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Abstract. It is shown that every system of time-ordered products for a local
field theory determines a related system of Schwinger functions possessing an
extended form of Osterwalder-Schrader positivity and that the converse is true
provided certain growth conditions are satisfied. This is applied to the φ\
theory and it is shown that the time-ordered functions and S-matrix elements
admit the standard perturbation series as asymptotic expansions.

I. Introduction

The present paper is a sequel to [EEF], in which some of the existing models of
field theories in 2 space-time dimensions were considered. In order to study the
dependence of the S-matrix on the coupling constant, time-ordered functions were
constructed in a natural way, by taking essential advantage of the local in-
tegrability of the Schwinger functions. (This very property served to define the
Schwinger functions as distributions defined everywhere, including coinciding
points.) In other models, more singular Schwinger functions occur, and the
method of [EEF] cannot be applied. In this paper, a general discussion of the
connection between Schwinger functions and time-ordered products is given and
applied to the φ\ theory. We show that any Wightman theory equipped with time-
ordered products possesses Schwinger functions (considered as distributions over
the whole Euclidean world, including coinciding points) which exhibit "extended
Osterwalder-Schrader positivity". Conversely, given a set of Schwinger functions
possessing this extended positivity together with growth properties similar to
those of [OS2], it is possible to supplement the constructions of [OS 1, OS2, Gl]
with a construction of time-ordered products, in a canonical manner. Finally we
consider the model φ\ and, starting from results accumulated in the literature
[G2, GJ, Fe, FO, MSI, MS2, B, FR, C], we extend to this model the analysis of
[EEF], showing in particular that the time-ordered functions and the S-matrix
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elements are °̂° in the coupling constant near 0 and that their Taylor series at 0
are given by standard perturbation theory.

In the remainder of this introduction we shall state the "axioms" which
respectively characterize time-ordered products and Schwinger functions and the
theorems relating these two notions. Sections II and III give the proofs of these
theorems and in Section IV we discuss the application to φ\.

I.I. Axioms for Time-Ordered Products

(These "axioms" simply restate the standard postulates but, for reasons of
convenience we take the anti-time-ordered products as the basic objects.) Here, IRV

denotes the v-dimensional Minkowski space.

71) Hilbert Space, ffl is a Hubert space in which a continuous unitary repre-
sentation <2°-»£/(α°,0) of the time translation group 1R operates. There is a
normalized vector Ω (vacuum) such that U(a°,Q)Ω = Ω for all α°eR

T2) Spectrum. (7(α0,0)-expiα°P0, P° = H^Q.

73) (Antί)-Tιme Ordered Products. There is a dense subspace D0 of Jf containing
Ω and invariant under £7(α°, 0). For every n > 0 and every /e ^((Rv)") a linear
operator T(f) is defined on D0 and T(/)D0CD0. [We also write

Furthermore, for every /e

f(xl9...9xnr)dxί...dxnrψ (1)

is defined for each φeD0, belongs to D0, and depends continuously on/ in the
topology of &*. It is assumed that D0 is the subspace generated by the vectors of
the form (1) with ψ = Ω.

T4) Symmetry. For each n > 1, T(xl5 . . ., xn) is symmetric, i.e. for each permutation π
of (!,...,«),

[This will allow us to denote f(X) the distribution T(xjV ...,x jV) where

X = {/ι5 ..Jr} We Denote f(0) = l.]

T5) (Anti-) Causal Factorization. Let X = {1, ...,n},X = PvQ9 Pnβ-0. Then (on
DO) the two distributions T(X) and T(P)T(Q) coincide in the open set of Rv" given
by

{(x1,...,xJ|VjeP,V/ceβ,xJ°<xk°} . (2)

[We define T(X) (the "time-ordered operators") through the polynomial
expression

* T ( I i ) . . . f ( I ) 9 (3)
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where £* runs over the set {/1? . . ., Ip Φ 0, /1 u . . . u/p =JΓ, /j n/Λ = 0 for Φ fe}, and
Γ(0)=l.]

T6) Hermiticίty. On £>0, T(Y)* = Γ (3Q.

T7) Time Translation Covariance. For every /e 5^(lRVfI)5 every α°e!R, every ψeD0,
where fa(x^

Remark. Most of the ensueing construction is independent of the underlying
Hubert space structure and could be done for any system of distributions having
only the linear properties of(Ω9f(Xί)...T^:n)Ω).

In relativistically invariant theories additional conditions are imposed :

T8) 17 extends to a continuous unitary representation of the Poincare group,
leaving the vacuum invariant, mapping D0 into itself and T7) is extended in the
usual way.

1.2. Axioms for Schwinger Functions

A system of Schwinger functions is defined to be a sequence {SJ^ of tempered
distributions such that :

SI) S0eC. For n^l, Swe^'(IRV11). Here IRV" is regarded as (<fv)n, ^ being the v-
dimensional Euclidean space in which a special orthogonal basis (e0,el5 ...,e v_ 1)
has been chosen. A point y in / v will be specified by its coordinates in this basis
(y°9y

1,".,yv~1\ usually denoted (jΛy). The scalar product is given by
v - l

52) Sn is symmetric, i.e. for every permutation π of {1, ...,n} and every /e

Sn(f) = Sn(fπ),

where fπ(yl9 . . ., yn) =f(yπί, . . ., 3̂  J.

53) Sn is invariant under Euclidean time-translations, i.e. for all a = (α°, 0), and for
all/e^(lRVΠ), one has

Sn(f) = Sn(fa).

With the functional notation this reads

S4) Extended Osterw alder- Schrader Posίtίυίty. Let {fn}n = 1 2 ...,N be any finite
sequence of functions such that

b) For each Ji^l, the support of/ w is contained in
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Then

Σ f/„(( - y% y'J, -,(- /ι°, y!» /.((y?, y i), - , ϋ& yj)
0^m,«^N

dy1...rfXd>1...<i>nSm+n(yi,...,ym,y1,...,y

In other words if for any geff"(W} we denote

(4)

the above condition reads

ΣSm+π((0/J®/B)^0. (5)
«, m

Remark. The only difference between these hypotheses and the O.S. axioms is that
O.S. positivity is replaced by extended O.S. positivity. As a consequence many
steps in the construction of Section III.l are repetitions of those appearing in
[OS1, OS 2, Gl]. They are included for the sake of logical continuity. For related,
partly overlapping assumptions and developments see also [H, F, DF, GJ2, Y]. In
particular Condition S4) appears in [H, DF, Y].

55) Full Euclidean Invar iance.
The following property will play a crucial role in the reconstruction of time
ordered products.

56) Growth Condition. There are constants K, L, s such that for all n and all
lJ =!,...,«,

i=ι

\s denotes the Schwartz norm

\f\s= sup \xβD*f(x)\.
x , 0 £ | α | , | j 3 | £ s

1.3. Results

Two systems respectively satisfying the "T" and "5" axioms are naturally related if
they satisfy the following condition :

R) If /e^(Rvπ), fλ(x1,...,xJ=f(λxQ

ί9x1,...,λx*9xn) for real ^>0, and if the
map/I— »/A can be extended to a continuous map of the angle {ΛeC, |

^O, Imλ^O} into 5^(1RV"), analytic in the interior of this angle, then

1...dχ. (6)

Remark. The conventions of this paper differ from those of [EEF] in that

O^X L , -"^M/ ^EEFV"""^!^!' ""> ~^n'Xn)

We are now in a position to state
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Theorem 1. Given a system of (antί-)time ordered products satisfying T1)-T7) one
can construct a unique system of Schwinger functions satisfying Sl)-S4) such that R)
holds.

Conversely, one has

Theorem!. Given a system of Schwinger functions satisfying Sl)-S4) and the growth
condition S6) one can construct a unique system of (anti-)time ordered products
satisfying T1)-T7) such that R) holds.

Corollary 3. The inclusion of T8) in the assumptions of Theorem 1 implies that S5)
holds in its conclusion, and conversely for Theorem 2.

Comment. Our assumptions are formulated for the case of one neutral scalar field
A(x) = T(x) = T(x\ but it is straightforward to extend all our considerations to the
case of any number of fields with arbitrary charge, spin, and statistics. [In fact, in
the application to φ\ we shall need the fields φ, φ2, φ3, φ4 as basic objects.] The
symmetry conditions T4) and S2) can be recovered by considering all fields to be
the components of a single object.

In Section IV we show that the Schwinger functions of the φ\ theory satisfy the
conditions Sl)-S6).

