> z) (2.2)

By using the explicit formulas of Sect. IV of [7], we see that if D has exactly two
clusters, then

ZΛ D(θ, z) = B,t D(θ, z)C(θ, z) + B,t D(θ, z)(l - M(θ, z))~ *M(Θ, z)C(θ, z). (2.3)

If we choose z to be far from the spectrum of H(θ), then the inverse term in Eq. (2.3)
can be expanded by Geometric series. By resumming this series and analytically
continuing in z, we obtain the following formula when D has exactly two clusters:

F,,D(θ)Z,tD(θ,z) = PD(θ)(l + \:V(θ)-VM (2.4)

The properties of F, D(θ) and Z£ D(θ, z) which we require are summarized in
Lemma 2.1. We note that Eqs. (2.1), (2.2), and (2.3) depend on the choice of certain
functions ρij9 ρίjk, Qtj k^ etc. The available choices depend on the potentials, and
our choice differs from those of [7] and [8]. Our ρ functions are given by the



184 G. A. Hagedorn

following definition which depends on a number y > 0. The value of y is fixed in
Lemma 2.1.

Definition. Let ξ be the coordinate from the center of mass of particles i and j to
particle k. Let ζ be the coordinate from the center of mass of particles ij, and k to
particle /. Let 77 be the coordinate from the center of mass of particles i and j to the
center of mass of particles k and t. We define

(2.5)

Lemma 2.1. Assume hypotheses (i)-(iv). 77ιe 2, 3, and 4 foody resolvent formulas of
[7] (Έ#s. (IV. 1), (IV. 6), and (IV. 10) of [7], respectively) may be written in the form
of Eq. (2.2). Fix D with exactly two clusters, and represent Z£ D by Eq. (2.3). For
each set of generic couplings {λ^}, there exists y>0 so that if the ρ functions are
chosen by Eq. (2.5), then the following hold:
(a) Each JFΛD is a ρ function which falls off exponentially in the coordinate between
the clusters of D.
(b) For each ^L(D\ C(ΘΉ*B,tD(ΘΉ*F,tD(θ)* = PD(θ) (zφσ(H(θ))).
(c) For each £ ̂  L(D) and each pair ij,

AXM=^/Θ)C(Θ,^*M(Θ,^

is an analytic operator valued function for zφσ(H(θ)).
(d) Let X(θ,z) be as in (c). // Imθ = 0 and δ>l, then, as an operator from ffl to
L2_δ(]R(N-1}m) = {f:(i+x2Γδf2f(x)eL\]R.(N-1}m)}, X(θ,z) has continuous exten-
sions to σess(H} from above and below in the complement of a closed set $ of measure
zero.

Proof. Parts (a) and (b) follow trivially from the explicit formulas of [7].
To prove (c) and (d) for some y > 0, we must modify all the estimates of Sect. V

of [7] to control the growth of the functions ρ~ 1. However, a careful inspection of
the proofs of those estimates reveals the following fact : If Lemma V.4 of [7] holds
for our ρ functions with y > 0, then all of the required estimates hold for that value
of y.

Thus, it suffices to prove Lemma V.4 of [7] for our ρ functions with some y > 0.
We will show Q^k(θ)P ̂ U ίk(θ] is bounded on L2(IR(]V"1)w) whenever |Imθ|<00.
The other operators of Lemma V.4 of [7] can be treated in the same fashion. Fix θ
with |Imθ|<00. Then

Theorem II.9 of [7] bounds the first factor for some value of α>0 which depends
continuously on θ. The second factor is controlled by the same method used to
control the analogous factor in the proof of Lemma V.4 of [7]. The third factor is a
product of exponentials. Since ξ=Cίxij + C2xik, the triangle inequality shows that



Scattering Resonances 185

the product is bounded whenever 7<y1. Here yί depends continuously on a, and
hence Θ.

Since 00<π/2, it is easy to see that y1 can be bounded away from 0 when
\Imθ\^θ0. This implies the existence of a y for which the lemma holds. Π

Remarks. 1. For JV = 2,3, $ is the set of eigenvalues of H. For N = 4 it may also
contain spurious zeros (see [7]).

2. For all but a discrete set of (Im θ)'s, (d) can be improved to include boundary
values of X(θ,z) on σess(H(0))\<?(θ) (δ(θ) is discrete for each allowed θ\ The bad
values of Im Θ are those for which new resonance thresholds are appearing.

