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Abstract. It is proved that the action of a weak electric field shifts the
eigenvalues of the Hydrogen atom into resonances of the Stark effect, uniquely
determined by the perturbation series through the Borel method.

This is obtained by combining the Balslev-Combes technique of analytic
dilatations with Simon's results on anharmonic oscillators.

I. Introduction

The Stark effect on a Hydrogen-like atom is described by the Hamiltonian
operator:

(1.1)

acting on L2(Ry). Here 2jp>0 is the uniform electric field directed along the x3

axis, Z the atomic number, and r = (x2

l+x2

2-
ίrxiy12.

As is well known, the Schrδdinger operator (1.1) is a non-positive singular
problem in perturbation theory of linear operators, and the spectrum of H(F) is
(absolutely) continuous in (—00, +00), while the spectrum of the unperturbed
operator H(Q), the Hydrogen atom, is discrete along (— x, 0). The spectral theory
of this problem is then treated within the framework of asymptotic perturbation
theory [12] based upon strong convergence of resolvents as F->0.

In addition, an alternative technique for dealing specifically with this kind of
problems has been very recently developed by Avron and Herbst [1] and by
Veselic and Weidmann [24].

It involves considering — A -f 2Fx3 as the unperturbed operator and Z/r as the
perturbation and yields the absolute continuity of the spectrum along (— cc, -f cc)
and the existence of the wave operators.

By means of the strong convergence of resolvents Riddell [17] generalizing
earlier results of Titchmarsh [22], proved that the spectrum of (1.1) along (— oo,0)
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is asymptotically concentrated to any order in perturbation theory, thus allowing
the definition of pseudoeigenvalues to which the formal Rayleigh-Schrόdinger
perturbation series are asymptotic.

Here by means of the well known separability of (1.1) in squared parabolic
coordinates we prove that for F complex the strong resolvent convergence can be
replaced by a norm resolvent convergence, in some angular sector, of a closely
related operator.

This result is analogous to the one obtained by Simon [19] for the anharmonic
oscillator which is an example of positive singular perturbation, and allows to
strengthen purely asymptotic concepts such as spectral concentration and
pseudoeigenvalues to resonances and Borel summation [9] of perturbation series.

This analogy goes actually much further, because it is well known since the first
paper of Schrodinger on perturbation theory (and even earlier [6] in the
framework of the old quantum theory) that the squared parabolic coordinates
reduce the Hamiltonian (1.1) to a system of two constrained anharmonic
oscillators with a centrifugal potential, whose quartic terms have coefficient F and
— F respectively.

Exactly in this way Titchmarsh [23] gave a first proof of the absence of
eigenvalues for (1.1) and of first order spectral concentration [22].

Here, applying the results of Simon [19] for the two-dimensional anharmonic
oscillator, we see that the difficulties arising from the coefficient — F can be
overcome so that the Balslev-Combes [2] technique of analytic dilatations can be
applied to yield the existence of resonances. In addition we prove that the
resonances are uniquely determined by the divergent perturbation series through
the Borel method.

The realization of (1.1) as a Hubert space operator for F complex starting from
the separated ordinary differential expressions will be dealt with in the next
section.

In Section III we treat the spectral theory of this operator, in Section IV we
prove the existence of resonances according to both standard notions of this
concept as classified by Simon [21], and in Section V the Borel summability of the
divergent perturbation series.

For convenience of exposition, we collect in a very short Appendix all results
we need on the quartic anharmonic oscillator with a centrifugal term.

II. The Stark Hamiltonian: Separation of the Variables

This section deals with the separation of the variables in the Schrodinger operator
of the Stark effect. This problem, trivial at first glance, is on the contrary a fairly
subtle one, as shown by Avron and Herbst [1] through an argument to be
reconsidered below.