II. Proof of Theorem 1

II. 1. Euclidean Time-Ordered Operators

We assume that a system satisfying T1)-T7) is given. It will be useful to construct,
as intermediate objects, operator valued distributions 0(xl9 ...,xπ) which can
formally be thought of as T(ixJ,x l5 ...,bc°,x_π). Let D1 be the intersection of the
domains of the closures of all finite products T(f^). . . T(/N), (initially defined on D0),
where /jG^IR^). The operators Θ shall satisfy:

01) If ipeD^ and if/E^(IRv" + 1) has its support in

{(xί,...,xn,v)eWn+ΐ\V^x°<vJ=l...,n} (7)

then

$&(xi9...,xn)e-vaψf(xί,...9xn9v)dxi...dxndv

is well defined, belongs to D1 and depends continuously on /

02) For any /e^(lRvn) and w = u + ivε<£ with u>0, such that

and for every φeD l 5 Θ(f}eiwH\p is defined, belongs to D15 depends continuously on
/ and holomorphically on w.

03) Symmetry. &(xl9 ...,xπ) = 0(xπl, ...,xπM) for every permutation π.

[We again introduce the notation &(X) as for the T, and we define &(&) = 1].
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04) Time Translation. For 0^x?gt>, (1^/^n) and f^O, and all

with Xj° = x? -f ί, Xj = x7 , 1 ̂  7 ̂  w, with obvious notations.

05) Factorization. In the open set {(yl5 ...,j;;l)eIRvn|j;?<j;£ for every 7 = 1, ...,p and
every fc = /? + !, ...,w},

as distributions, on D^

06) Let 3Γ15 ...,Xr be any partition of {1, ...,JV} and let Z1? ...,Zl be any partition
of {N+ 1, ..., IV-f p). Then, for every /e^(IRv(jV+p)) having support in

the vector

Φ = J eiwoH^i)> ^ > eiW r- ι^(χr)β(^- w f (Zj). . . f(Zt)Ω

is well-defined, is in D1? depends holomorphically on w0> ..., wr for Imwj>0, and
for every β there is a constant Cβ such that (for Im w7 ̂  0),

where L depends only on N + p, and where |w| = ^|w_y|.

The operators 0 are naturally related to the operators f by the following
condition :

R') Let g&^(Wn+l) have support in (7) and denote, for Λ>0, gλ(x^ ...,xn,v)

= g(λx®, x1? . . ., λx°, xw, ̂ ). Assume that the map λ-+gλ extends to a continuous map
of

(8)

into <f(Wn+l\ holomorphic in the interior of (8). Then for all ψeDί9

= ίf(xl9...9xn)eίvHψg(Xl9...9xn9v)d^1...d
vxndv. (9)

Remark. The r.h.s. of (9) makes sense.

Proof. With our choice of D1? it is clear that eιwίlψ exists for every ψeDl and every
w = M + ίi?eC with t ^O and is in Dr It is °̂° in w and holomorphic when v>Q.
Moreover there exists, for each N an L and a C such that for any partition
Xi9...,Xr of {!,..., N}9 and any
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with Wj = Uj + iVp Vj^.Q, (0^j<r). This clearly implies

q.e.d. (10)

The construction of G)(X) is obtained by an induction on \X . Note that (9(X) has
been defined for X = 0 as 0(0) = 1. We assume that &(X] has been defined for all X
with |X|^n-l, with all the properties $!)-<%), R') and we construct (9(X) for
X = {l,...,n}. More precisely, let Z = {n+l,.. .,n + p} and z = (zw+1, ...,zM+p),
Z = Zt u . . . uZr, (with Z nZfc Φ 0 for Φ fc). We shall define, for all fe ^(IRvn+ 1 + vp\
with support

(11)

the vector

(12)

(We shall concentrate on the case n> 1, the case n — 1 being a simpler version, left
to the reader. We also assume Z Φ 0 the case Z = 0 is a trivial variant.)

There is in fact no freedom left in defining (9: for a radially analytic test-
function g, (9(g) is determined by Rf) for a test function vanishing at coinciding
points, it is determined by the factorization property 05) and by already
constructed operators. We shall see that any test function can be written as a sum
of functions of the two preceding types.

We first indicate how to decompose an arbitrary function. For this we use two
auxiliary functions which we now define. Denote y = n~1(x® + ...+ x°), ξj = x° — y,

1 ^/ig n, (so that ]Γ .̂ = 0) and let ξ = ( ξ l 9 ...,ί l l_1).

The function αL. L is a positive integer and, for all ίeIR,

aL(t) = θ(t)tLe(l~ί}t= — \e~ipt(l — i — ip)~L~ldp. (13)

More generally, for every complex λ with \λ\>0 and Orgarg/lrgf ,

αλϊL(ί) = θ(t)λLtLe(ί~1)λt = —- J e~ipt(ί - i - ίλ~ίp)~L~ 1λ~ίdp, (14)

and, in particular

Note that

rl \L+ 1

(16)
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The Function w:w(ξ,y) is a real function over 1R" such that
1) w is homogeneous and of degree 0, i.e. for all ρ>0, w(ρ£, ρy) = w(ξ, y).
2) w is <g" in IR"\{0}.
3) The support of w is contained in the cone

^y$^y + nξj for all 7=1,-,"},

(we recall that ξn= — ξ± — . . .— £„_!). Expressed in the variables x® = y + ξj, this
reads

n k= 1

Note that this implies x? > y hence x? < y < 2v.J - n J ~ n

5) Dfw(0,y)-0 for all |j8|>l and all y φ O : w(0,y)-l for all y>0.
It is easy to construct such functions: take w(ξ, 1) to be any °̂° function of

ξ = ( ξ ί 9 . . . , ξn_ i) such that 0^w(£, 1)^1, w(0,1)= 1, £>fw(0,1) = 0 for all |jB| ̂  1, and

supp w(ζ, 1)C {ξ:0^nξj+1 for all 7 = !, ...,n—1,0^1 —nξ 1 — ... — nξ π _ 1 } .

Note that 0 is an interior point of this set. Then define

V, 1) for y>0, and w(£,y) = 0 for y r g O .

The Decomposition of f. Fix L (to be determined later). Consider any
/e^(Rvn+1+Vί>) with support in {(x1,...9xn,v

Define φ by
L+l

y,xί),...,(ξn + y,'n^v>z), (17)

where ξ, y have been defined previously.
By Equation (16) it follows that / can be written as

/(xf, . . ., xn, t;, z) = J dadbφ(ξ, x, 0, fe, z)

α.!L(y-α)α.iL(ί;-2y-b + 2α). (18)

φ is in ^(]Rvίn + p)+ 1) as a function of all its arguments, and has support in

{(ξ,x,α,b,z)|^. + α = 0,(1^7 = n),0 = α = ft}.

Furthermore,

(the constant depending only on R and L).
We decompose / into two parts, /=/0 -f/i by defining

/! (x, v, z) = J Jαdbαί? L(y - a)ctif L(v-2y-b + 2a)

w(ξ,y-α). (19)

M>0 will be chosen later.
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Definition of 0(/0). Denote again y = n~1(x°1 + ...+x°), ^ = x° - y,
ξ = (ξ1,...,ξΛ-1). Let <? be the subspace of ^(Rvn+1 + v*) consisting of functions
having their support in the set (1 1), and let S 0 C S be the set of functions in $ which
vanish in a neighborhood of

Lemma 4. v4 function ge$0 can be written as g=

The proof is deferred to the end of the subsection.
We now define for

). . . T(Zr}Ωg(x, v, z)dxdvdz

= Σ ί^ί^^B^-^nZJ...^^^ B(x,v,z)dxdvdz. (20)

This definition is forced by the requirement (95} (Factorization). The r.h.s. of this
equation is well defined according to the induction hypothesis and is bounded in
norm by Const \gA B\R (the constant and R depend only on n + p). It is easy to see
by standard methods, (see e.g. [EG 1,2]), that there is a KΞ>0 such that (for all

the expression (20) is bounded in norm by Const. \g\κ.
The function fγ defined by (19) is not °̂° but it belongs to the completion of

i + vp) in the norm 1 1 ?̂ and

provided we have chosen L^M + 1. Its support is contained in

Hence /0 has the same properties and, furthermore, vanishes together with its
derivatives of order rg M -f 1 when ^ = 0. As a consequence if we replace / by /0 in
(12), the corresponding vector is well defined by our previous discussion, (formula
(20) with 0=/o) and bounded in norm by Const. |/0|M^Const. |/|2M + 2L + 3,
provided we choose M^K.

