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Abstract. We investigate the cohomology of nets over Minkowski space and
develop exact sequence techniques enabling us to compute many low-
dimensional cohomologies. We examine in particular nets derived from
smooth solutions of invariant partial differential equations using causal
support conditions. Thus the wave equation gives a trivial second cohomology
whereas the vector wave equation with Lorentz condition and Maxwell's
equations give a second cohomology 1R and IR x IR corresponding, respectively,
to an electric and an electric and magnetic charge.

Introduction

This paper has its origins in investigations into the structure of quantum field
theory. In classical (relativistic) field theory, a field can be thought of as a function
φ(x) defined on space-time (Minkowski space) with values in the real line or, more
ambitiously, in other manifolds. The set of fields at time x°=0 constitute the
infinite-dimensional configuration space of the system. If the fields at time x° = 0
are taken together with their conjugate momenta in the sense of Lagrangian field
theory, we get the infinite-dimensional phase space of the system. Quantum fields
are too singular to admit any such interpretation; they are distributions rather
than functions. In any case, quantum theory does not deal directly with configu-
ration spaces or phase spaces but instead real-valued functions on configuration
space are replaced by commuting self-adjoint operators on a Hubert space and
real-valued functions on phase space by non-commuting self-adjoint operators.

A rigorous mathematical framework for quantum field theory was given by
Garding and Wightman [1,2] who considered quantum fields to be operator-
valued distributions. Here the basic objects are unbounded self-adjoint operators

Φ(f)=$Φ(x)f(x)dx,

where / is a smooth function of compact support on Minkowski space. To relate
this with the above ideas, / should be regarded as a linear function on the (linear)
phase space of the system.
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Algebraic field theory, initiated by Haag [3], makes a radical break with the
ideas of conventional field theory. The basic mathematical object is a net of von
Neumann algebras 0—>2ί(0) on Minkowski space. Here (9 is a subset of
Minkowski space and the relation with Wightman field theory is that 21(0) is the
von Neumann algebra generated by the bounded functions of the self-adjoint
operators φ(f\ supp/C0. Thus the fields are relegated to the role of being one
possible system of "generators" for the algebras 21(0). All that remains of the
dependence of fields on a space-time point is the net structure, i.e. the dependence
of the algebras 21(0) on the set 0.

Considering the radical nature of these proposals, algebraic field theory has
been remarkably successful in elucidating the structural features of quantum field
theory. It has recently become clear [4,5] that some of the most interesting
structural features are related to a novel form of cohomology of the net 0->2I(0)
called local cohomology. Unfortunately, as the algebras 21(0) are not Abelian, this
cohomology is a non-Abelian cohomology, so that many of the useful techniques
of the Abelian cohomology are not immediately available. For this reason, it
seemed sensible to study an analogue of local cohomology in an Abelian setting.
This is what is done in this paper by replacing the net 0-»2I(0) by a net of Abelian
groups.

In Section 1 we formulate local cohomology as a cohomology for nets of
Abelian groups defined on the set of compact sets in Minkowski space. Now nets
of Abelian groups do arise in quantum field theory if one considers the net
0-»93(0) where 33(0) is the group of inner automorphisms of the free field algebra
generated by the Weyl operators eiφ(f\ supp/C0. The groups 33(0) can be
identified with the set of solutions of the corresponding free field equation (e.g. the
wave equation) whose Cauchy data have support in 0. This motivates the study in
Section 2 of nets 93 constructed from sheaves of Abelian groups by letting 23(0)
denote the group of global sections that coincide with the zero section on the
spacelike complement of 0. The most important result here is Theorem 2.10 which
states that the second cohomology is trivial if the sheaf is causally soft. A sheaf is
causally soft either if it is soft itself or if there is an associated soft sheaf of Cauchy
data. Theorem 2.10 shows in particular that the net of smooth solutions of the
wave equation or of the Klein-Gordon equation has a trivial second cohomology.

As might be expected, the basic technique for computing non-trivial cohomo-
logies is to exploit exact sequences. Unfortunately, the sequences of nets arising in
practice are rarely exact as they stand but they often become exact if the nets are
restricted to a subset of the compact sets, the set of double cones. We show in
Theorem 3.1, by using barycentric decompositions of simplexes that the coho-
mology depends only on its restriction to the set of double cones. In Theorem 3.2
we can then show that a short exact sequence of nets over double cones gives rise
to a long exact sequence in cohomology. This enables us to compute further
cohomologies. In particular we prove that the vector wave equation with Lorentz
condition has 1R as its second cohomology where the parameter may be
interpreted as an electric charge. Maxwell's equations have 1R x IR as the second
cohomology where the parameters can be interpreted as an electric and a magnetic
charge.
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1. Net Cohomology

We define a cohomology for nets of Abelian groups over the set ^ of compact
subsets in Minkowski space ordered under inclusion. $1 is said to be a net of
Abelian groups iϊSΪ(F) is an Abelian group for each Fe^ and if F1 CF2 implies
that ^(Fj) is a subgroup of W(F2). Thus a net is simply a strict inductive system in
which $l(/-) has been identified with the corresponding subgroup of the inductive
limit. Unless otherwise stated a net will mean a net of Abelian groups. Any
Abelian group A can and will be considered as a trivial net, also denoted by XI, by
setting A(F)=A, FE%.

