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On Confinement of Fermions
in Strongly Coupled Lattice Gauge Theory
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Max-Planck-Institut fur Physik und Astrophysik, D-8000 Munchen 40, Federal Republic of Germany

Abstract. A lattice theory of Fermi fields of mass m coupled to gauge fields in
the region where m and the gauge field coupling constant g are large is studied.
It is shown that the energy of some states composed of a fermion and a distant
antifermion with a string in between grows at least linearly with the distance if
I<g6<m<gεlogg.

1. Introduction

The lattice gauge field theory was formulated by Wilson [15] with the hope that
the mechanisms behind the long distance behavior of the continuum fields could
be understood in the simplified lattice models, see also [1,7]. The primary aim was
to understand the quark confinement. Working with the QED Wilson formulated
a criterion for charge confinement which involved only the electromagnetic field
(no Fermi fields):

if /exp tie J Aμdxμ\\ ~exp( — C(s)) and C(s) is proportional
\ V 6s II

to the area of the two-dimensional cube s then charge should be confined if
C(s) is proportional to the circumference of 5 then no confinement occurs.

The criterion was based on the analysis of the expansion of Euclidean
propagators of full lattice QED into powers of, say, inverse fermion mass,
interpreted as a sum over fermion-antifermion trajectories. Each path σ contri-

buted a lattice version of /exp lie §Aμdxμ\\ . It was argued that in the case of the
\ \ σ / /

"area law", paths with fermion and antifermion well separated hardly entered.
Wilson suggested that in the lattice QED the area law should hold for large
coupling constant g. This was confirmed by the rigorous result of Osterwalder-
Seiler [10] obtained for a wide class of lattice gauge theories. In the meantime
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other possible mechanisms leading to the area law have been proposed, believed to
work for weak or intermediate coupling (instantons, merons) [2, 3, 6, 12, 13].

in the present paper we consider a gauge field interacting with a color multiplet
of Dirac Fermi fields (in Euclidean region). Our result is a rigorous step in proving
occurence of confinement for large Dirac fields mass m and large coupling
constant g, starting from a different criterion, more appealing to the physical
situation. It may be also viewed however as a rigorous step on the way to
substantiate the Wilson's criterion.

The criterion we use is based on the following rough idea: confinement occurs
if the physical (i.e. gauge invariant!) states with gauge charges concentrated in well
separated regions have big energy, growing with the separation. This idea of
confinement, where the use of gauge invariant states is a crutial point, is very close
to the one used in [7]. Our test-states Xr consist of a fermion and an antifermion
connected by a gauge field string (necessary to have gauge invariance). We are able
to prove that once the spins of the fermion and the antifermion are correlated in a
certain way the energy of the state grows at least linearly in r for some m^>g^> 1.
The correlation between spins of the pair seems to result only from our inability to
dismiss this assumption.

The basic technical tool we use is the cluster expansion—a generalization of
the one worked out in [9,10] for pure lattice Yang-Mills theory (without
fermions). Section 2 is devoted to the formulation and to the proof of convergence
of the cluster expansion. As usually, once the convergence is proven, existence of
the exponentially clustering infinite volume theory follows and the standard
construction [11] gives the physical Hubert space and the transfer matrix e"2Π,
since the Osterwalder-Schrader positivity holds, as proven in [10].

The confinement bound is deduced from the estimate

X D r . (1)

To obtain (1) we bound (Xr\e~ 2HXr) from above by e~Cιr directly from the cluster
expansion. The missing lower bound on \\Xr\\2, \\Xr\\2^e~Cιr, with C2<C1 ? is
more difficult. One can bound \\Xr\\2 from below computing it in the lowest order of
the strong coupling perturbation calculus and estimating the correction by the
cluster expansion, which is well suited for that. However this does not lead to the
searched bound directly. Nevertheless this bound can be obtained if we use
additionally a convexity of log \Xr I (Proposition 2) which can be proven by a sort
of Nelson symmetry argument. This is where our nasty assumption on correlation
of spins of the fermion and the antifermion enters. The estimates leading to the
lower linear bound on the energy of Xr compose Section 3 of the paper.