Definition of (9(fλ\ The function /x can be re-written as

/^x, ϋ, z) = $dadbφ0(ξ,y-a,v-b, x, α, b, z),

where φo = φ0}ί,
Γ Λ f + 1 ;|/J|^

w(ξ,j;)αίjLμj;)

This function is radially analytic (with respect to the variables ξ, y, v) and has
support in (11). Hence the requirements (94) and R') force the definition:

dξdydvdxdz . (21)
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The r.h.s. of (21) is a well-defined vector: considered as a test function in the
variables ξ, y, v, x, z, depending on the parameters a and fc, φ0 __t belongs to the
completion of ^ in the norm ||M, (with the condition L^M-fl), and is an
admissible test-function if M is sufficiently large. Moreover,

a,b

gConst.|/|2M+Λ + 2 L + 3. (22)

Thus we can integrate (21) over a and b and define

$ ( 9 ( X ) e - v H f ( Z ί ) . . . f ( Z r ) Ω f ί ( x , v , z ) d x d v d z

= $e-aHf(X)e(ίv-b + a)HT(Z1)...T(Zr)Ω (23)

nφ0> _.(ξ, y, v, x, α, b, z)i~n~1dξdydvdxdzdadb .

This completes the definition of the vector (12), which is bounded in norm by

Const. |/|4M + 8.

Verification of the Properties &l)-(96). The vector constructed above is independent
of L ̂  M + 1 because it is easy to check (by using the induction hypothesis) that if/
happens to be radially analytic in the variables ξ, y and v, then so are /0 and /x and
the above definition yields exactly

J T (X)eivH f ( Z , ). . . Γ(Zr)0/(( - ίx°, Xl), . . ., (-ΪXB°, xj, - fo, z)

(We omit the details of this verification. An analogous verification is sketched in
Section III.) Thus 01) and R') are satisfied.

Having defined vectors of the type (12), we now wish to define

where v>0 and $ey(IRv(" + p)) has its support in

This can be rewritten, formally, as

!Γ1l-i+\ aQ(t)dtdxdz

Q+1

<χQ(t)dtdxdz

where zf

k = (z° — ί, zfc), (n + 1 ̂  fe ̂  n + p). By integrating by parts over ί this becomes

J 0(AΓ)e( - y + ίί)H f(Z ! ) . . . f (Zr)Ω
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where

Kζ)9(Xlι '• >Xn>Zn+ΐ> - >Zn + p)

d\Q+ί

By analytic continuation in ί, this becomes

j 0(X>-<" + ί>H f (Zt). . . f(Z,)ΩKQg(x, z)aίί

and, for Q sufficiently large, this has been defined previously.
The same formulae evidently lead to a consistent definition of

^f(Yl)...f(Ys)eiσHΘ(XΓυHT(Zί)...f(Zr)Ω

h({y}γίU...uYs>
 x> υ> z)dxdxdvdz .

This shows that all such vectors do belong to Dv

This proves 02). The properties 03), 04), 05), 06) follow from the construction,
from the corresponding properties for the f, and by analytic continuation. We
omit the details of the verification, which are entirely straightforward.

Proof of Lemma 4. We consider, in the space of the variables ξ, the "sphere" Ξ
consisting of all ξ verifying

(Note that £ (ξj-ξJ2 = n
\ i^j<k^n

For any ξeΞ, there is at least one pair of distinct j and k, such that ξj — k

^(^φ-l))
we have

The real numbers ξp 1 ̂ j^n, subdivide the interval [α,/?] into at most n—1 open
intervals. At least one of these subintervals say (y, δ) has a length

Let

A = {j Λ^j^n

Then ξ belongs to the open set of the sphere defined by

ΩAίB={ξ:\/jeA

itself contained in

Let {χA B} be a family of °̂° functions on Ξ with
' A. <u B — X

and
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[Example: denote FAtB(ξ)= Y[θ(ξk-ξj-n~2)^p-(ξk-ξj-n~2Γl and χAB(ξ)
J^A

L ieB

= FA *(£)[ Σ Fc D(®\~I- τhis is wel1 defined since, on Ωc D, Fc D(ξ)
[C,D ' j

/ / n \~1/2\

Then, for general ξφO, denote V^,*(£) = ;UB Φ Σ tf] If

\ \ j = ι I I
= Σ ΘA,B with QAE^^A β(ί)^e^o This completes the proof.

A,B

11.2. The Construction of Schwinger Functions

The previous construction has led, in particular, to a definition of (Ω, Φ(X}Ω) as a
continuous linear functional over the subspace of 5^(RV") consisting of functions
with support in {(xl5 ...,xπ)|x?^OJ=l, ...,n}. However this functional is invariant
under the translations of the form (x1? ...,xπ)-^(x1 H-α, ...,xn + α) where α°>0, a
= 0, and can be uniquely extended to a continuous linear functional over the
whole of ^(IR™), by using the translation invariance and a partition of the unit.
The tempered distribution Sn so defined (also denoted S if n is unambiguous) is
symmetric, invariant under time translations, and coincides with (Ω, Φ(X), Ω) when
integrated with test-functions with support in {(x1? ...,xπ)eIRv n |V/,xy^O}. Thus it
satisfies the properties SI), S2\ S3) and R).

In order to study further properties of S, we use some well-known re-
gularization procedures.

The preceding construction of the distributions (Ω,&(X1)...&(Xr)Ω) does not
really depend on the_Hilbert_space structure but only on the linear properties of
the distributions (Ω, Tpf ^..Tpf^Q). Thus it can be straight-forwardly adapted to
the case ofa "linear system of n-point functions", i.e. a set of tempered distributions
((T^)...̂ ))) over IFT (here Xίu...^jXs=X=={l9...9n}9 Xj^Xk = 0 if jφ/c,
1 ̂ s^n), having all the linear properties of the (Ω, TQCJ...^^). (These "linear
systems" are discussed in [EGS]). Among the "axioms" which are imposed on
such a linear system is the spectrum condition : let

Σ Pj

= (2π)-" vf/expi Σ pjx'\^f(Xί}...T(Xr)^(Xί,...,xn)d^l...d
vxn. (24)

V l ^ j ^ n /

[Here pjxj - p7°x° - p ,̂]

Denote, for every proper subset YoϊX, pγ = ^ pk. Let / x =X15 . . ., Is = (J Xj.
keY l ^ j^s

Then the support of the distribution (24) is contained in

(Pι> •••>£,,)
j = ι

- }p. = 0, and, for every s=l, . . . ,r— l 5p / seF+(M j Γ s)V.
" J
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Here V+(M) denotes {peJRv|p°^0,p p^M2}. (See Remark 1 at the end of this
section.) For every proper subset J of X, Mj is a fixed real number ^0, called the
threshold in the channel J;MJ = MXW. If <<f(X"J...f(ϊr)>>=(Ω,f(AΓ1)...f(Xr

r)Ω),
the thresholds are, in general, 0 because of the vacuum contribution. If
«f(ΛΓ1)...f(Xr

r)» is taken to be (Ω,Tpf J...Γ(Xr)Ω)Γ, and if the theory has a
unique vacuum and a mass gap, then for all J, Mj ^ μ, where μ is a fixed minimum
mass >0.

Given a linear system of π-point functions, it is possible to define, by suitable
linear combinations, the corresponding "generalized retarded functions" ^R^.
Their Fourier transforms «jR«^»~ defined by

pW^

are the boundary values from certain tubes of a single function H holomorphic in a

certain domain in the "complex momentum space", ((/q, ...,kn)e<Cvn\Σkj = Q\. The
1 I j

domain of analyticity of H contains the following set:

(/c1,...,/cn)e(C v"|Xfc j-0; for all j, Imk^O; and,

Thus, if the thresholds are all strictly positive, the domain of holomorphy of H
contains the set En of all "Euclidean momenta",

En = !(kl9...9kjE<Cvn\Σkj = 0 and for all j, Imk.-O, Refc9=θj .

In this case, (all MJ^μ>0), the distributions «T(X"1)...T(Yr)» can be
unambiguously recovered from the function H by a well-defined linear procedure.
This allows the following regularization method.