Consider again the Stark effect Hamiltonian (1.1):

H = H(F) =-Δ- Zlr + 2Fx3. (2.1)

It is well known [12,17] that the partial differential expression (2.1) can be realized
as an operator on L2(^3), essentially self-adjoint on C^(K3) = D(ίί). Its spectrum is
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absolutely continuous along (—00, +00) [23,1] and its part along (— oc,0) is
asymptotically concentrated as F— >0, the pseudoeigen values having asymptotic
expansions to all orders in F which coincide with the formal perturbation series

[17].
As the Hydrogen atom obtained from (2.1) for F = 0, the Stark effect

Hamiltonian is separable in parabolic [13] or squared parabolic [23] coordinates.
Let us briefly review the details. The squared parabolic coordinates c, η, φ,
0 ̂  £, n < + oo, 0 ̂  φ< 2π, are defined by :

ξ = (r + x3)
112 x1=ξηcos(φ)

η = (r-x3)
112 x2 = ξηsin(φ) (2.2)

φ = arc tg(x2/X!) x3 - |(£2 - η2)

with r = (xl + x2 + xl)ll2=±(ξ2 + η2).

Then the following decomposition holds :

L2(R*)=@Ln9Ln = L2(R2

++,rξηdξdη)®e±ίm+, (2.3)
o

where L2(R2

+ + , rξηdξdη) denotes the Hubert space of all (equivalence classes of)
functions f:R+xR + -+C square integrable on R+xR+ with respect to the
measure rξηdξdη. Then Lm reduces H for any ra, so that H can be expressed under
the form of a direct sum:

, (2.4)

where hm = PmHPm, Pm being of course the orthogonal projection from L2(R3) to

Lm

After separation of the angular part, the problem is reduced to the study of the
essentially self-adjoint operator H'm on L2(R2

+ +ίrdξdη) defined by the differential
expression

Hm = ±r-\-d2/dζ2~d2/dη2 + (nι2-{/4)(ξ-2 + η-2) + F(ξ4-η4)-2Z) (2.5)

on some domain D(H'm).
To investigate the spectral properties of H'm, consider the operator H'm — F, E a

complex number, whose study on L2(R2

+ +,rdξdη) is of course equivalent to that of
the operator Hm defined on some domain D(Hm)CL2(R2

+ +) by the differential
expression

(2.6)
because of the unitary equivalence :

i(Φ,(H^-£)-1Φ) = (r1 / 2Φ,H-1r1 / 2Φ), r1/2ΦeL2(R2

+ +) . (2.7)

Formula (2.6) shows that the problem can be further separated in terms of the
natural tensor product decomposition L2(R\ +) = L2(R + )® L2(R f). One has:

-2Z, (2.8)
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where Am and A'm are the ordinary differential operators on L2(R + ) defined on
some corresponding domain D(Am) and D(A'm) by :

Am=-d2/dξ2+(m2-l/4)ξ-2-Eξ2

2-Eη2-Fη4. (2.9)

(2.8) and (2.9) represent the reduction of the Stark Hamiltonian to a system of two
anharmonic oscillators with a centrifugal potential. The spectrum of the Stark
operator H = H(F) can of course be recovered from Hm by taking the union over m
of the complements of the sets of the complex E plane for which H~ 1 belongs to
B(L2(R2

+ +)). Therefore Hm, which shall be referred to in the following as the
reduced Stark operator, has absolutely continuous generalized spectrum (in the
sense of Kato [12], Chapter VII) along (— oc, + oc) for any m, since the spectrum
of H = H(F) is absolutely continuous along (— oc, + oo).

The subtleties arise in the inversion of this procedure, i.e. when one tries to
define the Stark operator H(F) on L2(R3) starting from the separated ordinary
differential expression (2.9), along the lines of the standard treatment of the
Hydrogen atom in spherical or parabolic coordinates (see e.g. Hellwig [10]).