2. Cluster Expansion

The model we study is essentially the same as the one considered by Osterwalder-
Seiler [10, Sections 11.2 and II.3]. We shall briefly recall and supplement their
notation, introducing some minor changes.
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Let A be a finite subset in the hypercubic d-dimensional lattice IL=(f, ...,-|)
-f Z4ClR4. By BΛ we shall denote the set of oriented bonds b [pairs (xb,yb) of
nearest neighbor sites] in A, by BA the set of bonds in A with positive orientation
(with respect to the coordinate axes) and by PΛ the set of all oriented plaquettes p
(lattice squares) in A. The basic Euclidean field variables are :

ψtjlx) i=l,2, α = 0,l,2,3, A = 19...,N,

(they generate a Grassmann algebra) and

where b, b~ 1 are bonds, b~ l =(yb, xb), and G is the gauge group taken to be U(i) or
SU(4

The Euclidean fermionic action in finite volume is taken to be (compare [10])

AF

Λ .= Σ Σ ί mψL(χ)ψM-τ Σ Σ Σ vLW
xεΛ α = 0 A=l Z beBΛ a,β = 0 A,B=1

Here U is a fixed N-dimensional unitary representation of G, yb=y% tfbeB^ and
7^ = — yf otherwise, where α corresponds to the coordinate axis parallel to b, and
the Euclidean Dirac matrices are chosen as in [10].

The Euclidean gauge field action is given by

4ιM =-Λ Σ Xfop), (3)

where gp is the product of four bond variables along the boundary of p (defined up
to conjugacy class) and χ is a character of G (trace of a D-dimensional unitary
representation).

Let s0 A = © s$r

A denote the Grassmann algebra generated by (tpj^x)).^ (^r

Λ

being its subspace of order r). Similarly as in [10] we let < YΛ denote the linear
functional on ̂  A defined by <^^>^ = 0 if r is not maximal,

a, A
xeA

Consider the space (HΛ of the continuous mappings from X G into sέ A. For
beB +

ίΛ define

-">-""
AYM ' \ 'A— ΛF\A

where dgΛ = (X) dg, dg being the normalized Haar measure on G.
beBΪ
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Now a local gauge transformation ye X G acts on X G by (gb)*-*(gl)
xeL beBj

9l = JXbθ^b

l (5)

and also defines an authomorphism of stf Λ:

). (6)
B

These actions induce an authomorphism on 21^ O

1 ) ) - (1)

The subspace of (ΆΛ of invariant elements will be denoted by 3I^V. <( )yl is invariant
under local gauge transformations :

Take

^=Π
i= 1

(8)

where ^ is a complex continuous function on X G. Standard computation of

Gaussian anticommuting integral gives a sort of Matthews-Salam formula

\ι Γ / 1

(9)
\ m "' '

where

~K\e~AIM (10)

and KΛ is a matrix,

'2(yfx,y))ΛβU(g(x,y))AB
 if (*>)0 is a bond in Λ > (11)

0 otherwise.

To be sure that (4) and (9) make sense we have to show still that Z^ΦO. This
follows immediately from

Lemma 1. detίl KΛ\>0.

Proof of Lemma. We have
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where

,jE _ E E E E _ / E\* _ /VE\-
7 5 ~~y 0/1/2/3 ~~UV ~^/V

Hence

m m ! m :

and the determinant is real. Moreover as KΛ is antihermitian, 1 -- KΛ cannot

have eigenvalue zero. Since lim detί 1 -- KA\ = 1. det 1 -- K λ must be always
m-oo \ m Λl \ m Λl

positive. Π

We shall examine the theory in the region where m and g are large (strong
coupling) using a cluster expansion generalizing the one used in [9, 10] for lattice
Yang-Mills fields only. The generalization is patterned on the cluster expansion
used in the continuum Yukawa model (Yu)2, see [4, 8] but again is much simpler
because we work on the lattice. It will resemble however the cluster expansions for
continuum models, especially of [6,4], more than the expansion of [10], since we
shall be turning off the non-local parts of interaction smoothly.