The nets of most interest to us here are those which reflect the causal structure
of Minkowski space IRS+1. This causal structure is defined in terms of the

5

quadratic form (x,x) = (x°)2 — £ (x1)2. x and y are said to be timelike, lightlike or
ι= 1

spacelike according as (x — y)2 > 0, (x — y)2 — 0, (x — y)2 < 0. Let V+ = {x:x° §: 0 and
(x,x)^0}. If x-yeV+ and xφy, then G = (x- V+)n(y + V+) is said to be the
double cone with vertices x and y. It is said to be based on the spacelike hyperplane
H= {x'e IRS+1 :(x' -%(x + y), x-y) = 0} and to have base HnG. Let Jί denote the
set of double cones ordered under inclusion and JΓ0 the subset of double cones
centred on the origin, i.e. with y= — x.

Let Σn denote the set of singular Fi-simplexes in Minkowski space, i.e. the set of
continuous maps from the standard ^-simplex

into Minkowski space. There are face maps di\Σn-^Σn_l i = 0, 1, ... n defined by

(aίc)(ί°,ί1,...ί' |-1) = c(ί0

Jί
1

9...ί ί" 1,0,ί ί,...,ί I I- 1),ceΣΛ

and degeneracy maps σi:Σn-+Σn+l, i = 0, 1,2, . . . n defined by

An n-cochain with values in a net 1̂ is a map / :ΣW~> (J 9I(/") such that there exists

an $eJf0 with

/(c)62I(0 + |c|) cεΣn. (1.1)

Here |c| = c(zl") is the support of c. (1.1) is the critical "locality" condition on the n-
cochain which says that f(c) is localized about |c| to within some uniform error (9.
The choice of Jf0 is dictated by convenience and could be replaced by any other
cofinal subset of .̂ Since & + |δfc| C 0 4- |c|, we may define an (n + l)-cochain df by

and get in this way a cochain complex C*(9I) of Abelian groups,

C2^)-^.... (1.3)
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The cohomology of the net 5ί is the cohomology of this cochain complex and we
write as usual Zn(5I) = Kerd, Bn(<Ά) = lmd, with the convention that J3°(2I) = 0, and
#"(&) = Z"(&)/J3π(2l). If we want to indicate a specific choice of $eJf0 in (1.1), we
write Cn(Φ 51), Zn((9 5ί) etc. The cohomology of a net 5ί is unchanged if we replace
it by its outer regularization 51 or inner regularization 51 defined by

,

.

If 51 and 33 are nets then a morphism φ:5I-»23 of nets is of course a set of
homomorphisms φ(F):<Ά(F)-^^B(F)9 Fe^, so that if FίcF2 then φ(Fί) is the
restriction of φ(F2) to Slί/^). The above definitions are functorial so that φ induces
a morphism (^:C*(2l)->C*(93), where φ^(f)(c) = φ(f(c)\ of the corresponding
cochain complexes and thus homophormisms of the cohomology groups. A
sequence of nets

0-»9l-i+S-J^(£-»() (1.5)

is said to be a short exact sequence if

is a short exact sequence of Abelian groups for each

1.1. Lemma. The short exact sequence (1.5) of nets gives rise to a short exact
sequence of cochain complexes and hence to a long exact sequence

0^jFf°(&H#0(SHtf°(<^ (1.6)

of cohomology groups.

Proof. A trivial direct computation shows that

0 -> Cπ(5ί)-^ Cn(»)-^> Cn(G) -*0

is exact for each n and the long exact sequence (1.6) is a standard consequence [6,
§2.2].

There are two simple general results on net cohomology that follow from the
contractibility of Minkowski space. First for any net 51

Π 91(0 + β) (1.7)

Secondly, if A is a trivial net, A(F) = F, FeΉ, the cohomology of /4 coincides with
the cohomology of Minkowski space with values in the Abelian group A. Thus
HQ(A)=A and Hn(A) = 0, n^L

Our aim in the following sections is to learn how to compute the cohomology
of nets which reflect the causal structure on Minkowski space with a view to
developing techniques that can be used in the non- Abelian setting of quantum
field theory. We have not attempted to develop a general theory of net coho-
mology although some further general results can be found in Section 3. The
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category of Abelian groups can of course be replaced by any other Abelian
category. Indeed our examples of nets will be almost exclusively nets of 1R-
modules. To what extent net cohomology could be usefully extended to spaces
other than Minkowski space is not clear but topology and a concept of uniform
boundedness are involved in its definition.