Taking as starting point the ordinary differential expressions (2.9), it is well
known (see e.g. Reed and Simon [16]) that Am is in the limit circle case both at the
origin and at infinity, while Am is in the limit circle case at the origin and in the
limit point one at infinity (actually at the origin the limit circle case takes place
only for m = 0). Hence the deficiency indices (for m — 0) of A'm and Am defined on
CQ(R + ) are (2,2) and (1,1), respectively, and it is known that all self-adjoint
extensions of them have discrete spectrum [5]. Hence, as remarked by Avron and
Herbst [1], proceeding in this way one ends up with a Stark operator which, at
least for some Z, has a discrete spectrum. The point here is of course that the Stark
operator defined in this way does not coincide with the former one defined on
CJ(^3), because of the additional boundary conditions at infinity needed to make
a self-adjoint operator in L2(R f ) out of the differential expression A'm.

To sidestep this difficulty, in his proof of the (absolute) continuity of σ(H)
Titchmarsh [23] showed by direct construction that for E complex, Im(E)>0,
there is one and only one Green's function associated with A'm — λ if one requires
only the L2 condition at infinity. In this way for complex E the operator A'm — λ can
be unambigously defined as the inverse of the Green's function. Then he showed
that as Im(£)-»0 + , H~ 1 is singular for any real E, thus getting the continuity of the
spectrum of the (reduced) Stark operator over (—00,+ oo). Here Hm is defined as
in (2.8). As remarked by Dolph [4], Titchmarsh's procedure is equivalent to
imposing on A'm for Im(E) = 0+ the Sommerfeld radiation condition at infinity.

Our starting point here is slightly different from Titchmarsh's one, in that we
define the operators in L2(R + ] out of the differential expressions Am and A'm for
complex F, Im(F)>0, because this is needed for construction of resonances (see
Section IV). The consistency with Titchmarsh's treatment will however be checked
by showing that the analytic continuations of his resolvent kernels (i.e. the Green's
functions) to F complex, Im(F)>0, coincide with the present ones.

After this somewhat long review, let us turn to the construction of the reduced
Stark operator for F complex in a region to be specified below.
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Let F and F be complex, |arg(F)|<π, |arg(F)|<π. For any w = 0, 1 ... consider
in L2(R2

++) the operator defined by the following tensor product:

TTO(£, F, F') = Am(E, F) (x) / + / ® Am(E, F') , (2. 1 0)

where, for E < 0 :

Am(E,F) = Km(-E,F). (Ill)

Xw(α, /?) being the differential operator in L2(K + ) defined in Appendix. This means
that Am is the realization as a Hubert space operator of the differential expression

Lemma 2.1. Lei arg(F)|<π, |arg(F)|<π, and m — 0, 1, ... . Then:
a) Tm(E,F,F') is a holomorphίc family of type A (in the sense of Kato [12]J in E

for any finite complex E, with compact resolvents.
b) The spectrum of Tm(F, F, F') consists of the eigenvalues λ™k = Z™(E,F)

+ Z£(E,F), /i, fc = 0, 1, ..., Z™(F,F) bdn# f/ιe fe-th eigenvalue of Am(E,F).

Proof, a) follows from assertion a) of Theorem A.I through a trivial tensor product
argument.

b) By a result of Reed and Simon [15] under the present conditions the
spectral relation σ(Tm) = σ(Am(E,F)) + σ(Am(E,F')) holds, and this proves Lemma
2.1.

Corollary 2.1. Let F be complex, 0<arg(F)<π, and m = 0, 1, ... . Then we can define

Tm(E,F)=Tm(E,F,e-ίπF} (2.12)

as an operator family on L2(R2

++) enjoying properties a) and b) above. In addition
fm(E, F) is a holomorphic family of type A in F with compact resolvents.

Proof. The second assertion follows from Theorem A.I through the tensor product
argument.

Remark. Having fixed the sign convention — F — e~ lπF, from now on we shall
simply write — F to mean e~ lπF, whenever necessary, without further specification.
As it will be seen below this convention coincides with Titchmarsh's one.