To this end introduce for each function

s:J3κ-»[0,l] and τ:P^->[0,l]

interpolating objects KΛs and A™ by

,„ . _ 1 2 s((x, y))(yfx, y})aβ u(θ(x, y))AB
 if (*> y) is a bond in A ,

(^ΛS)ΛAX.βBy'-\Q otherwise, (U}

For ΓCBΛ, QCPA and 5, τ as above define sr, τQ by

(s(b) if beΓ,
Γ ' [0 otherwise,

and analogically for τβ. The first step in the expansion is (compare [6]):

1

Σ f dsrdτnd dJ i \L sp

QCPΛ

\-ι
(14)
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Here f dsΓdτQ= f] $ ds(b) f t $ dτ(p), θ s rδ t Q=Π Π " . K, stands f o r
beΓ peQ beΓ °S\V) peQ °τ(P)

βίβ^y^ and xiz for ai2Aί2xi2. The terms with Γ = 0 or Q = 6 also enter (there is no
integration and differentiations involving sr or τQ then).

Now define

i
suppJ^:^ (J {x , yjusupp^,

i= 1

where supp^ is the union of lattice sites — ends of bonds b such that ^ depends
non-trivially on gb. To (Γ, Q) assign the subset ΓuQ in Rd composed of closed unit
intervals corresponding to the bonds in Γ and to the boundary bonds of the
plaquettes in Q, Suppose that Γ = Γ0uΓ l 5 6 = 6ou6i> ̂ on^ι —& 6onδι =0 anc^
that Γ^gj is disjoint from Γ0uQ0usupp.^. Then the right hand side of (14)
"decouples" :

ί ΛiAAAo

det|l--X
m Asr

•IV
m

Suppose that from all possible divisions of Γ and Q described above we always
choose that leading to minimal Γ0uβ0. Using (15) we may perform in (14) a
partial resummation fixing (Γ0, β0) and summing over all (Γ1,Q1) and only then
summing over all (Γ0,Q0), Γ0CBΛ, Q0CPΛ, such that Γ0u<20 has no connected
component disjoint from supp^F. This leads to

• d e t l - — X ' 4™Λsr ZΛ

(Γo.βo)
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Let K:=|Γ0 |, L:=|β0|, Γ0 = {bl+1,...,bl + κ}, bk = (xk,yk),
easy calculation, which we leave to the reader, gives

37

. An

Σ
ak,βk,Ak>Bk \ fc

fc = /+ !,...,/ + £

(17)

Throughout the paper we shall denote by 0(1) various constants, which can
depend only on N and D.

Lemma 2. // m, g > 1

Proof of Lemma.

I1

by the Cauchy integral formula, since the left hand side is equal

ai + κ

m

where

and

But

Hence

(18)

(20)

Σ
ak,βk,Ak,Bk \ fc

(21)
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Now

Π (22)

From (17), (21), and (22) we get (18). D

Lemma 3. For given K and L there are at most 2\supp^\e°(1HK+L} choices of different

(Γ0,Q0).

Proof of Lemma. The number N in question is bounded by

Number N^ of possible ways to draw the bond-graph Γ0uQ0 times;
Number N2 of possible choices of Γ0 within a bond-graph times
Number JV3 of possible choices of Q0 within a bond-graph.
N j ^ (number of choices of length of the bond-graph) -(number of choices

of length of connected components of the bond-graph given its total length)
•(number of choices of bond-graphs with given length of components) :g (4L -f 1)
.2lsupP^| + κ + 4L.(2d)2(κ + L) where d = 4 is the dimension of the lattice (compare [6,

Proof of Proposition 5.1]).

K

(2K is the number of choices of possible orientations of the bonds of Γ0).

Thus

. D

Lemma 4. //m>0(l), ^f2>0(l) and 0(1) is big enough then for Xc A

Λ\X

Proof of Lemma. We proceed as in [10, Proof of Lemma 3.2]. Thus we must show
that for 1/11= N

z,
= 2"

(23)

provided that (23) holds for \Λ\ <N.