2. Nets Derived from Sheaves

One obvious way of constructing nets is to use support properties so that/e9l(F)
means that / has its support in F. To this end, we consider a sheaf stf of Abelian
groups on Minkowski space so that £/(U) is an Abelian group for each open set U.
If /e j/(Rs+ *), we write / = 0 on U to mean that / is in the kernel of the restriction
map from j^(Rs+1) to stf(U\ We define a net Γb($/} over # by setting

Γb(^)(F) = {fe^(lRs+1):f = Q on F} , (2.1)

where P is the complement of F. The examples in quantum field theory suggest
that/e9I(F) should mean that the Cauchy data of /have support in F. Hence we
define a net Γc(j/) over # by setting

s+1).7 = 0 on F'} . (2.2)

Here F' is the spacelike complement of F

F' = {x'e!Rs + * :(x - x')2 <0, xeF} .

Clearly Γh and Γc are functors from sheaves to nets.
In this section we develop methods for computing the low dimensional

cohomology groups for nets of the form Γb(j/) and Γc(s/). We shall concentrate on
the more complicated case Γc(j/), the statements and proofs for Γb(<ε#) can be
obtained by replacing the spacelike complement by the complement, the number
of space dimensions 5 by d = s 4- 1 and causally soft by soft. In the case of Theorem
2.10, the proof could also be simplified.

If U is a bounded open set and 0e JΓ0 we may choose a<=Σ0 with Uc(@ + d)' so
it follows from (1.7) that

H°(Γc(rf)) = 0. (2.3)

Actually, it is not difficult to show that if s>l, then H1(Γc(jf)) = Q. We give a
deliberately pedestrian proof because it helps to illuminate the necessarily more
technical discussion of H2(Γc(j/)).

If $<E Jf0, c<=Σn, we denote (\c\ + Θ)r by Ωc(0) or even Ωc if Q can be understood
from the context.

2.1. Lemma. // zεZ\Θ\Γc(sί)) and s = f = l then z(b) = 0 on Ωeob(Θ)r\Ωdίb(Θ), beΣ,.

Proof. The cocycle identity implies that

z(<30c) = 0 on ΩdιCnΩd2C, ceΣ2.
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Now xeΩδ o &nΩ g ι 6 is equivalent to 60b, d^beΩ^ If s>l, Ωx is path-connected.
Hence there is a ceΣ2 with d0c = b and xeΩ f ? ι cn£2e 2 C. Thus

Ω~o bnΩ a ι 5C (J Ω5ιCnΩ52C and this proves the lemma.
a0c = z>

2.2. Theorem. // s>l, then H1(ΓC(^)) = Q.

Proof. Let zeZl(0',Γc(^))ι iί z = dy with ;μeC0(tf ;ΓC(.<))

z(b)-y(d0b) = 0 on fi^be^. (2.4)

We first show that there is a unique α-»y(α)ej/(IRs+1) satisfying (2.4). Since
{Ωδιb\beΣlίd0b = a} is an open covering of IRS+1 and s$ is a sheaf, it suffices to
show that iϊ d0b =

on ΩdίbnΩdlb,. (2.5)

However, given b,b'eΣ1 with d0b = d0b\ there exists a ceΣ2 with d0c = b and
dlc = b>'. Applying the cocycle identity and Lemma 2.1, we deduce (2.5) as required.
Taking b = σ0a in (2.4), we see that y e C°((9 Γc(ja/)). It remains to show that z = dy.
Given beΣl9 pick ceΣ2 with d0c = b and 20fo, 31foeί2δ ι^2 C. Applying the cocycle
identity and (2.4), we deduce

0 = 0 on Ω , = _ .

Since {Ωdιd2C :dQc = b, δ0b, SjfteΩ^^^} covers Rs+ 1 this implies thatz = dy complet-
ing the proof.

The restriction s > 1 is essential here, see Theorem 2.7. The above proof is based
on [4, Theorem 2.2], mutatis mutandis. Closer inspection shows that singular
homology theory is one of the ingredients. For this reason, we shall consider an n-
cochain not just as a map from Σn but as a homomorphism from CΠ = CΠ(1RS+1),

m

the group of n-chains on Minkowski space. If b— ^ μίbi with bieΣn and μ^TL,
i= 1

μ.φO, we set

Ω6(0)= Π Ω»,(<P) (2-6)
i= 1

In other words Ωb(G) = (0 + \b\)' where |fc |= Q b^A") is the support of the chain ft.

Note that xeΩb(Θ) is equivalent to beCn(Ωx(0)\ Clearly if yeC"(fi?;Γc(j^)) then

y(b) = 0 on Ωfc(φ), beC,. (2.7)

We adopt the standard notation Bn, Zn, and Hn to denote boundaries, cycles and
homology classes. The homology class of cεZn is denoted by [c] and the
boundary operation is denoted by d

dc= £(-1)^, ceΣn.
i = 0

A contracting homotopy for the chain complex C^ is a homomorphism /z of the C^
such that 1 = hd + δfc.
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The following simple Lemma is used repeatedly.