Let

Hr°*(k)=\fl(-k* + L2ΓR H(k)
u=ι

where jR^O is an integer and L>maxM J. This function has all the linear
j

properties of an rc-point momentum-space analytic function and the above
mentioned linear procedure, applied to ί/reg, yields a new linear system of n-point
functions, denoted «ί(X1)...^Γ)»reg. They verify

(25)

For sufficiently large R, all <^T...yeg become continuous and even finitely
differentiable, polynomially bounded functions. Furthermore if w(z1,...,zj de-
notes the value at (z1; ...,zn)eC"v of the analytic Wightman function which has as
its boundary values the various
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and if wreg, w^eg denotes the corresponding regularized objects, it is easy to see that
wreg is continuous and has finitely many continuous derivatives at the boundaries
of the permuted forward tubes. In particular wreg defines a piecewise continuous
function on the Euclidean world. Applying the characteristic property (R\ it is
then clear that

S^ϋΊ, , yJ = wreβ((ij£, yA . . , (iy°n, yπ)) , (26)

and that

%ι, »,:U = Π (-Δyj + L2)RS"*(yl9...,yJ. (27)
j= i

The last equation holds in the sense of tempered distributions, and, of course S and
Sreg are given by «00Γ)» and «00Γ)»reg, respectively. It is well-known [Sy], (and
re-proved in [EGS] and [EEF]), that

-iΣ^
' (28)

\ J = 1

so that, applying (27), we obtain

^.jH((-^,qι),...,(-^,qJ)

Ίι dqn, (29)

(only valid for strictly positive thresholds). Here qjyj = q®y® — q^y,-.
Now assume that 0<x^<... <x°r, and 0<x^ <... <x^, where r + s = n and

π and σ are respectively permutations of (1, ...,r) and (1, ...,s). Then

initially defined for λ>0, μ>0, can be continued as an analytic function of λ and μ
in{Λ| |A|ΦO, 0<argA<f} x {μ||μ|Φθ, 0< — argμ<f}, continuous on the boundary
of this domain, (with values in the piecewise continuous functions over lRvn). For
λ = i, μ = — i this continuation yields

Let /e5^0Rvr) and ^e^(IRvs) have their supports in {(x1? ...,x r)|V/, x?^0}
and {(xl5 ...,x s)|V/, x?^0}, respectively. Defining, for A>0, /λ(x1? ...,xr)
=/((λλ:55x1), ...,(/lx^,xr)), αnJ similarly gλ, we suppose that λ->/λ, A->^Λ can be
extended to holomorphic maps of {λe(C\{0}|0<argλ<f}, continuous on {AeC\

^f}, into ^(1RVΓ) and ^(IRVS), respectively. Then

f w^((μxZ x'σs\ . . ., (pβ, x'σl), μxπ°1? xπl), . . ., (λxl xj)

Θ(X'» ~ <l- 1}). - .«2 - *£ ) Θ(X22 - X^). •« ~ <r- !,) (30)

l9 . . ., χr)λrμsdx\ ...dx's dxv . .dxr
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defines a holomorphic function over {AeC\{0}|0<arg/l<f} x {μe(C\{0}|0
< — argμ<f}, (with continuity at the boundaries except λ = 0 or μ = 0). But, for
λ > 0 and μ > 0, this integral is independent of λ and μ. Hence it remains constant
for complex λ and μ and, by continuity, we get, for λ = μ = i,

., χ;1? χπl, . . , χπr

Using the symmetry of Sreg, and summing on both sides over σ and π, we obtain

(31)

By using (27) and (25) we obtain the

Lemma 5.

,...̂ ;)̂ !,.,.̂ ,)̂ .̂.̂ ;. (32)

Proo/ We have already shown that this formula holds for all linear systems with
strictly positive thresholds. We extend it to all linear systems of rc-point functions.
Note that both sides of Equation (32) have a well defined meaning even in the case
of zero thresholds, since the construction of S as a tempered distribution remains
valid. Starting from a linear system of n-point functions with possibly zero
thresholds, we approximate it by a new system, with strictly positive thresholds, by
the following method. For every zeCv with (z z)^2 + R+, we define

F(zM) = exp(U-1[(z-z)-^2]1/2 + l). (33)

Here A is strictly positive; the function ζ->(ζ-A2)1/2 is defined in (C\(v42 + IR+) by
the condition lm(ζ — A2)ΐ/2>0. We also denote

F±(x;A)= lim
+

Note that \F(z \A)\^e for all z such that (z z)φA2 +R+ and F(z A) has continuous
boundary values at the boundaries of this domain. For any pair (/, fe) with j < kj
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and ke {1, . . ., π}, we can define a linear system of n-point functions, as explained in
[EGS,§6.3],by

if jeXa, keXb, a<b,

F-(xJ.-xk)«ήXrι)..-
if jeXa,keXb,b<a,

if j and k belong to the same Xa.

The reasons for which this is possible and leads to a linear system are given in
[EGS, §6]. By repeating this procedure, we obtain a new linear system of n-point
functions given by

<<T(YJ...i(Yr)>^ (35)
\J<k I

In particular

exP^'E^^ (36)
\j<k /

This decreases exponentially at infinity in any direction strictly contained in a
permuted tube. In fact the Fourier transform

has its support in V±(A~1\ and hence the thresholds of the new system are all
above A'1.

When A tends_to oo, ^TQCi)...T(X:r)^Vf tends, in the sense of tempered
distributions, to ^f(X J . . .T(X r)^ and, (s_ince the construction of the ^(YJ...))
depends continuously on the <^T(XJ...T(X"r)^>), Sy*-*S in the sense of tempered
distributions. This limiting process yields (32) in the general case. Moreover since
(29) holds for ̂ ew and #^ew, and since Sn

A™-^S in^'as A-+ oo, the Fourier transform
of S^ew also tends (in the sense oί&") to that of S. On the other hand Hn

A™(k) tends to
JFί(fc) uniformly in every compact of the tubes associated with the ̂ R^ the union of
these tubes always contains

q® and q; real, and for every proper subset J of {1, ...,n},

At all such q, the Fourier transform of S thus coincides with H( — iq°,

Remarks. 1. In discussing "linear systems of n-point functions" we have used
notations adapted to the relativistic case. However the regularization procedures
described above also hold in the non relativistic case and, in particular, Equation
(32) remains valid.
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2. As noted before, in a field theory with unique vacuum and a mass gap, the
time ordered functions have zero thresholds but the truncated time ordered
functions have strictly positive thresholds. In this case, Equation (29) is satisfied
not by 5 but its truncated version, 5Γ.

We return to the study of a field theory equipped with (anti-) time ordered
products in a Hubert space 2tf, i.e. we assume all the hypotheses T1)-T 7). Then the
distributions 5 verify the positivity condition S4).

Proof. In the l.h.s. of Equation (5), we first replace each fn by a corresponding gn .,
given by

_ °f . -i dμ 0 0

o M

ρ(a ζ) is defined in the Appendix. Here |λ\ > 0,0 ̂  arg λ ̂  f. According to (32), the left-
hand side of (5) is then equal to

gntl(xi9...9xn)f(xi9...9xn)Ωdxi...dxn

and is positive. If we let a tend to -f oo, gn^ tends to fn in ̂ (IRvn) and the inequality
(5) is obtained in the limit α-»oo (see Appendix).

III. Proof of Theorem!

In this section, we start from a set of "Schwinger functions" satisfying 51), ...,54)
and construct first the operators Θ(yl9 ...,yn) Then the growth condition S6) is
used to define the distribution (Ω,&(Xί)eiWίH.,.eίWr-ίHΦ(Xr)Ω) from which the
anti-time-ordered distributions can be obtained by a purely linear operation
(although the vector formalism will be used for notational simplicity).

III. 1. Construction of the Operators 0(Y)

Let {Sn} be a sequence of tempered distributions satisfying Si) to 54). Let £f denote
the vector space of finite sequences {fn} (with arbitrary length) with /πey(IRv"),
equipped with the natural (direct topological sum) topology. 9*+ will denote the
subspace of £f consisting of the finite sequences {fn} such that, for each n ̂  1

For each real ί, we denote Lt the operator defined on y by

(AΛϋΊ, -, yn) =f«((yϊ - t,y,), ...,(y°n- 1, yn)) .
When ί is ^0, Lt maps Sf+ into itself, and ί->Lί? (ί^O) is a continuous semi-group
of continuous operators on £f+.

oo

If/= {/„} is an element of 5̂  we denote S(f)= £ £„(/„)• lϊg is also an element
« = o

of 5̂ , we denote
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We also write

)n(yι> >yn)= Σ 9p(yi>--">

and note the following algebraic rules :

Ls(g®f) = Lsg®LJ for all selR, / and g in Sf ,

LsΘf=ΘL_Jϊor all sεlR, / in &>.

The map from ^+ x 5̂ . into C defined by

(gJ)-+S(Θg®f)

is continuous, sesquilinear, and by S4\ positive in the sense that

S(Θ/®/)^0 for all /e^+.