-1

K + L>0

1

|Λ(l,Γ0,β0) Z,

Ί\κn\L

\r

2eo(D 8eo(i)

m

if m and $2 are big enough. D
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The cluster expansion (16) together with the estimates of Lemmas 2-4 (or their
versions for the theory with doubled degrees of freedom) give in a standard way
(see [6])

Theorem 1. Lei m, #2>0(1), with 0(1) big enough. Then the cluster expansion for
converges uniformly in Λ. There exists the thermodynamίcal limit

> — lim

and the infinite volume theory clusters exponentially.

3. Confinement of Fermions

In this section we shall assume that U is an irreducible representation of G [ = 17(1)
or SU(fl)] of non-zero π-ality, see [10], and that χ is the trace of U. The cluster
expansion developed in Section 2 will be used to cast some more light on the
problem of confinement of charges connected with gauge invariance. Roughly
speaking confinement occurs if the states with charges concentrated in distant
regions have very high energy. For some states this will be proven to happen.

Our physical Hubert space is defined by the usual Osterwalder-Schrader's
construction, see [11]. If ̂ e2ί^v for some finite subset A in the positive time half-
lattice L+ CL and ΘJ^e^J is its time reflection as defined in [10] then (see [10,
Section II.3])

£">^0. (24)

The physical Hubert space 2tf is obtained by taking W™ : = mdlimM™ with the
/ίCL4-

scalar product induced by (24), factorizing out the null subspace and completion.
Let W^ denote the canonical image of <JF in Jf7. As in [11] one defines a (discrete)
semigroup (£(«))„ =ι ι 2 > . . . [S(l) is the "transfer matrix"] by

S(n)W^=WU2n^, (25)

where U2n^ denotes the translation of ̂  in (Euclidean) time by 2n, defined in the
obvious way. Now (S(n)) is a semigroup of selfadjoint operators in ffl of norm rg 1
(compare [11] — we use the cluster expansion to bound (Θ^-U^y when
m->oo). Also 5(n)^0. If S(l)>0 then we can define the Hamilton operator

H:=- |logS(l). (26)

If 5(1) has zero eigenvalue then H is not well defined, however we may speak all the
1

ILΫHtime about expectation values of the energy .. j . 2 (X\HX\ for OφXeJf, as given

Let for /--1, 3, 5,...

):= Σ Ψ.2Λ*ι)(y,%( Π V(gb)\ ψ^y,), (27)
β,A,B \bCrXίyί )AB
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where rxιyι is the line segment from x1 to y1,

x = (i5_?i)? y = a < < > ; i ? _ r_|_ι?i ; . . . A /=1,2,3.
I / /

Define

Y" • = W^F ΠRΪy\ r . — K F ^ j.. V^60/

Later we shall show thatX r Φθ in some region of the mg plane. Now by the Jensen
inequality

exp (29)

where, with some abuse of notation, we write e 2H instead of S(l). Hence to bound
the energy of Xr from below it is sufficient to find a suitable upper bound on

τί—-^(Xr\e-2HXr\ Introduce

α: = logm/log#2. (30)

We shall assume, that α>3.

r)^ry^Ory (31)

</r>^ lim X K(Jr>Λ).Qo) ^(ΓoU|ousu pp^? (32)
^ί-^Go (Γo.Qo) ^yl

where ,R(/r, Γ0, Q0) is given by (17). Developing determinants in (17) into powers of

— we obtain an expansion for R(Ir, Γ0, β0) in terms of fermion paths joining points

{xh} to {y J built up of bonds of Γ0 (with closed loops contribution included),
compare [15]. Each bond b in the path contributes a matrix element of U(gb) as a

factor. Subsequent development of exp ( — A™ ) into powers of — 2 produces more

factors of this type corresponding this time to boundary bonds of plaquettes in Q0.
Summarizing, #(/r, Γ0, Q0) is a linear combination of dg^-integrals of products of
matrix elements of U(gb) for b from Γ0 or from plaquettes of β0. Now build a one-
(lattice-)cycle

t = Σ b+
Qo btp

where rX2y>2 is the line segment obtained from rxιyι by translation by —3 in time
with change of orientation, see Figure 1. Suppose that one can add to c1 a one-
cycle

dι= Σ nbb+ Σm

PΣ
b K,mp-0, 1,...)