2.3. Lemma. Let beBn then if

Proof. xeΩb implies fceCπ(Ωx) and thus beZM(ΩJ. Now Ωx is homeomorphic to
the (s - l)-sphere, thus Hn(Ωx) = 0 if n φ 0, s - 1 . We deduce that, if n φ 0, there exists
c'eCn+1(Ωx) with dc' = b. This is even true if n = 0 because if ε:C0(Ωx}-*Έ denotes

the canonical augmentation, ε(b) = 0 since beB0. However x e Ωc, so Ωb — (J Ωc as
dc = b

required.
We now generalize Lemma 2.1

2.4. Corollary. // zeZπ($;Γc(j/)) and s^n then

z(c) = 0 on Ωdc((9], cεCn. (2.8)

Proof. If H = 0 the result follows from (2.3). For n>0, let b = δc then if dc' = b,
S(c — c') = 0 and since Hn(JRs+1) = 0 and z is an n-cocycle z(c) = z(c'). Thus by (2.7),

z(c) = 0on (J Ωc, = Ωb.
sc' = b

If s = n, what we get instead is

z(c) = 0 on {xεΩdc((9}:ldc-]=0 in H^^Ω^)}. (2.9)

However since (2.8) is satisfied if ze£s($;Γc(j/)), we can begin to analyse
Hs(Γc(^/)). To this end, we pick a coherent set of generators for the HS_1(ΩX). Let
c1,c2, . . . ,c π , . . . be a sequence of concentric s-balls in, say, the hyperplane x° = 0,
whose radii increase monotonically to infinity. We may consider the ci as ,s-chains
after orienting them so that their normal is in the direction of the positive x°-axis.
Given xe!R s+1, there exists an zλ such that [<3cJ is a generator for Hs.^x), if
and only if ί^ix and [δ]cl — dcj] = Q for i,j^ix. Given zeZs(Θ', Γc(.$0)\ we define

y(z) = z(Ci) on {xeΩεCι:teix}. (2.10)

(2.9) shows that this definition is consistent.

2.5. Proposition. y:Zs((^;Γc(^/))->j/(IRs+1) is a homomorphίsm and y(z) = 0 if and
only if (2.8) holds (with s = n). y extends to homomorphism of Z5(Γc(j/)) into
j/(IRs4" ̂  and factors to give a homomorphism y ://s(Γc(j/))-> j/(IRs+ 1}. If s = 1, γ is
a monomorphism.

Proof. Clearly y is a homomorphism and (2.8) implies y(z) = 0. Conversely if
y(z) = 0 and xeΩ(lc then for i^ix, [3c-nδcί]=0 in Hs_^x) for some neZ. Hence
z(c) = nz(cl) = nγ(z) = Q on some neighbourhood of x. y(z) is unchanged if z is
considered as an element of Zs((91 Γc(j/)) for (P1 D {P so y extends to a homomor-
phism of Zs(Γc(j/)) which factors to a homomorphism 7 of HS(ΓC(^/)) into J3/(IRS+ ̂
since coboundaries satisfy (2.8). If s= 1 and y(z) = 0 we may apply the argument of
Theorem 2.2 to show that zeBl((9;Γc(jtf)). Hence y is a monomorphism if s= 1.
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2.6. Definition. A sheaf s$ is causally soft if given any spacelike hyperplane H and
any closed set F which is the union of double cones based on H, every section of j/
over F can be extended to a global section.

Of course every soft sheaf is causally soft but it is sufficient if the restriction of
s$ to any spacelike hyperplane H is soft and if, for F as above, the restriction
mapping from ja/(F) to j/(FnH) is an isomorphism. This is the case if one
considers the sheaf of smooth solutions of hyperbolic differential equations with
constant coefficients, such as the wave equation or the Klein-Gordon equation,
whose characteristic planes are null planes. This can be deduced, for example, from
the discussion of the Cauchy problem in [7, Chapter 5].

2.7. Theorem. Ifs = 1, and stf is a causally soft sheaf then y \Hl(Γc(^}}-^^(^2} is an
isomorphism.

Proof. In view of Proposition 2.5, it sufficies to show that y is surjective. Since stf is
causally soft, given /e j/(]R2), Θe Jf0 and αeΓ0, there exists a y(a)e ̂  with y(a)
= / on (0 + a}1 and y(a) = 0 on (& + of. Here (0 + a)1 and (0 + a}r are the connected
components of (Θ + α)', ((9 + a)1 being defined by the convention that (0, x1)e(Θ + a)1

if x1 is sufficiently negative. Define z(b) = y(dQb) — y(dίb) for beΣ^ then z(b) = 0 on
(Θ + b)r so zeZ1^; Γc(j/)) and we see that y(z) = f.

For ff2(Γc(j/)), the method of Theorem 2.2 fails because if beΣί9 y(b) is not
uniquely determined by requiring that z = ay. However the restriction of y(b) to
Ωdb(@) is uniquely determined.