Definition 2.1. Let F be complex, 0<arg(F)<π, and let Tm(E,F\ w = 0, 1, ... , be as
in Corollary 2.1. Then we define the reduced Stark operator Hm for F complex as :

Hm = Tm(E,F)-2Z. (2.13)

By spectrum of the reduced Stark operator, σ(Hm), we shall mean the complement
of the set of the points of the complex E plane for which (Γm(£, F) — λ)~l at fixed /
- 2Z belongs to B(L2(R2

+ +J).

In other words, Hm represents the realization as an operator in L2(R2

+ +)of the
partial differential expression (2.8) for 0<arg(F)<π, ~F = e~ίπF.

Lemma 2.2. For any fixed F in 0 < arg(F) < π, F belongs to σ(FΓm), m — 0, 1, . . . , if and
only if it satisfies at least one of the conditions :

Z™(F, F) + Z^(F, - F) - 2Z, /7, k = 0, 1 , . . . . (2. 1 4)
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Proof. Obvious by Corollary 2.1.

Let us now check that our definition of the (reduced) Stark effect Hamiltonian
is the correct one.

Theorem 2.1. // E does not belong to σ(Hm), the integral kernel of H~l =(Tm(E,F)
— 2Z)"1, Hm as in Definition 2.1, w = 0,1,.. ., coincides with Titchmarshs Greens

function Gm [23], analytically continued to complex F, 0<arg(F)<π.

Proof. We have only to check that the integral kernels of Am(E,F)~] and
Am(E, —Fγl coincide with Titchmarsh's Green's functions gm and ym continued to
complex F, respectively. By Theorem A.I and Formulae (A.2), this coincidence is
verified by direct inspection for £ = 0, and elsewhere by the uniqueness theorem on
Green's functions of ordinary differential operators, since our boundary con-
ditions are precisely Titchmarsh's ones. This proves Theorem 2.1.

Having thus defined the reduced Stark operator for F complex, 0<arg(F)<π,
the Stark operator H(F) on L2(R3) for F complex is specified, through (2.5)-(2.9),
by the direct sum (2.4). Since σ(H) is the union over m of σ(Hm\ in treating the
spectral theory of H we can restrict our attention to Hm, which we shall do from
now on.

III. Spectrum of the Stark Operator for a Complex Field

The definitions and the results of the former Section allow a very simple
characterization of σ(Hm\ the spectrum of the reduced Stark effect operator, when
F is complex, 0<arg(F)<π.

Theorem 3.1. For any complex Z, and for any complex F such that 0<arg(F)<π,
σ(/fm), m= 0, 1, ..., consists of isolated eigenvalues of finite multiplicity, accumulat-
ing only at infinity.

Proof. A direct consequence of the compactness of (Tm(E,F) — λ)~l and of its
analyticity in F, because of Theorem VII. 1.10 of [12].

Remark. The discreteness of the spectrum of the (reduced) Stark operator for
Im(F)>0 is in sharp contrast with its absolute continuity over (—00, + oc) when
Im(F) = 0. Remark however that the intuitive tunneling argument yielding the
continuity of the spectrum [13] no more applies if F is complex.

Theorem 3.1 yields no information on the analyticity of the eigenvalues
of the reduced Stark operator as a function of the electric field F. Since some
analyticity is necessary for Rowland's interpretation of resonances (Section IV),
and these eigenvalues are implicitly defined as functions of F by the constraint
Z%(E, F) + Z™(F, — F) = 2Z, /?, /c = 0,1,..., let us prove the following proposition:

Theorem 3.2. Let m = 0,1,..., 0<arg(F)<π. Then there are positive constants
C(m,/z,/c), m,h,k = Q91,..., such that:

a) The constraint Z™(F, F) + Z™(F, - F) = 2Z implicitly defines a family of
functions E™ k(F) analytic in [70(m,/z,/c) = {F|0<|F|<C(m,^,/c)|0<arg(F)<π}

m,/i,k = 0,l, . ' . . .
b) The functions E™k(F\ m,h,/c = 0,1,..., have an analytic continuation to the

domain U(m, h, k) = (F|0 < |F| < C(m, fc, k)| - π/2 + ε < arg(F) < 3π/2 - φ > 0} across
the cut at F real.
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c) As F-»0, Fe(7(m,ft,fc), the function E% k(F) tends to the Hydrogen atom
eigenvalue of magnetic quantum number m and parabolic quantum numbers h and k.