6eΓo peQo bCp

such that
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P3r-3

Rjr-1 r-2

r-5

b8 b9 b10

RBr-3 P3r-A

P3r-7 c
r-5

Vι

X2 bΓ

P2

b3
*1 '

X2y2
P2

Fig. 1

-f 3r n = 8 cc + 3 ( r - 1

Fig. 2

2. for each bond beB^ the overall coefficient at b of cί +άγ multiplied by the
rc-ality of U is integer.

It is easily infered from the Peter- Weyl theory that R(Ir, Γ0, β0) can be different
from zero only if this holds. It is a very useful observation as it eliminates many
terms from the right hand side of (32).

For the time being we shall keep α of (30) fixed, changing m and g2. As each
(i\l+κ(i \L

term in R(^,Γ^QQ) has a factor — 1-^ in front, there will be an overall
\ / \y I

£)α + L

in front of R(Ir,ΓQ9 Q0). Letpower -2
\c/

(33)

Suppose that r ̂  7. It is easy to check that all terms of R(/r, Γ0, Q0) with n < 6α + 3r
vanish. The lowest non-vanishing term with rc = n0 Ξ 6α-I-3r corresponds to
(Γ0, β0) as on Figure 1. Next terms have n = 8α 4- 3(r — 1) (one of them is pictured
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on Fig. 2). Thus

Λ (Γ0,Qo) (34)

where the sum is taken over all (Γ0,β0) such that n(X, JL) ̂  6α + 3r.
(34) produces an upper bound upon (Xr\e~2HXr).

Proposition 1.

/OΠ \\ 8 α + 3f

(35)

provided r ̂ 7, — ̂ - < 1 and 0(1) is big enough.

Proof. From (34) and Lemmas 2 and 3

/? OdhK/o 0(1)\L

J \2α Γ [no] oo

g4N2e242('+1>-y X X
^ / LL = 0 X=-[(L-w 0 )/α]

+ Σ £ / " W \ |^/0(l)\2«+"«

L=[w 0 ]+ι χ=o \ g I \ \ g I

Here [x] denotes the biggest integer less or equal x and (36) holds provided, say,

-V < 1 and 0(1) is large. D

We shall also need a lower bound on \\Xr\\. The point is that it is sufficient to
bound from below \\X5 II for example and then use the following

Proposition 2. For r^.

1

jγr-5 llA 5 l l ' - 3 g l l A 3 l l ' - 5 l l A r l l 2 . (37)

Proof. We use a sort of Nelson symmetry argument [14]. Following the
construction of [10] introduce an axial gauge in which gb = 1 for b in the direction
of the j-th axis. Thus consider the algebras ^x of continuous mappings on

Y G with values in the Grassmann algebra jtfΛ. For Je$JΛx define the
beBA

bl j-th axis

expectation < J>^x for which the cluster expansion holds (all estimates of Section 2
hold mutatis mutandis). So there exists an exponentially clustering infinite
volume state < >a x= lim < >^x defined on indlim^x. Now7 introduce an oper-

/l^Rd ΛCL

ator ΘJ of reflection with respect to the plane xj = 0, similarly as Θ was intro-

duced in [10] [one uses y*j instead of y% in the following way: Θj\p^A(x)
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jXKyfϊβ* &fl>M= Σ(yf)*βΨβA@jX)> where ̂  is the reflected lattice

siteY Mimicking the proof of [10, Theorem 2.1] we conclude that whenever

with A composed of sites with positive j'-th coordinate then

As before, we produce a Hubert space J^ax using <<9;J J>ax as a scalar product in
2Ϊ*+ := indlim2l^x, where we take only A-s with positive j- th coordinate. If W**J

denotes the canonical image of J in J^ax and U{n the translation by 2n in the j-th
direction acting on 2Ϊ*+ then again

where (S*x(n))π=1 2 is a selfajoint semigroup of non-negative operators in Jfax.
Now the Holder inequality for the spectral measure of Sax(l) gives

(<Θ/ l/4J>ax)(r-3)/^ (38)

for odd r^7.
For ^r given by (27)

where

β

Combining (39) and (38) we obtain

1

which is (37). D

1 / I \4 α + 5 0(l)α

Proposition 3. \\X5 \\2^—- -̂  if — ̂ ~ < 1 and 0(1) is big enough.