2.8. Lemma. Let zeZn((9;Γc(^)\ with y(z) = 0 if s = n, then if s + n—l, there is a
unique map Cn_13b-+y(b)€jtf(Ω6b(Θ)) with

z(c), (2.11)

y(b) = Q on Ωb(Θ), (2.12)

y(b) + y(b') = y(b + bf) on ΩDb(Θ)nΩdb,(G). (2.13)

Proof. Suppose y is given, beCn_ί and ceCn then

y(b) + y(dc-b) = y(dc) = z(c) on Ω8b

by (2.11) and (2.13). Hence by (2.12)

y(b) = z(c) on β b_ β c . (2.14)

Since by Lemma 2.3, [J Ωb_dc = Ωdb, y is unique. Conversely we use (2.14) to define
c

y
By (2.8)

z(c) — z(c') = z(c-cr) on Ω f ( c _ c <)

and Ωe(c_c,}3Ωb_dcr\Ωb_dc, so (2.14) defines y(b)e £/(Ωdb). Ifb = dc, (2.14) reduces to
(2.11). Since z is a homomorphism, we have

o n b _ _

and again Lemma 2.3 gives (2.13). Taking c = Q in (2.14) we get (2.12).
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From this Lemma, it is clear that the problem of deciding whether an rc-cocycle
is an n-coboundary for n < s is one of extending y(b) to a global section of s$ so
that yeCn~l(Γc(stf)\ We can again hope that the causal softness of s# might be
sufficient to guarantee the triviality of the cohomology.

We first take advantage of the contractibility of Minkowski space to simplify
the geometric considerations.

2.9. Lemma. Let h be a contracting homotopy for C^, then under the hypotheses of
Lemma 2.8, given aeBn_2 pick fceCn_1 with db = a and set

) = y(b)-z(hb] on Ωa(0) (2.15)

then x(a) is independent of the choice of b and

x(a) + x(a') = x(a + af) on Ωa((9)πΩa,(ΰ) (2.16)

and zeBn((9:Γc(s^)) if and only if there exists a weCw"2(^(IR4 + 1)) with

on Ωa(0\ae'Bn_2. (2.17)

Proof. Let b,bfeCn_l with d(b-b') = Q then b - b' = dh(b - b'} and (2.11) and (2.13)
show that

y(b}-y(b') = z(h(b-b'}} on Ωdb(Θ).

Hence the right hand side of (2.15) is independent of b. (2.15) and (2.13) imply
(2.16). I f z e B n ( & 9Γc(^)) then

z=dy' with yΈCn-l(G\Γc(si))

so y'(b}-z(h(b}}EZn~\^(W+l}} and there is a weC"~2(j/(IRs+1)) with

ECn^1 . (2.18)

Since y'(b) extends y(b) by Lemma 2.8, (2.17) follows. Conversely given
weC"~2(j/(IRs+1)) satisfying (2.17) define y'(b) by (2.18) then y'(b) extends y(b) so

and z = dy'.

We come now to the main Theorem of this section.

2.10. Theorem. I f s > 2 and d is a causally soft sheaf then H2(ΓC(^)) = Q.

Proof. We show that if zeZ2(&1 ;Γc(j/)) and if $E JΓ0, GίcmtΘ then there is a
yeCl(Θ\Γc(^}} with dy = z. We may define x as in Lemma 2.9 with (9 = Φl and it
suffices to find we C0(j3/(lRs+ *)) with

on Ωδb(Θ)9beΣί9

k

since every aeB0 can be written in the form α= Σ dbt with bieΣ1 and \a\
i = 1

k

= \J \dbi\. Furthermore, since ^ is a causally soft, it is sufficient to show that
i = l

there is a function Γ0 9 a-+w(a)e<stf(Ωa((9)) with

on Ωs^nΩ^ΘlbeΣ,. (2.19)
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Suppose we have defined w(α) for aeXcΣ0 such that (2.19) holds whenever
δ0i>, c^fceX. Given aeΣ0, aφX, (2.16) implies that for a', a'ΈX

w(α') + x(α- a') =w(aff) + x(a-a") on

Thus there exists a ve<stf(U(X,a,0)) where

on Ωdob(0)nΩdlb(Θ)9beΣ1. (2.19)

Suppose we have defined w(a) for tfe^CΣ0 such that (2.19) holds whenever
d^b^d^beX. Given αeΣ0, aφX, (2.16) implies that for a', a'ΈX

w(α') + x(a-a') = w(a"} + x(a - a") on Ωa(Θ)r\Ωaf(Θ)r\Ωa,,(Θ) .

Thus there exists a ves#(U(X,a,(9)) where

a'eX

with v = w(a') + x(a-a') on i2u(^)ni2a<(^). To define w(a) so that (2.19) holds for
dQb,dlbeX\j{a] we have only to extend υ to Ωα(0). If U(X,a,(9) = Ωa(0\ there is
nothing to be done and if U is the union of double cones based on some spacelike
hyperplane A/, we may appeal to the causal softness of s$ to extend υ at the cost of
redefining Θ. We therefore proceed as follows. Let Θl be based on the spacelike
hyperplane H. Pick aί,a2,a3,... on H tending spacelike to infinity and 0.eJΓ0

based on H with 0.cint0 ί + 1 C0. Set X1 = {α1} and X ί + 1=X ίu{ίz ί + 1}. Then
£/(Zί? <2 ί + 1,tfλ) is the union of double cones based on H and U(X,a,(9) = Ωa(&)
provided X D (JXn This completes the proof.

n

The proof above also shows that when j/ is causally soft the map y of
Proposition 2.5 is a monomorphism for s = 2. Presumably y is even an isomor-
phism in this case but before tackling either this problem or the problem of higher
cohomologies, it would seem advisable to develop more powerful methods.