D. The (2 Cluster}^(2 Cluster] T-Matrix

Proposition 2.2. Assume hypotheses (i)-(iv). Assume {̂ .= 1} is a set of generic
couplings. Let α and β both be 2 cluster channels. Let Saβ denote the block of the
S-matrixfor scattering from channel β to channel α. Then, for a dense set offs in 3?a

and a dense set ofg's in Jf^,

<f9sΛβgy-δaβ<JLgy
= - 2πz I f(k)g(k')δ(k2/2Ma + Eα - k'2/2Mβ - Eβ)Taβ(k, k')dkdk',

where

Txβ(k,k') = (2πΓm ί Φ°«(X,k}\V(X)- FD(α)
R(N-l ) m

L(D(β))

• Σ ί(Ze!D(β)(k'2/2Mβ + Eβ-iO))*F*D(βψ°β( ,k')-](X)dX. (2.6)
1=1

Moreover, Taβ (k,kf) is continuous in k and k whenever k'2/2Mβ + Eβφ(o.

Proof. This follows from Theorem 1.2 of [8] where Eq. (2.6) contains the ρ
functions chosen in [8]. Lemma 2.1 is all that is required to modify the proof of
Theorem 1.2 of [8] to accomodate the ρ functions which we chose in Eq. (2.5). Π

Remark. When ΛΓ = 2, formulas (2.4) and (2.6) give the familiar formula:

T(k, k') = (2πΓm$e-ίkxV(x}(eίk'x + [(/c/2/2M+ ίO -

3. Meromophic Continuation of the (2->2) Scattering Amplitude

In this section we prove our main result (Theorem 3.1). We begin by choosing the
amplitude to be continued. We then describe the surface on which the con-
tinuation is defined.

Given any two 2 cluster channels α and β, the associated T-matrix, Γαj5(k, k'),
depends on the outgoing and incoming momenta ke!Rm and k'<ΞlRm (The
dimension of space is m^3). We pick unit vectors e1 and e2 in IRm and restrict
attention to k = keί and k/ = fe/e2 Furthermore, due to energy conservation, the
physically interesting values of k and k' satisfy /c2/2Mα + £α = k'2/2Mβ + Eβ = E. So,
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we define faβ(E) = Tocβ(ke1,k'e2\ where k and k are determined by

( '
The square roots are chosen so that k and k' are both positive when the energy E is
in the physical region £>Max {Eα, Eβ}. For simplicity we concentrate on faβ(E)
rather than Γα/?(k, k') (see Corollary 3.2 for more information concerning TΛβ).

We will construct the meromorphic continuation oϊfaβ(E) on a Riemann surface
J^, which is an open subset of the Riemann surface J^ usually associated [3, 11]
with the dilation analytic Schrόdinger operator H. Every threshold is a branch
point of ^. We identify each function g on J^ with a function 0(0, z), where
zE<C\σess(#(0)) and 0(0, z) is locally independent of 0 for fixed zφσess(H(θ)). By an

abuse of notation we represent ̂  as (J {zEC:z<£σess(/ί(0))}.
e

Theorem 3.1. Assume hypotheses (i)-(iv) for H = H0+Σ ^ij^tp and let α and β be
i<j

any two 2 cluster channels for H.

Then, for each set of generic couplings {λ^}, there exist σ>0 and a closed set
(fglR of measure zero so that the following holds: The amplitude faβ(E) has a
meromorphic continuation from ^phy&icai= {£ + /OeIR\ίf :£>Max{£α, Eβ}} to the
connected component ̂ β of

which contains ̂ Phys lcaι \_Eqs. (3.1) determine fe, fc']. /4// po/es of fαβ in ̂ β are bound
states or dilation analytic resonances for H.

Remarks. 1. Yukawa potentials satisfy all the hypotheses of Theorem 3.1.
2. The generic couplings are precisely those for which no cluster Hamiltonian

has a threshold resonance or threshold bound state. This set of couplings is large
in the sense that its complement is a closed set of measure zero [7, Sect. VI].

3. The region J^ is represented in the conclusion of the theorem as a union of
sets ^(0) g (C\σess(fί(0)). ^(0) is the intersection of three regions. The first region is
(C\σess(//(0)). The second is the set of all points E which lie in the "inside" region
bounded by the parabola |Im (eθ[2Ma(E — EJ] 1/2)| = σ. This region contains Ea and
is symmetric about the "cut" {£α + μe~2θ:μe[0, oo)} g σess(H(θ)). The third region
is a similar "solid parabola" containing Eβ and which is symmetric about

4. For suitable α and β, ̂ aβ is large in some sense. For example, let N = 3 and
choose α = j8, where Ea is the lowest 2 cluster threshold. Choose 01 satisfying
0<Θ1<00 so that \lmθ\<91 implies that every threshold Eδ satisfies

Then J^ contains all points z on the "unphysical sheets" of J* which lie over
{z: — 29 ί <arg(z — Eα)<0}. All dilation analytic resonances which are eigenvalues
of the operators H(θ) with |Im0| <01 must lie in 3FΛΛ.