Proof, Let us notice that in the cluster expansion for <(<9^5 ^ '5> Λ all terms with n
< 2α + 5 vanish. There is a non-vanishing term for n = 2α -f- 5 (see I7ig. 3) and other
terms have n^n1=4oc + 4. Now

sup
(Γo,Qo)

, ΓQ, Q0) ^\(^ouQousu

r /
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and 0(1) is big, which is proven the same way (35) was. Thus

5, Γ0, 60)

ΓV1 \ \ 6 α + 4

] .<«,
where (Γ0, g0) is chosen according to Figure 3 (and A is big enough).

Define

0 = 2L lim , Γ0, β0) . (42)

• L 1 1 1 1
ai,βl,Al,Bl L \ k =
i= 1,2,3,4

Π U(gb)

4α+5

1%)) Π χfe
/ ^ 2 B 2 J m = l

U(gb}\U(gb2)ί

(43)

The last line was obtained by subsequent use of orthogonality relations between
the matrix elements of U.

Lemma 5.

» Γ0, go)

(44)

0(1)
/or — =- < 1 and 0(1) i>z'$ enough.

9

Proof of Lemma. First we need a more refined version of Lemma 4. For
have

we

Γ D \
-M 0 'V^θJ
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Fig. 3

•

where we sum over (Γ0, Q0) such that Γ0u<20 has no connected component
disjoint with X. Using estimates of Lemmas 2-4 we get

1 - * ? > < > '
K + L>0

92 I \ 92 !

0(1)
for 0(1) on the right hand side big enough and — -̂ < 1. Now

-

<1, 0(1) big, by (19), (20) and the Cauchy integral formula. Also

(45)

0(1)

(47)

and 0(1) is big.
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Fig. 4

/growth of E(X r l
/ / / / / proven////

10log g2

Estimating the left hand side of (44) step-wise using the triangle inequality and
(45)-(47) we obtain (44).

Now (41) and Lemma 5 show that

(rv/1 \\ 4α + 6
\j\ 1 I \

Oil)
again for — -̂ < 1 and 0(1) big enough. (43) and (48) yield Proposition 3. Π

From Propositions 2 and 3 we conclude that Xrή=0 for g2 sufficiently large.
We shall need one more estimate which is proven in the same way as

Proposition 1.

Lemma 6. \\X ^ -V for -γ< 1,0(1) big.
\9 I 9

From Propositions 1-3 and Lemma 6 we obtain

1
Tj ~ rnr LΛ. 6 .A ) Ŝ i\ lly\. c II \\Λ o
\\Xr\\

\(4α+5)(3-r)/2 /ΠΠ \\(^+ 3)(r- 5)/2

^2

0(1 )α

Thus for — j" < 1-5

.0'

big enough,

U 2 /
(49)

(50)

Hence jE(Zr) grows if #2 >0(l)α, α>3, i.e. for (see Fig. 4) 1 <(g2)3 <m<(g2)El»gg2 and

ε = ε(N) small enough.
We have proven

Theorem 2. Tfere exisίs 0 <ε = c(N) swc/z that for 1 <(^f2)3 <m<(02)tlogί?2

• 2 _ 1

ε
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Note Added in Proof

In fact it is not so difficult to extend our result to states X'r of the form

Π ιW

and dismiss our assumption on spins of the fermion and the antifermion. We must only notice that in
the cluster expansion for \\X'r\\2 all terms for which Γ0 does not connect {xl9y2} with {x2,y1} coincide
with their counterparts in the cluster expansion for \\Xr\\2. The sum of the other terms is bounded by
0(l)7(02)ί2 + 2r)α for small g2. However our bounds give

\\x II2>—J——\U\. ..II Λ ,JN~.. , ~>~... Λ. Λ ~

if 0(l)α/g2 < 1 and 0(1) is big enough. Thus the similar lower bound holds for l l X J . l l 2 and yields, together
with an analog of Proposition 1, a linear lower bound on the energy oϊ X'r.