In this section the sheaf s$ has been treated as the primary object. In the longer
term it would be desirable to have results expressed directly in terms of properties
of the nets involved.

3. Nets over tf

We now consider the cohomology of nets which are defined just on double cones
and not on arbitrary compact sets. If 21 is a net over Jf* we cannot define cochains
directly using (1.1). Instead we first extend 21 to a net over (6. This may, in general,
be done in many different ways in particular we can take the minimal extension
defined by

(3.1)

where V denotes the least upper bound in the lattice of subgroups of the group
u{2ί(^):^e JΓ}. Our aim is to show that the cohomology is independent of the
extension and is thus an intrinsic property of the net 21. This is easily proved using
barycentric decompositions, a standard technique of algebraic topology.
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A mapping φ C^—^C^ is said to be local if \φ(c)\ C \c , i.e. if φ reduces supports.
The importance of such mappings is that if 91 is a net over ,̂ there is an induced
mapping <^ C*(2I)->C*(3ϊ) defined by

. (3.2)

(3.3)

Indeed net cohomology owes its existence to the fact that d is local.
If ceΣn, we let k(c)eΣn + 1 be the cone on the barycentre of c

...,
n-fl n+l n+l

Since k(c)(An+ l} = c(Δn\ k extends to give a local homomorphism of degree 1 of C^
and thus u\C^-+C^ defined by

u=l-kd-dk (3.4)

is a local chain endomorphism of C^ called the barycentric decomposition.
Let %R be a covering of Minkowski space such that each point is in the interior

of some element of 9JΪ. A simplex is said to be small of order SJR if its support is
contained in some element of 501. Let (̂ (501) be the subcomplex of C^ generated by
these simplexes. If ceΣ^ let n(c) denote the least integer such that un(c\c)eC^(9K)
and define

then h extends to give a local homomorphism of degree 1 of C^ and we get a local
chain endomorphism υ by setting

v = l-hd-dh. (3.6)

As is well known [8, §8] υ is a projection mapping of C^ onto
If 91 is a net over ,̂ we can define a cochain complex, £ (̂91), in the obvious

way: /e C^(2I) is a homomorphism /:CM(S0ϊ)-> (J 9I(/Γ) such that there exists an'

(3.7)

Since v is local, it induces an injection z;* : 6* (̂91) ->C*(9l) which is a right inverse
for the restriction map C*(9l)^C^(9ί). In virtue of the homotopy formule (3.6),
H^H) and//*(2I) are isomorphic.

3.1. Theorem. Let 91 and S be nets over <& whose restrictions to JΓ agree thenH*(yί)
=H *(»).

Proof. Without loss of generality we may suppose by (3.1) that 9I(/Γ)cS(/Γ),
ThenC*ί(9I)cC*ϊ(23).

The result follows if we show that for a covering of the form yjl
+ x:xeR 4 + 1}, where β?eJΓ0, C&(51) = C&(93). If /eC^^S), pick 02, C3

such that ^2D{P + ̂ 1 and <^3D^ + ̂ 2. Let ceΣπ be SDl-small, then \c\C(9 + x for
some x, so /(c)e 93(0! 4- |c|) C S(^2 + x) = 2ί($2 + x) C 3ί($3 4- |c|) thus /e C^(^3 91)
as required.
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Shed of its technicalities, the proof may be summarized as follows : if zeZ"(S)
then z' defined by

is a cohomologous cocycle in the subgroup Zn(9ί).
In view of Theorem 3.1, we may speak of the cohomology of a net over jf .

3.2. Theorem. Let 0-»9l — ̂ ->33 — ̂ -*Qt— >0 be an exact sequence of nets over Jf , i.e.

exact for each (9e Jf . TTien we have an induced long exact sequence in cohomology

Proof. Extend 23 to a net over <β and define

In this way we get an exact sequence of nets over ̂  so that the result follows from
Lemma 1.1.

Theorems 3.1 and 3.2 would still hold if Jf is replaced by any subset JS? of ̂  of
the form jSf = {L + x:Le^?0,xeIR s + 1} where jSf0 is a cofinal subset of #. The
choice of JΓ here is dictated by convenience because for many of the nets which
arise in practice we get exact sequences over JΓ but not over Ή. We can simplify
matters further by introducing the concept of almost exactness. We say that
0->2I-+23-»(£-»0 is almost exact if 0->9I->SB->(£->0 is exact, where & denotes the
inner regularization of 91.