This provides a natural ordering for the eigenvalues as far as no level crossing
takes place, which is true in the sectors specified above by a) and b).

The proof of this theorem is based upon the following Lemma 3.1. Remark
that from now on we drop the index m, since the subsequent arguments do not
depend on it.

Lemma 3.1. Let phιk(y) = (Zh(l,;y) + Zk(l, -y))/(2Z\ M = 0, l , . . . . Then phΛ(y) is
analytic in the region U2(h, k) = {y|0 < \y\ < B(h, k)\ -π/2 + ε< arg(j ) < 3π/2 - ε ε > 0}
cut along the real axis. Here B(h,k) = mm(B(h)9B(k)), B(h) as in Theorem A.I.
Moreover for y in U2(h, k):

for fcφfc, (3.1)

for h = k. (3.2)

PoiPi^o^i' being real constants, with p0>0, ί/0>0, P i φ O , ^φO.

Proof. Analyticity of ph k(y) in U2(h, k) is an immediate consequence of Theorem
A.I. Furthermore, Theorem A.I implies a fortiori that the perturbation series is
asymptotic to all orders to Zh(l,y\ uniformly for y in Uh, Uh as in Theorem A.I.
Then (3.1) and (3.2) simply follow by the non vanishing of the perturbation
coefficients, which is true because x4 is a positive perturbation of p2 + x2 +
(m2 — l/4)/x2, a positive operator.

Proof of Theorem 3.2. By the Symanzik scaling (see Simon [19]), Zh(—E,F)
= w~^Zh( — E\v~2,Fvv~3) for £<0, w>0, and elsewhere by analytic continuation.
Then, with w = ( — £)~1 / 2

5 the constraint equation Zh( — E,F) + Zk( — E9 — F) = 2Z
becomes :

p(Fw3)-w = 0, (3.3)

where the indices h and k have been omitted for simplicity.
Beginning by /iΦ/c, let us first show that if a solution w = w(F) of (3.3) exists as

an analytic function of F in a region U with C rg 5, then :

eI7. (3.4)

For, w(F) must then satisfy w = p(Fw3), which by (3.1) yields:

w-p0 + 0(Fw3)-Po + pgO(F) (3.5)

when Fw 3eί/ 2, and hence Fell for C small enough because arg(w3) = 0(F).
By means of (3.3) the explicitation problem for vv — w(F) can be solved in the

following way : first by inverting p(Fw3) one finds F as a function of w, and then by
inverting this last function one finds w as a function of F. Lemma 3.1 ensures, as we
shall see, that the invertibility conditions [14] are fulfilled.

Now the function F1(w) = w~ 3 p~ 1 (w) solves (3.3) if p~ 1 (w) exists. p~ 1 (w) in turn
exists and is analytic in some sector p(t/2)> f°r ^ small enough, since dp/dy = p1

+ 0(y)Φθ by continuity in some sector U2 if B is chosen suitably small. Now F t(w)
can be inverted to yield a function Fj~1(F) = w(F) analytic in U because dFl/d\v
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by (3.5), and this quantity does not vanish, by continuity, when F is in U for C
small enough. Finally, again by (3.5), E(F}= — (w(F))~2 exists and is analytic in U.
For h = k one has only to replace p(y) by q(y2) and to apply (3.2) instead of (3.1).
This proves a) and b). To see c), notice that this assertion is equivalent to the
continuity of the functions E™ k(F) as F->0, Fell. Again this is true by the
continuity of p(y) as j ^O in U2(h, /c), and this concludes the proof of Theorem 3.2.