Let Jf be the subspace of all /e5^+ such that for all

Because of the Schwarz inequality

so that

For all selR, / and gι in 5̂  we have

(37)

Hence for sSO, L^C^.
The space 5^+/^ is a separated pre-Hilbert space and can be completed into a

Hubert space 2tf. We denote ψ the canonical map of 5̂ + into #f , and, in
particular, Ψ({f0 = 1, ...,/„== 0, ...}) = Ω. By definition f(^V ) is dense in Jf and for

The map Ψ is continuous from £^+ to M'. Since LtJf <^<Af for any ί^O, we can
define, for each ί^O, an operator Pt on Ψ(^+) with the properties

for all

for all s^0,t^0,

(all ί^O,/ and g in

(all ί^0,/e^+).

Moreover t-*PtΨ(f) is a continuous map of [0, oo) into Jf for every fixed fe£f+.
Following Osterwalder and Schrader we conclude that, for all ί^O and all

&+,
(Ψ(fl Ptψ(f)) g || Ψ(f)\\(Ψ(f), P2tΨ(f))*
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and, passing to the limit :

(Ψ(f),PtΨ(f))£\\Ψ(f)\\2.

It follows that Pt can be extended by continuity to all of 2tf and defines a
continuous contraction semi-group. In particular

where H is a positive self adjoint operator whose domain contains Ψ(£f+). (In fact
contains all vectors of the form

ί>0.

These are a dense set of analytic vectors for H, and thus a core for H.) In particular

If Φ x and Φ2 are vectors in Jf , we can define

provided i ^O; this is a holomorphic function of u + ίv for u>0, continuous for
u = 0; if Φ2 (or Φ x) is in *F(^+) this function is even C°° in the closed upper half
plane. We also note that for ί^O, e~tH is invertible, its inverse etH having as its
domain precisely e~tH34? .

Let g ξ £ f . The projected support of g, denoted Proj. supp. g is the closed subset
of 1R defined as the closure of

{ί6R:3m>053(y1,...,ym)esupp.sfm,31^;^m with y° = f}

For any ίelR, the condition geLt£f+ is equivalent to

ί rginf Proj. supp. g

and the condition ΘgeL_t£f+ is equivalent to

sup Proj. supp. g^t.

Let/,^, and h belong to 5 +̂, with

0 < supp. Proj. supp. g = T< GO .

For any s ̂  T,

= S(Θ(ΘL_sg®Lsh)®f)==S(Θ(LsΘg®Lsh)®f).

This shows that, for fixed g and s, the map from 5̂ . to 5̂ +

maps ^Γ into itself. We therefore define an operator Ψ(£f+)-*Ψ(£f+) by:

). (38)
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Note that the right hand side is a continuous function of (s, g,/) it is even °̂° in 5
for s^ T. Furthermore the adjoint of this operator also maps Ψ(£f+) into itself. It is
given, on Ψ(£f+), by

Θ8(g)* Ψ(h) = Ψ(Lsθg®L8h) = (9s(Lβg} Ψ(h] .

Clearly, for ί^O,

Φ(g)e-'H = β (g on

It is possible to write Θs(g) = Θ(g)e~sH, where Θ(g) is defined on e
Indeed e ~ s// Ψ(^+ ) - <F(LŜ + ).

Any ueLs£f+ can be written uniquely as Lsv, ve£f+ and ueΛr<=>Ψ
(Ψ(g\ e-sHΨ(v}) = Q=>Ψ(v) = Q. Thus ue^ove^ and we can define

0(0) !P(M) - ^sto) !P(t;) - Ψ(g® u) . (39)

We shall verify that these operators satisfy the properties Θ\)-Θ6\ with Dl

replaced by a new domain D2 to be defined later.
It will be convenient to use the notation

$0(yl9...,yjf(yl,...9yn)dyί...dyn

for (9(g) when g = {0, ...,/,0, ...}, and similarly

The construction of these operators does not depend on the symmetry property
S2). If S2) holds, for every permutation π of (1, ...,n),

^(y1? . . ., yn) = 0(yπl, . . ., yJ9 (this is ί?3)).

This will allow us to use the abbreviated notation Θ(Y) as before.
It is also clearly possible to define,

-^HΘ(Y2}...e-^^HΘ(Yr)Ω

Here vQ9 . . . 5 ι ? r _ l 5 are all ^0; ^ = {1, ...,7^}, y2 = {n1 + l, . . . ,w 2 }, . . . , 7r

= {«,._! + !, ...,«,. = N}, are disjoint non empty subsets of {!,..., N} with union
{1, ...,N}. /e^(Rvn) has its support in

^ j;̂ }̂  if jeY, and /ceY M with t<u}. (41)

The precise definition of (40) is Ψ(g) where gp = ̂ pΛr^N anc^

(42)

It will prove convenient to use an adaptation of the method of [OS 2] for
regularizing the behavior of Sn(x^ . . ., xn) at large distances, based on the following
remark.

If {S'n} and {Sf^} are two systems of distributions satisfying 51), S3), S4), and if it
is possible to define the pointwise product SJJ

/ /(x1,...,xM) = SJl(x1,...,xn)S^(x1,...,xn),
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(e.g. as a limit of S'n -(S;'*ρ) as ρ-*δ), then {S'ή'} also satisfies 51), 53), 54). Indeed, for
every finite sequence {fn} such that/ne^(lRv") and supp./^C {(x1? ..^xJIO^x?, 1 ̂ j

9'(Xl,...,xJ®&"(Xl,...,xm)-]Ω'®Ω",
m,«

"(yι,..., yj] Ω'®Ω")/Jx1,...,xJ /„(?!,..., y,,)

An example {£„} of a sequence of distributions satisfying 51), 53), and almost
54) is given by

where, for every real ί,

and where h and σ are real functions, σ^O, so chosen that the above integral is
absolutely convergent and continuous in t on [0, oo).

Indeed one finds, for all finite sequences {/„} as above, with /0 = 0,

Σ Ξm + II(Θfm®fJ = Σ K dpσ(P)ΈJp)cn(p) = f« dpσ(p) Σφf ,
m,n m,n n \

where

φ) = ie-*x*h(prfn(Xl, . . ., xj dx, . . .dxn .

More specifically, we choose σ(p) = e~p, h(p) = pR, JR^O, so that

With this choice, we denote 2tf^ Ψ'0(f)> ®o(xι> - - xn) = ®o(*°i> - •> xnl Ho the objects
obtained from {Ξn} by the preceding construction.

We return to the original sequence {5J satisfying 51), ...,54) and the
growth condition 56). For every N>1 and /e^(lRvn/), n^\, Proj. supp./^
^Proj.supp./).+ 1, (/'=!, ...,r-l), and (ι?l5 ...^^JeCO, oo)11"1, we denote:

and

(/, ? ; ^ 5 , - )^ ί^(^ ι , ,%)^(yι-Λ)

where ̂  = n71(x?1 + ... + Πj.1 + 1 + ...+xJ1 + ... + Λj),
If, in particular O^Proj.supp.^ ^Γ1? the expression (43) is equal to

with ίΓ-#®l + l(x)#0, and

oί- Σ /(X!,..,^)^...^,

and similarly, for Ψ'(f).
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We shall restrict our attention to the case when all n are bounded by a fixed
integer Q. In that case it follows from the growth condition S6) and from a
repeated use of the theorem in [OS 2, appendix], that there exist constants C, K, S,
independent of IV, such that, for all N> 1, r> 1, (N^Qr\f^ ...,/,,, (with supports as
above),

Λ®/,\fj\

Since the l.h.s. is invariant under simultaneous translations of all arguments, we
can evaluate it by first performing a time translation such that
Proj. supp./! ^OrgProj. supp./r. In that situation, the r.h.s. can be rewritten as

CN(N\)K sup

α, ^ύ

\βj I*
(<Xj restricted)

Kj<r
\xΛjDβjfj(x) V R + 1

Since \DβlDls' (ί+yr-y1Γ
NR~ί\^(NR + 2S)2S(ί+yl.-y1Γ

NR~1 and since

.e.

if we choose R = S, there are new constants independent of N9 such that

^(Λ,...,/^...^^^^!)^ Π sup |X«D"/XX)|.
'

Since these new norms are invariant under time translations, this inequality
remains valid when the/; are (time-) translated back to their original position, and,
for all t ̂ O, (l^j^r-1),

^9...9fr'9υl9...9vr^)\^C^Nlf' l ifj\S9

This bound and the positivity which {SN} inherits from {SN} allow us to follow the
method of [Gl, OS 2] and to obtain an analytic function

continuing SN(fl9 ...9fr'9iυl9...9ivr_ί)inthQ topological product of r — 1 upper half
planes.