Any exact sequence of nets is almost exact and an almost exact sequence still gives
rise to a long exact sequence in cohomology since H *(9I)=H *(9I) as we remarked
in Section 1. In the next section we shall prove that various sequences are almost
exact and evade the more delicate, but irrelevant, issue of exactness.

4. Computing Net Cohomology

Net cohomology is computed on the same lines as other cohomology theories.
Simple cases, such as the cohomology of trivial nets (Section 1), are computed
directly. Then criteria are developed for cohomologies to be trivial; we already
have Theorems 2.2 and 2.10 at our disposal. Finally more complicated cohomo-
logies are computed using exact sequences.

Most of our examples of exact sequences rely directly or indirectly on the
homology or cohomology of subsets of Minkowski space. Thus the singular chain
groups Φ-+Cn(&) give rise to a net over Jf by identifying Cn(0) with {CE Cn: \c\ C Θ}.
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Now combining the exact sequences

0-+Zn(0)-+Cn(G)-±-+Bn_ί(C>)-+0

with Hn(G>) = Q for n>0 and H0(@) = %, we have exact sequences

0^fl0(^C0(0)-^Z-»0, (4.1)

where ε is the augmentation, and

O^Bπ(0HCn(0)-^->Bπ_ Λ0HO n^{. (4.2)

Since aCπ+1(^)-βπnCn(^), $eJΓ, we can regard 0->£π(0) as the subnet of
Φ-*Cn(@) consisting of boundaries and (4.1) and (4.2) allow one to compute the
cohomology of the net of boundaries in terms of the cohomology of the net of
chains using Theorem 3.2. A direct computation of the low dimensional cohomo-
logies of the net of chains would take us too far afield but the above serves to
motivate the next example.

We define a net £'p by letting S'p(&) denote the courants of dimension p with
support in (9 and let 0g'p and &'p denote the subnets of boundaries and cycles, then
JΓp = J^ if p^> 1 and in place of (4.1) and (4.2) we have

These sequences are now almost exact over JΓ as is seen by considering the de
Rham homology with compact support of int$. Since S'p = Γb{β'p}, where &p

denotes the sheaf of courants of dimension p and &p is a soft sheaf, Theorem 3.2
and the results of Section 2 give :

; d>\
Hl(δ'v)cϊ@'^\ Hl(δ'^2'^\ H1^)-^;^); d=ί

H2(£'p)=Q, H2(^'p) = 0 if p Φ l , H2(^/

1)-IR;ί/>2.

We can also work in terms of differential forms and define a net @ιp by letting
denote the smooth forms of degree p with support in (9. Let £%p and ¥£p

denote the subnets of exact and closed forms respectively. Then @}p = 3?p if p Φ d
and

(4.4)

where the map ^d—>IR denotes the integration of a d-form over IRd. These
sequences are almost exact as is seen by considering the de Rham cohomology
with compact support of intdλ Since @p = Γb(£>p) where Sp denotes the sheaf of
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smooth forms of degree p and S p is a soft sheaf, we again have :

= $ if

^1)-^
H2(@P) = Q, H2(^P) = V if

We next consider the analogue of (4.4) when @p = Γb($p) is replaced by ΓC(SP}.
Let 38P

C and £Γ£ denote the subnets of exact and closed forms respectively. We still
have gsp = &p for p^s but now ̂ +1=^+1 =ΓC(<Γ+1). As compared with (4.4)
we have a characteristic shift in dimension : the obstacle is now the integral of a
closed s-form over a spacelike hyperplane and we let 3&\ denote the kernel of this
homomorphism of &s

c into R Then

0-»JP-»JP->IR-»0

->0 (4.5)

Q pφs-1

is almost exact. Since this is now a problem of "cohomology with causal supports",
we give the simple proof explicitly. Here, as in subsequent proofs of almost
exactness, the main point needing attention is the surjectivity condition on the
right hand map and to establish the notation used in these proofs we give 0eJf
and pick tfλeJΓ with 0 = (90 and $-Cint$ ί + 1. For the proof at hand Θ^ is enough.
Let fe^p+1(Φ\ i.e. f = dg and dg = Q on Θ'. Hence if pφs-1, there is a (p-1)-
form h on Θ' with g = dh on 0' '. Thus there is a (p— l)-form hr on R s + 1 such that
g! = g-dtie Γc(£p) (Θ1)anddg' = f . I ϊ p = s-l,we need / e 3SS

C(Θ) to be able to draw
the same conclusions.