5. In Theorem 3.1, hypothesis (iii) may be weakened. Exponential fall off of
I70.(0) is required, but Wtj(0) need only lie in Lf(IRm) + L^°(IRm) for some p>m and
δ > m/2. We have used Hypothesis (iii) to avoid rewriting a few of the estimates of
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Sect. V of [7] in the proof of Lemma 2.1. By the weakening of hypotheses we can
obtain a larger set J* .̂

Proof of Theorem 3.1. If θ is real, than Eq. (2.3) and (2.6) show:
L(D(β))

f*βW= Σ Σ <Ψij(θ9E)9Λ<tij(θ9E + iQ)Φ<(θ9E)y9 (3.2)
~D(α) <?=!

where

and Σ indicates summation over all pairs ij with i and j in different clusters of
~D(α)

D(α). As usual £ determines k and kf by Eq. (3.1).
Since the couplings are generic, ψΛ(θ) and ψβ(θ) have exponential fall off for

θeSθo (Note θ0<π/2). Thus, Lemma 2.1 (a) shows that

is an analytic Jf-valued function of £ for fixed θeSθo, as long as \lmeθk'\<σ1. The
rate of falloff of Ff D(jβ) (which is a ρ function) determines σ1.

Using a similar argument, we see that ψ.j(θ9E) is a conjugate analytic
L£-valued function of £ for each fixed θeSθo, whenever, |ImΛ|<σ2. This
argument uses hypothesis (iii) and the representation of xtj as a linear combination
of clustered Jacobi coordinates for D(β).

For each θεSθ , Lemma 2.1 (c) shows that Af tj(E9 θ):j^^>L2_δis meromorphic
for Eφσess(H(θ)).

We can now construct the continuation of faβ. Let σ = Min{σ l 5σ2}, and
represent fΛβ(E) by Eq. (3.2). By Lemma 2.1 and the observations above, this
representation is valid for £e^physical. Furthermore, the right hand side of Eq. (3.2)
is meromorphic in £ and independent of θ whenever £ belongs to

0(0) = {E6 C\σess(#(0)): |Im eθk\ < σ, |Im eθk'\ < σ}.

The usual dilation analytic tricks [3, 11] show that/α/3 is 0-independent. Thus, by
alternately changing £ and θ, we see that fΛβ(E) is meromorphic in 3?aβ.

Poles of/αjff in ̂ Λβ can only arisejrom poles oϊΛ^^Θ.E). Poles o ϊ Λ ^ f i j ( θ 9 E ) can
arise only from poles of (1 — M(Θ9E)*)~1 in Eq. (2.3), where £e<C\σess(#(0)). For
N = 2 and N = 3, these poles must be bound states or dilation analytic resonances
(see Proposition V.I and V.2 of [7]). For N = 4 these poles can be bound states,
dilation analytic resonances, or "spurious zeros".

_Let £ be_ a spurious zero. To complete the proof, we must show
)*(! — M(05 z)*)~1M(0, z)* has no pole at z —£. This is equivalent to showing
)*(ί—e^(θ9z)*)~1^(θ9z)* has no pole at z = £, where we let j/, Jt> and ̂  be

the operators of Eq. IV.4 of [7]. Using the explicit formula for ^(z,0) and the
resolvent formula (z-HD(θ)Γl =(z-H0(θ))~1 +(z-HD(θ)Γl_VD(θ}(z-H<,(θ}Γ\
it is easy to see that every pole of (̂0, z)*(l — Jί(θ, z)*)"1^(θ, z)* gives rise to a
pole of #(0,^*(l-^(0,^*)~ V(0,z)*. Since £ is spurious, this last operator
valued function has no pole at £.

Thus, spurious zeros do not give rise to poles of fΛβ. Π
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Remarks i. Another proof that spurious zeros do not give poles of faβ can be
obtained by replacing Eq. (3.2) with Eqs. (2.4) and (2.6).

2. Suppose E0e^αβ is a pole offΛβ(E). Assume E0 is a simple eigenvalue oϊH(θ)
with eigenfunction ψ(θ). By replacing Eq. (3.2) with Eq. (2.4) and (2.6), we can
compute the residue of the pole of fΛβ(E) at E0. The result is

(2πΓm(f φζ^θJ)lV(θ9X)*

'($ΪWΫ)ίV(θ, 7)- 7W)(

Corollary 3.2. Assume the hypotheses of Theorem 3.1. Assume the couplings are
generic, and let Taβ(E):L2(Sm~i)-^L2(Sm~1) be the "on-shelΓ T-matrix for scattering
from channel β to channel α. Then Taβ(E) is a meromorphic Hilbert-Schmidt operator
valued function for Ee^aβ. Its poles must be dilation analytic resonances.

Proof. The integral kernel of TΛβ(E) is fΛβ(E,el9e2). Theorem 3.1 establishes the

meromorphic behaviour of faβ(E, eί9e2), and it is clear that

f J l/α/£AΛ)l2^2
Sm-l Sm-l

is finite. This implies the corollary. D
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