To do this in a systematic way we consider a sequence f ί 9 . . . 9 f r such that
./^T). Then

(44)
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The r.h.s. continues to make sense if e~VjH> is replaced by elWjH with
Thus the l.h.s. is analytically continuable in each Vj while the others are kept fixed
so that as a function of ίv0, . . . 5 z u r _ 1 , it has an analytic continuation in

Moreover the methods of [Gl, OS2] show that in a smaller domain D(

r

l} it is
bounded by Const. ||!P'(0)|| and thus it defines a vector valued holomorphic
function on D 1 ) denoted

G' (λfV W } — £>ίwOH> fO'( f } pΐWr~lH'ψf(f \U/ι®...®/ΛW0> •'•> W r- l/~^ U\Jl)'"e YVr-i)

The formula (44) can be analytically continued to :

'̂

(Here Ψ'(g) is also supposed to be of the form G'(gQ)e~SίH'...e~SpHI Ψ'(gp)). Hence
one can iterate the procedure and eventually obtain the analyticity of the vector G'
in the topological product of r upper half planes. To obtain bounds on its norm in
this domain, it is necessary to apply the Schwarz inequality at each iteration. This
involves, as in [OS2] a doubling of the number of variables and also a doubling of
the number of //s which also have to be time-translated. However, since the norms
Ifjls occurring in the initial bounds are invariant under these time-translations,
the result is the same as in [OS 2] :

The vector G^ l ( g ) < < ®fn(
wo> •• ,wr_ L) is analytic in the product of upper half-

planes and is bounded there by

IIG^̂ o,...,*,-!)!!̂
j=ι \j=ι /

r- 1

where |w|= ]Γ |w | and z;. = Imw . Using again [OS2, Appendix] this implies for
7=0

every / with support in (41)

\ J = 1

Going back to the original functions (cf. (40)), we get :
There are constants KN and BN such that, for all (w0, . . ., wr_ 1) with w7 — u. + ivj9

N\f\κ( sup ι;r
-

However if /is sufficiently regular, differentiation in w0, . . ., wr can be transferred to
/ so that

ίvi/lκN + W (sup y rM(l + |w|)κ«,
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and, reintegrating KN -f 1 times we find new constants such that

2Xw + |β| + 1 ^

(In particular if/e^, G is ̂  in w0, . . ., wr_ί in the topological product of r closed
upper half planes). The vector Gf(wQ9 ...,wr_ί) will also be denoted

$j™°Hβ(Y1)eiWίH...eiγ'' -ιaβ(Yr)Ω J(y1,...,yN)dy1...dyN.

This notation is justified since it is easy to show that this vector is in the domain of
the closure of &(g) (provided g®f is sufficiently smooth and has the correct
support), and that we have (0(g) being identified with its closure, as we shall always
do in the sequel),

>^

gR(ξ1,...,ξR)f(yί,...,yN)dξ1...dξRdy1...dyN.

Also in the domain of the closure of 0(g) are the vectors obtained from the
preceding by integrating over the w^ along paths with suitable test-functions etc.
The intersection of the domains of the closures of all finite products
0(/iKWlfl eiWr-ίH&(fr) is denoted D2. It is straightforward to verify that the system
of operators & thus constructed satisfies the requirements Φί)-&6) with the
domain D .

III. 2. Inductive Construction of T(X)

Starting from the operators &(X) obtained in III.l, the construction of the f(X)
will be carried out by induction on |AΓ|. In fact, the requirements of causal
factorization T5), translational invariance T7) and the relation R') will leave no
freedom in this construction. The procedure very closely parallels that of II. 1.

The induction hypothesis postulates that the operators T(X), for \X\^n — 1,
have already been constructed so as to satisfy the above requirements, and that
any finite product of such operators can be applied to vectors of the domain D2,
which it maps into itself. (The domain D2 has been defined at the end of III.l).

z = (zn+1. ...,zπ+p). For any /e^(IRv(n+p)+1) with support in

{(x,ι>,z)|for every jeZα,/c eZfc, with α<b,z?^z£}, (45)

for every (w0, ..., w r_ 1)6C r with Im w; ̂ 0 for all 7, we propose to define the vector:

We concentrate on the case n>l, ZΦ0. The other cases are straightforward
simplifications. Let ̂  denote the subspace of ̂ (Rv(n+p) + 1) consisting of functions
having their support in (45). Denote, as in II. I,
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and define J 0̂ as the space of functions /e ̂  vanishing in a neighborhood of

{{x1,...,xn,v,z):ξ = 0}.

Any function /e 3F can be written in the form :

f(x 1 , . . . , xn, ϋ, z) = JR2 da db φ(ξ, x, a, fc, z) αL(y - α)αL(ϋ - 2y - b + 2α) . (47)

Here, αL is the function defined by (13) and, as previously, we find φ is given by

8 d\L+1/ d\L+1

i + +2^ l- i+^7 V 7 (48)

The constant L will be chosen later.
Just as in II.l, we decompose/ into /=/0-h/1? with

/i(x, v, z) = J dadbaL(y - a)aL(υ -2y-
M+l zβ Ί ^ ^

where w is the auxiliary function used in II.l. and M^O will be chosen later.
Again,

/0 has the same property and vanishes together with its derivatives of order
:gM+ 1 when ξ = 0. Hence it is in the closure of J^ in the norm | |M.

For any g in ̂ 0 the vector (46) with /replaced by g is well defined by virtue of
the induction hypothesis and the requirement of causal factorization. The proof is
identical to the corresponding one in ILL The resulting vector is bounded in norm
by:

Const. Mκ(l + |w|)*, M = Σ|w,|.
j

As a consequence, if we choose M^K, the vector obtained by replacing/ by /0 in
(46) is well-defined and bounded in norm by Const. |/|2M + 2L + 3(1 + M)M On the
other hand, if we denote

φ0fλ(ξ,y,v9x9a,b9z) =
M + l

Σ
. 1 / 8 1 = 0

translational invariance requires, for sufficiently large M and L

\ fQί)eί(wo + v)HΦ(Zί)eίvVίH. ..eίw>-iH(9(Zr)Ω

Φo, ι(£> y ~ a-> v — b, x, fl, i>, z) dxdvdz

nφ0 1(ξ, y, u, x, a, b, z}dvdξdydxdz . (50)
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The radial analyticity of φ0 1 and the condition Rf] require that (50) should be
equal to :

nίn + ]- φ0 .(£, y, v9 x, α, b, z) dυdξdydxdz .

This is a well defined vector, depending continuously on a and b, and bounded in
norm by

We can integrate over a and b and define :

j Γ(X>ί(wo + "^(Z^e™1*. . .0(Zr)Ω Λ(x, ι;, z)

= fdαdbe ί α H0(Y)e (-ϋ + ίw^ (52)

nφ0tί(ξ, y9 v, x, α, fc, z)zw + * dξdydυdxdz

The definition of (46) is now the sum of (52) and of the known result for/0 L
must be g:M-hl, and the resulting vector is bounded in norm by
Const, |/|3M + 2L + 6(l + |w|)M

It is now easy to check that, if /happens to be radially analytic in the variables
x°, ...,x°,ί; and has support in {x,ι;,z:V/e.X',0^χ9:gt;}, this definition is such that
R'} is satisfied. We only give a brief sketch of this verification.

Suppose that /e ̂  is of the form (47) and

fλ(x9 v, z) =f((λx«, Xl), . . ., (Axn°, χπ), λv9 z), (λ> 0)

can be analytically continued in λ in the angle 0<argΛ<f, with continuity at the
boundary. Then the same is true (by virtue of (48)) of

φλ(ξ, x, y, v, z) = φ(λξ, x, λy, λv, z) ,

(which also has support in {(x1,...,xn,v9z)\VjeX,Q^x®^v}\ and of

/ lfλ(x, v, z) = λ2$ dadboίλίL(y - α)αAjL(t; - 2y - b + 2α)

w(ξ,y-a).

As a consequence the l.h.s. of (52) should be equal to

-Dβ*φ(Q,x,ia,ib,z) w(ξ,y}dξdxdydzdv.

Noting that Dβ

ξ φ(0, x, Aα, λb, z) can be analytically continued in λ (and has
support in {b — α^O}), we can rotate the contours in a and b and obtain exactly
(52). As to the part of (45) corresponding to /0, it satisfies the contour-rotation
condition R') by virtue of the induction hypothesis.
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Having defined expressions of the form (45), we can now suppress the
integration over υ by the same method as in II. 1 i.e. by essentially using

ψ = $aQ(v)eivH(Q\Γ1(ί-i-iH)Q+1ψdυ

and

Λf

This allows us to use the definition

KQg(x,z)<x,Q(v)dvdxί...dxndzn+ί...dzn+p. (53)

where zt is given by: z ί j. = zj , z®j = z® — t, (j = n+ 1, ...,n + p). We again omit
straightforward verifications.