As an immediate consequence we have :

Corollary 3.1. Let F be fixed, FeJ7 0 = {F|0<|F|<C|0<arg(F)<π}. Then σ(Hm)
contains as eigenvalues of finite multiplicity the analytic functions E™k(F)for all h, k
such that C(

IV. Analytic Continuation of Eigenvalues to Resonances

In this section we shall see how the former results on spectral properties of the
(reduced) Stark operator for complex F allow the application of the Balslev-
Combes [2] technique of analytic dilatations. In this way the existence of
resonances will be proved, according to both standard notions of this concept for
self-adjoint operators, i.e. the Livsic-Grossmann and the Friedrichs-Howland ones
(see Simon [21] for an illuminating discussion on this point).

Let us begin by recalling some notions of the Balslev-Combes technique,
strictly necessary in what follows.

Let Uι(θ\ θeR, be the group of unitary dilatations in L2(R3) defined by:

(U1(θ)f)(r) = e3ϋ/2f(e°t<)JεL2(R3). (4.1)

The unitary group V ^(θ) is generated by the skew self-adjoint operator
A , =!(,-. F+p.r), U l ( θ ) = eΘA\

A vector φ1eL2(R3) is dilatation analytic if it is an analytic vector in the sense
of Nelson for the generator Al of the unitary dilatations U ^θ), i.e. if
CO

Σ\\^nιΦι\\θ"/n\<-\-oo for all finite θeC. The set {φ^} of all dilatation analytic
o

vectors is dense in L2(R3).
To apply these notions to the present case of the reduced Stark operator Hm,

first remark that the unitary group U^θ) induces in a natural way a unitary group
U(θ) in L2(Rl+\ specified by:

(M, υ) = ell2θf(ell2\ el!2θυ\ fε L2(R2

+ +) . (4.2)

U(θ) is of course generated by the skew self-adjoint operator A = ^(x-V +V -x\
xeR2

++, V the two-dimensional gradient operator. Then, as before, φ is a
oc

dilatation analytic vector if £ ^Anφ\\θn/nl < oc, and the set {φ} is dense.
o

For θεR, 0<arg(F)<π, m = 0, 1, ..., let us now define on L2(R2

+ +) the operator

Tm(E, F, θ) = U(θ)Tm(E, F)U(OΓ l (4.3)

and, accordingly:

Hm(θ)= U(θ)HmU(ΘΓl = U(θ}(Tm(E,F)-2Z}U(ΘΓ' (4.4)
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One has trivially:

Tm(E,F,θ) = e-θTm(Ee2θ,Fe30), (4.5)

Hm(θ) = e ~ β(Tm(Ee20, Fe*°) - 2Zeθ). (4.6)

We now have to extend these definitions to complex θ.
An immediate consequence of the results of Section III is the following:

Lemma 4.1. The operator Tm(E,F,0) has an analytic continuation to the s t r i p
— arg(F)/3<Im(θ)<π/3 — arg(F)/3. By this we mean that for these values of
θ Tm(E, F, θ) is defined on Dm®Dm and has a compact resolvent which is analytic in 0.

Proof. It is enough to remark that if we define F' = Fe30, E' = Ee20, one has
0 < arg(F') < π when θ belongs to the above strip. Then an application of Lemma 2.1
and Corollary 2.1 proves the present Lemma.

Corollary 4.1. Let θ belong to the strip 0<Im(0)<π/3, and let F be real Then the
eigenvalues ofHm(θ), which by Lemma 4.1 has compact resolvent, do not depend on 0.

Proof. By (4.6) the eigenvalues of Hm(θ) are given by those values of F which satisfy
the constraint

Zh(Ee2\ Fe3θ) + Zk(Ee2θ, - Fe3θ) = 2Zeθ (4.7)

and thus do not depend on Θ by the scaling property.

This proves the Corollary.

Remark. These eigenvalues are thus resonances of the (reduced) Stark effect
Hamiltonian according to the Livsic-Grossmann notion as defined by Simon [21].