Since Sp is a causally soft sheaf, we may use Theorems 2.2, 2.7, 2.10, and 3.2 to
deduce

= Q if

Turning now to the examples of greater relevance to quantum field theory, let
a^ denote the net derived from the sheaf of smooth solutions of the wave equation
by applying Γc. Thus

. (4.6)

The following sequence of nets over JΓ is almost exact :

0->ιT->Γc(^
0)-^^c(^0)-^0 . (4.7)
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Given /e Γc(<?°) (0), we first pick 0e<?°(IR&+1) with Π0 = / (see for example
[9, Theorem 13.2]) and then g'e£°(ΊR?+l) with Π0' = 0 and (g-g') = Q on ̂  by
looking at Cauchy data on the spacelike hyperplane through the base of Θ. We can
however compute the cohomology of if without reference to (4.7). H°(if) = Q
trivially and Hl(if}^Q for s> 1 by Theorem 2.2 since if is derived from a sheaf.
Since the sheaf is causally soft, ^(^^{feS^JR2): D/ = 0} if s- 1 by Theorem
2.7 and H2(if) = 0 if s>2 by Theorem 2.10.

Similar remarks apply to the net & derived from the Klein-Gordon equation.

. (4.8)

Now let if denote the subnet of if got by imposing the subsidiary condition

(4.9)

on the solutions of the wave equation. (4.9) is a Lorentz invariant condition it says
that the dual tensor of df is in ffi. Clearly

0-^ r̂->ιT->IR->0 (4.10)

is exact. Thus H°(τr) = 0, ί/^^-IR if s>l, H\if)~1&x H^(if) if 5-1 and

Let i^ denote the net of smooth vector solutions of the wave equation

τT(fl?) = {/6(?1(lRs+1):Π/ = 0,/(x) = 0,x6C?'} . (4.11)

and S£ the subnet of those solutions satisfying the Lorentz condition

{/eτΓ(0):<5/ = 0}. (4.12)

Here δ is the coderivative so that the Lorentz condition in components reads
<g/> = 0 and we have Π = dδ + δd. We show that

o-»^-»-r-r-»o (4.13)

is almost exact. Given fεi^(&) let

(0,x) and F(

be the Cauchy data on the spacelike hyperplane through the base of $, which we
may suppose to be x° = 0 without loss of generality. Similarly let G and G denote
the Cauchy data of gεif(Θ\ The equation δf = g in terms of Cauchy data reads

Γ F-jp°-G
(4 14)

G.

We see from (4.14) and (4.9) that /e^($) implies δfeif(G). Given geif(Θ\
define F° = - G, F - 0, F° - 0. Since J G(x)d*x = 0, we can find F with F = 0 outside
the base of &l and Γ F=G. Using F and F to define /, we have feY*(Θ^) and
δf = g. Thus (4.13) is almost exact.

It should be noted that, after passing to Cauchy data and taking dual tensors,
the almost exactness of (4.10) and (4.13) is essentially that of (4.4). For the
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cohomology of g we get from (4.13): H°(JS?) = 0; H1(^?) = 0 if s > l ;
//H^O-ί/e^HR2): d/ = 0, <5/ = 0} if s = l and H2(^)-IR if s>2. The coho-
mology classes of H2(£f) for 5 > 2 can be regarded as being parametrized by an
electric charge.

Let Jt denote the net of smooth solutions of Maxwell's equations

. (4.15)

There is an almost exact sequence for s>2

§-*nr-±*y-l-*M-+§ (4.16)

which expresses the way Maxwell's equations are solved using a vector potential.
To see this, let feJ((&) then by (4.5) for sφ 2 there is a geΓc(£ *)((!) J with f = dg.
However by (4.7), we may find he Γ C(&°)(Φ 2) with D/i = δg and then g - dhe ^((92]
and d(g — dh) = f. Here we must also pay attention to the almost exactness at ,£?. If

and df = 0 then by (4.5) if sφl, there is ge^((9,} with dg = f, but
= 0 so ge^(&J.

For 5 = 2, the same reasoning shows that

is almost exact where Jί = J(n^. If s = l, Λr = 0 and 0-+iT-^->0->0 is

almost exact, where J^ = j^fn^1.
To compute the cohomology of ̂ , we cannot use (4.16) but instead proceed as

follows : let / be the net of conserved currents

/(0) = {jεΓc(£l)(Φ):δj = Q} (4.18)

and / the subnet defined by

f;°(0,x)dsx = 0. (4.19)

Of course / and /^ are isomorphic to £%[ and 3SS

C respectively by passing to dual
tensors in Minkowski space. Now

0-^-+Γc(<ί2)- î̂ c

3 x /->0 (4.20)

is almost exact if SΦ3. For given fε^((9) and;e/(β?), we may find
with dg = f by (4.5) if 5Φ3 and ΛeΓ^^^j) with Πh=j-δg by (4.7). Since
dδh=-δdh+j-δgejf, δhei^(&2} and by (4.13), we may find hfei^((93) with
δh' = δh. Thus g' = g + dh-dtieΓc(<ί2)((9ι) and dg' = dg = f, δg'=j. If s = 3, the
same proof shows that

0-»^-+Γc(<f 2)^JC

3 x /->0 (4.21)

is almost exact. For the cohomology of the net Jt> we now get H°(Jί} = Qι
HH-^HO; H2(^)-IRxIR if s = 3 and H2(^)-R if s>3. The second coho-
mology classes of M are again parametrized by an electric charge and if s = 3 there
is a magnetic charge as an additional parameter.
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