III.3. Poincare Covariance

Up to this point, only the invariance under time-translations of the Sn has been
used. If the Sn are invariant under space and time translations, it is clear that the
generalized (anti-)time ordered functions have the same property.

Let ra°μ, m°μ, pμ, (μ= 1,..., v — 1), be the differential operators defined on £f by

(m°μf) (x x )= Y ίxf — -x°— } f ( x

(mθ"f)n(xl9...,xj = i

(pμf)n(x1,.. ,Xn)= Σ Γ^- ^π)-
7 = 1

Note that - — = — - — . These operators satisfy

Assuming the {Sn} to be invariant under the full Euclidean group implies

S(m°μf) = 0 for all μ=l, . . . ,v- l and all /.

Let X = {!,... ,n} and/e^(IRv") with support in {(x1,...,x l l)|x?^0 for all)}.
Suppose that /is radially analytic in the angle {/ί|0<arg/l<f}. Then
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and, since (m0^/)^ — ιm°μ/ί? this vanishes. By the density of radially analytic
functions and translational in variance of (Ω, f(X)Ω) it follows that, for all

(Ω,Tl(m0'έ/)Ω) = 0.

Suppose now that f=f1®LVίf2®...®LVί+ +Vr^ιfr and that all/;. have compact
support. Then, for sufficiently large positive vl9...9υr_1,

= (Ω,Ί\m0"f)Ω)=

-T(Lυ^... + Ώr_

= Σ (β, n/i)β""fl. T(f}_ ,}eiv' ~ 'H[

By analytic continuation this remains true for all real υl,...,υr_l so that

"Σ (0, ή/i). . . f(m°Y7). . . T(fr)Ω) = 0
j = ι

for all /!,...,/,. with compact support. This proves the Lorentz invariance of all
(Ω, TpfJ. . . T(Xr)Ω). This in turn implies, as it is well known, the relativistic form of
the causal factorization property.

IV. Application to the φ\ Quantum Field Theory

The purpose of this section is to show that perturbation theory holds for the
weakly coupled φ4 quantum field theory in 3 space-time dimensions. This
statement will be substantiated below, but we first want to give a short account of
existing work. The -existence of the φ\ interaction as a quantum field theory
satisfying all the Wightman axioms was proved in [FO, MS 1, MS2], based on the
earlier work in [G2, GJ, Fe]. We shall assume that the reader is more or less
acquainted with the definitions and results of [FO] on which our analysis below
will be based. The papers [FO, MSI] contain proofs of the differentiability of the
Schwinger functions in the bare parameters, i.e. in the coupling constant and the
bare mass. In [MS 2] it was even shown that the Schwinger functions are Borel
summable in the coupling constant so that the theory is uniquely determined by
perturbation theory.

Two interesting further developments in a direction similar to our aims are
described in [FR] and [C]. In [FR], the question of field equations is addressed
and it is shown that generalized Schwinger functions for the φ and φ3 fields can be
defined in non-coinciding points as tempered distributions. Similarly, in order to
prove the non-triviality of the S-matrix for the φ4 theory at small coupling, it was
shown in [C] that truncated generalized Schwinger functions for the φ, φ2 and φ3

fields exist as tempered distributions, coinciding points included.
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Since some confusion might arise about the definition of generalized Schwinger
functions, we repeat here the canonical definition known from perturbation theory
for the case of the φ4 theory.

We consider the cutoff Euclidean interaction

.(x), (54)
7=1

where φκ is some free Euclidean field with bare mass m0 and cutoff K. The
renormalization procedure tells us how to associate to the "Euclidean
Lagrangian" (54) a renormalized one, called ΐ£κ. It is well-known that in the case of
the superrenormalizable theories 3?κ can be found in the form of a polynomial in
the λt with coefficients which tend to infinity as the cutoff K is removed. The
natural definition of the truncated generalized Schwinger functions of the fields
φf(x) (k = 1, . . ., n, vk = 1, 2, 3, 4) is not the truncation of

llm lιm π
where <> 0 is the free Euclidean expectation with bare mass m0. We shall rather
adopt the following definition.

Let /Me^(R3), ; = !,.. .,4, fc = l,...,n, let ^e^QR3), 7 = !,. ..,4. Then the
generalized truncated Schwinger functions S^ V n ( x ί 9 ..., xn) are defined as distri-
butions by the formula

Σ ί Π d^J^k(Xk)ST

Vi ..... „„(*!,. ..,XB)
v k =l,. . . ,4 k=ί
k= !,...,«

= lim lira £ f l — (56)

/*vΛ k = 0
K = 1 , ..., n

where J£κ(g,f,λ,μ) is the renormalized Euclidean Lagrangian associated to

Σ $d3x:<p>K:(xMjg{x)+ f μj.Jj.tM'] (57)
7=1 fc=l

We shall describe below why the existence of the objects described in (56) is an easy
variant of results contained in the earlier work on φ*.

The Equations (55) and (56) define distributions which are equal on non-
coinciding points, but only (56) defines a natural extension to coinciding argu-
ments in the sense of local field theory. When (56) happens to define a locally
integrable function (as is the case for the φl and φ] field in the φ4 theory, or for all
Wick powers in the P(φ)2 theories) then the natural extension to coinciding
arguments of (55) (as an integrable function) agrees with (56) everywhere. This
observation (which follows from the very construction of the models) was basic to
the papers [EEF, OSe, O].
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The main point of the preceding discussion is to emphasize that the definition
(56) is suitable from an axiomatic point of view. In particular, it is for the
untruncated generalized Schwinger functions Sv Vn, obtained from the S^ Vn in
the standard way, that we shall prove the extended OS. positivity, and the
distributional bounds.

Theorem 6. The generalized Schwinger functions are, as distributions, infinitely
differ entiable with respect to λί,...,λ4 and m 0>0 in a region of the form
Q^λ4mQ1<ε, |>l j.|m^/2~3<e/l4m0"

1, j=l,2, 3, for some ε>0. The derivatives are
(finite) sums of truncated generalized Schwinger functions, integrated over some of
their arguments.

For an illustration of this last statement, see [EEF, Lemma 6a, 6b].

Theorem 7. The family of generalized Schwinger functions satisfies the conditions
S1)-S6).

The proofs of these two theorems will be sketched below. Given the very
detailed accounts of [FO, MSI, 2] we refrain from repeating the whole con-
struction of the 93 theory for just proving one additional estimate, which seems to
us implicitly contained in the aforementioned papers.

The conclusions of Theorems 6 and 7, combined with the results of the
preceding sections imply the existence of time-ordered products for the fields

Theorem 8. The generalized analytic momentum space functions
HVι Vn(kιm0,λί,...,λ4) of the φ\ theory are °̂° functions in m 0,Λ, l 5 ...,/l4 in the
region described in Theorem 6 and analytic in k in the n point axiomatic domain with
single particle poles at fe?=m2(m0,>l1, ...,A4) and thresholds above 2m%— 0(ε).

Proof. By the analysis of the preceding sections and by Theorem 2, Equation (29)
HVι _V n is for imaginary time components of k the Fourier transform of S^ Vπ. The
proof of differentiability follows then in the same way as for Theorem 7 of [EEF].
The existence of an isolated one particle singularity has been shown for the φ^
theory by Burnap [B].

(Note : in perturbation theory, the renormalization is often performed so that
the physical mass coincides with the parameter m, given in advance, which occurs
in the free propagators. In constructive theory the bare mass ra0 is given;
renormalization is performed by introducing only those counterterms necessary to
compensate the divergences of the primitively divergent graphs : since these are in
finite number for superrenormalizable theories Sfκ is then a polynomial in the λj.
This determines the physical mass m, as a function of m0 and the λ^. We can now
repeat almost verbatim the analysis done in [EEF], and we restate three relevant
results.

Theorem 9. (^Theorem 8 in [EEF]). There is an ε1,0<ε1<ε and for each
a>Qa(£co function λ = (λί9 ...9λ4)->mQ(a9λ) on O^V'1 <ε1? \λja

jl2~3<εlλ4a~1

9

7 = 1,2,3 such that one has in the above region
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(Note that in 3 dimensions, the mass satisfies due to scaling m(m^λv, ...,/l4)
— nt u() w 1 / 2 ~ 3 Λ W 4 / 2 ~ 3 U— m 0 w(Λ 1 m 0 , ...,Λ4ra0 .j

Theorem 10. (-Theorem 10 in [EEF]).