Let us now proceed to verify that these eigenvalues are resonances also
according to the Friedrichs-Howland notion (see always Simon [21]).

Theorem 4.1. Let ΨEL2(R2

++) be a dilatation analytic vector. Then the function
fΨ(E) = (Ψ,(Hm(E,F))~lΨ\ F real, originally defined as an analytic function of E in
the upper half-plane Im(F)>0, has a meromorphic continuation to the lower half-
plane Im(F)<0 across the cut — cc <E< -f oo.

The poles of fΨ(E] for Im(F)<0 are the eigenvalues ofHm(θ\ 0<Im(#)<π/3.

Proof. For F complex, Im(F)>0, consider the function:

fΨ(E) = (Ψ,(HJE,F)Γ1y) = (ΨΛTm(E,F)-2ZΓlΨ) (4.8)

which by the results of Section III exists and is analytic in F as long as 2Z is
different from all eigenvalues of Tm(£,F). For OeR we have, with Ψ(Θ)=U(Θ)Ψ:

fΨ(E) = (Ψ(Θ), (Tm(E, F, θ) -2ZΓ1 Ψ(θ)) (4.9)

and this equality holds by analytic continuation also for all θ in the strip
— arg(F)/3<Im(60<π/3 — arg(F)/3, because of Lemma 4.1 and of the fact that
Ψ(θ) has an analytic continuation to the strip, Ψ being a dilatation analytic vector.
If we now restrict θ to the strip 0 < Im (θ) < π/3 — ε, ε > 0, for any fixed value of θ we
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can perform the analytic continuation of (4.9), and hence of (4.8), to F real from
above, for all values of E except those satisfying (4.7). To conclude the proof, it
remains to check analyticity for Im(F)>0. Since analyticity of fΨ(E) for Im(F)>0
and absence of eigenvalues for Im(F) = 0 are precisely Titchmarsh's results, the
above values of E satisfying (4.7) must lie in the lower half-plane Im(F)<0, and
this ends the proof of Theorem 4.1.

Remarks, a) The analyticity of fΨ(E) for Im(F)>0 can be proved directly, by
showing that ImF(F)>0 is impossible for F real. Here F(F) is any solution of
Zh(E, F) + Zk(E, — F) = 2Z. For, if this is possible, we would have: ImZ1 =
— ImF(χ, x2χ)/(χ, χ)<0, where Z1 is an eigenvalue ZΛ(E,F) with F>0. On the
other hand for arg(F)>0 one has:

ImZ2 = - Im£(ω, x2ω)/(ω, ω) + lm(Fe~ ίπ)(o), x4ω)/(ω, ω) < 0 ,

where Z2 is an arbitrary eigenvalue Zk(E, — F ) - χ and ω are the eigenvectors
corresponding to Zl and Z2, respectively. Hence lim(ImZ2) as arg(F)— >0 + , which
under the present conditions exists at least as a measure by a theorem of Herglotz
[19], cannot be positive. Therefore Im(ZΛ + Zk)<0 if F is real, and the constraint
Zh + Zk = 2Z cannot be satisfied.

b) The eigenvalues Eh k(F) of the (reduced) Stark operator which are analytic in
L/0(/ι, fe) can be continued to F real, as we know from Theorem 3.2. At F real by
Theorems 4.1 and 4.2 they are resonances according to both notions. Hence the
functions Eh >/c(F) realize Howland's mechanism for the onset of resonances [11] :
i.e. they are analytic continuations to second sheet poles of the resolvent of a self-
adjoint operator of functions which represent actual eigenvalues of the operator
family when F is complex.

V. Borel Summability of Perturbation Series

We turn now to the determination of those resonances given by the analytic
continuation of the eigenvalues Eh k(F) through the time-independent (i.e.
Rayleigh-Schrodinger) perturbation theory, although it gives rise, as we shall see,
to divergent expansions. This will be achieved by proving the Borel summability of
the Rayleigh-Schrodinger series to the functions Eh k(F) for F complex, Im(F)>0,
where they are eigenvalues of the (reduced) Stark operator. Since the resonances
are the analytic continuation of the eigenvalues to F real, they turn out to be
uniquely determined by Rayleigh-Schrodinger perturbation theory.