(i) For φ* theories with physical mass m > 0 and bare coupling constants λ satisfying
- ~ ~ 1 < ε ί t h e function

1 ? . . . ,k π ;m 0 (m,λ) 9 λ ί 9 . . . , >
J=ι

is °̂° in £n£ λ and holomorphic in kl9 ...,kn (with ^kj = 0) in the axiomatic domain,
with thresholds above 2m—0(εx) and no single particle poles (at k2

j=m2).

(ii) The Taylor expansion ofG(k m,λ) in λ at λ = 0, j — 1,...,4, for k taken in the
axiomatic domain (as described above), is given by standard renormalized per-
turbation theory.

Theorem 11. ( = Theorem 12 in [EEF]). At non-overlapping points of the real mass-
shell the S-matrix elements of a φ\ theory with fixed physical mass m>0 and
coupling constants as in Theorem 10 are °̂° in λj9 j = l, ...,4 in that region as
tempered distributions in the momenta. Their Taylor expansion at λj = Q9 j= 1,..., 4 is
given by standard renormalized perturbation theory.

ΐn particular, we recover the non-triviality of the S-matrix for Λ,4 > 0 sufficiently
small, λί=λ2=λ3=Q, [C].

Proof of Theorem 6, This theorem is in a sense already contained in the proofs of
the existence and differentiability in λ of the ordinary Schwinger functions. We
therefore only show how these proofs have to be read in order to arrive at the
statement of Theorem 6. We shall adopt the terminology and notations of [FO],
but [MSI, MS2] could serve just as well, and we assume the reader is familiar
with [FO].

To explain our point, we first refer to § 2.1 of [FO], (graph norms). A graph is a
Wick monomial G of degree Et(G} with a kernel K(G)(z l5 ...,z£ί(G)), where we
consider all "legs" as "initial legs". For all (5>2α>0, a norm | |G| | 5 α is defined
([FO, Eq. (2.6)]). The importance of these norms stems from the fact that all
bounds and convergence statements are made with respect to them for suitable δ
and α. As an example, in Theorem 4.6 of [FO] we have the bound

IZf/tΓXGX^J^ ΓKΦOOIIGIU,., (58)
Δ

where n(A) is the number of arguments of K(G} localized in the unit cube A (the
support of K(G) is assumed here to be a product of such unit cubes), and Z(Λ) is
the "partition function". In the case at hand, the space cutoff is not the function g,
but the family of functions, cf. Equation (57),

n

Σ
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and it is clear from the definition of the norms || \\δ a that in our case we will have a
bound on the l.h.s. of (58) of the form

n

.+ Σ \μjk\\fjks

where | |G||°α is bounded by the norm ||G||^α for a g whose Fourier transform is
bounded by \k\~λ at infinity (cf. [Fe, page 97]), and ||s is a fixed Schwartz norm.

The differentiability follows now as in Corollary 4.6b of [FO]. A more detailed
outline of the proof is given in [MS 2, page 270], where it is sketched how the
derivatives combine to sums of graphs whose ||G||° α norms are finite. For the case
of the φ3 derivatives this is done in great detail in [FR, pages 215-217], where it is
shown how the crucial perturbation formula [FO, Eqs. (2.37)-(2.39), (3.2), (3.3)] is
used in this procedure. The next important point of the proof is to realize that the
|| || °α norms of the graphs produced through this procedure are bounded, for

n

Svι...vn ̂  Π l/v j ls n] K f°r some universal constant K' and Schwartz norm | \s.
j=ι

This is due to the superrenormalizability of the theory, and proved through the
mechanism of "estimating big graphs as products of small graphs" which was
discovered by Glimm [G2].

We therefore get a bound

:SJn!« Π (L\mL+ Σ L/iU (59)
j = l I \ i=l / J

for a universal Schwartz norm | |s and universal constants J, K, L, M, provided the
coupling constants are in a region of the form described in the statement of
Theorem 6 (this is used to bound the exponential of — «5fκ).

Similarly, we get for the derivatives the equality

j=ί \UAj/

= ίSL.vn,^l,...4 4(*1, >**^^^

"1 «4

and the bound
/ 4 <

/ 4 \ / n \ / n \M(n+ Σ ^

Since a distribution is a linear functional, we find, writing /J = (/J /(|/J |S))|/J |S,

4

ή a + " j |/;|s. (61)
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The Equations (60), (61) are more than enough to prove Theorem 6, in fact, we
have already proven the growth condition of Theorem 7.

Proof of Theorem 7. All axioms are obviously satisfied for the generalized
(extended) Schwinger functions defined by (56), as in [FO, MSI] except for the
growth condition which we just proved and the extended O.S. positivity which we
prove now.

Time-ordered products can be defined for a cutoff theory, since for K < oo (as in
[Fe]), and a cutoff of the form g^x0, x) = χ t_ τ T](x°) ht(x\ we have a Hamiltonian
theory in which sharp time fields are defined. Hence we have extended O.S.
positivity in this case by Theorem 1. This carries over to the limits, of which we
have already shown existence. The proof of Theorem 7 is complete.

Appendix

Radially Analytic Functions

Let /belong to (̂R*). For all real λ>0, fλ(x)=f(x) defines another element of
N) and the map

from ^(IRN)x (0, oo) to ^(IRN) is continuous and ̂  in λ. We shall say that /is
radially analytic and continuous in the angle {/le(C:|/l|>0, 0 1^argA^Θ 2} (when
#ι^O^Θ2) if there exists a continuous ma.p(f,λ)-+fλ from <?(&?) x (this angle)
into ^(RN), holomorphic in λ in the interior of the angle, such that, for λ real > 0,
fλ(χ)=f(λx).

It is easy to construct examples of radially analytic functions. Denote, for
instance, for any real α>0,

00 J 1

0(MHφ)exp(-αμ-1/2 + A1/2)), φΓ1- J — exp(-αμ-1/2 + Λ1/2))
0 A

where λ-^λ112 is the holomorphic function over (C\IR_ equal to \λ\1/2 for λ>0.
Note that the restriction of this function to any closed half plane of the form
{Λ,:Ree~ ίβλ^O}, -f <0<f is °̂° and vanishes at 0 with all its derivatives.

Let F be a continuous function on (0, oo) with

Then (with new integration variables λ = e2φ, y = chφ)

00 J T GO
ί / 2 ) = 2 J e'2achφF(e2φ)dφ,

2 J e~2achφF(e2φ)dφ -2 e~ 2ay F((y + (y2 - I)ll2)2)dy(y2 - 1)
o i
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and the last expression shows that, since \F(λ)\<A(2y)L, the integrals converge
absolutely. In particular

2a y

>a~1e~2a(l-e~2a).

Thus, if α^l, c(aΓl^(2aΓie~2a, i.e. c(a)^2ae2a.
On the other hand, if φ0>0,

φ) J F(e2φ}e~2achφdφ
Φo

00

^2ae2aA J (2chφ)Le~2achφdφ
φo

r + ι T , / 9 Φ4

^2 aA αφexp —aφ —a —
\ 1 /Φo \ -"-^

-α?-+L<p|.
φo

If α ̂  1 this is less than

-a

From this it follows that

j ρ(a,λ)F(λ)~
| λ - l | > ε Λ

oo .J T

tends to zero as a-^oo. On the other hand j ρ(a,λ)— = 1. Since F is continuous,
0 A

for every y > 0 we can find a > 0 so large that

J(Fμ)-F(l))ρ(α,λ)^<f/.
o Λ

Hence -ρ(α, A) is, when α—>oo, an approximation of δ(λ— 1).
Λ

Suppose that φ e ̂ (R )̂. Then
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defines a new function also belonging to ^(IR"). In fact

00 dλ

o λ

so that we can apply the preceding extimate with L = \β\ + \a\ and obtain an
inequality of the type

sup \xβD«f(x)\ g C(α, β, a) sup \xβD«φ(x)\.
X X

Furthermore, as α-»oo,/tends to φ in the strong topology of 5 ,̂ and uniformly
if φ varies in a bounded set of (̂IR )̂. For A>0, denoting fλ(x) =f(λx\ we have

u
Λ(x)=f βMμJ-^Or1*). (Al)

The right hand side of this equation has an analytic continuation in λ in the open
set C\R~, and the map(λ,φ)->/λ is a continuous map of (C\R~)x ^(IRN) into
ί̂ (IRN), holomorphic in λ. Thus /is radially continuous and analytic in the angle
{λ:\λ\>09θί^aτgλ^θ2} whenever -π<θ1<θ2<π.

This shows that radially analytic functions are dense in «$^(IRN). Note that if φ
has its support in a closed set Fc^N then for all /ίe(C\IR~5/λ as defined by (Al) has
its support in the closed cone generated by F.
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