Let us begin by stating a further consequence of the implicit function argument
of Theorem 3.2 under the form of a Lemma.

Lemma 5.1. Let {Ehfk(F)}^k = 0 be the family of the eigenvalues of the {reduced}
Stark operator analytic in U(h,k). Then any Eh k(F) has a formal Taylor expansion

.F near F = 0. Here St Φ 0 for all ϊ if Eh^k(F) is implicitly defined by Zh + Zk = 2Z
o
with / ιΦ/c, and S2i+i = 0 if it is defined for h = k.

Proof. The existence of the Taylor expansion near F = 0 follows again from the
analogous statement valid for Z/Z(1,F) through the implicit function argument of
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Section III. The assertion on the coefficients is a direct consequence of the simple
remark :

with fllJΦύfk if hή=k as it is easily checked. This proves Lemma 5.1.

Remarks, a) The Taylor expansions of Lemma 5.1 are formal. The non-analyticity
of Eh k(F) at F = 0 is not enough to prove divergence. Actually the divergence, not
faster than π!, follows here from the Borel summability, as we shall see below.

X

b) The power series X^-F coincides with the Rayleigh-Schrδdinger per-
o

turbation expansion, as proved by Titchmarsh [22] up to first order, and by
Riddell [17] to any order.

Let us now quote the standard criterion yielding the Borel summability [9].

Theorem (Watson). Let F(x) be analytic in a sector D(C, ε) on the Riemann surface
of log(x) given by D(C,ε) = {x|0<|x|<C||arg(x)|^π/2 + ε} for some C>0, c>0.

Let F(x) admit the power series £ anx
n as an asymptotic expansion as x— »0 in D(C, ε).

o
x

Then the series Σctnx
n is Borel summable to F(x) in the sector D^C, ε) =

= {x|0<|x| <C||arg(x)| 5Ξε], if there are positive constants A, B independent of x
such that for all x in D(C,ε):

\RN(x)\^ABNN\xN. (5.1)

N - 1 x

Here RN(x) = F(x) — £ a

n

χ" *s tne N-th order remainder of the expansion ^anx
n.

o o

Remarks.

a) (5.1) implies a fortiori \an\^ABnn\ (5.2)
X

b) Let us recall that the Borel summability of ]Γ anx
n to F(x) has -the following

o
TC

meaning: the function FB(x)= ^anx
n/nl, the Borel transform, which by (5.2) is

o
analytic for |x| < 1/5, has an analytic continuation into the whole sector
|arg(x)|^c, such that the integral

X

j e~aFB(xά)da (5.3)
o

converges uniformly and absolutely and coincides with F(x) in D^C, ε).
To apply this criterion to our case we need a simple generalization, stated as :

Lemma 5.2. Let F(x) and Σakx
k fulfill the conditions of Watson's theorem. Then the

o
/ X \ H X

same is true for Fn(x) = (F(x)f and X akx
k = ̂  a(^x\ n = 2, 3 . . . , i.e. there is L > 0
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independent of x, L/y4 = sup£/c!(J —k)!/J!, such that:
J o

N- 1

0

Proof. The assertion is trivial for π = 2, and a simple inductive argument shows its
validity for any n.

Remarks, a) Σ 4")χk = Σ "** | is then Borel summable to F"(x) in D^Cε).
o \ o /

b) If F(x)Φθ in D(C,ε) this result can be proved also for negative n [18].
c) If for ί?^3JV we set B' = BL3 in (5.4) we have:

Theorem 5.1. Let F(x) and Σβ«x" ̂  β5 above, and α0>0. Tfteπ z/ ί/iβ equation
o

F(xw3) = w implicitly defines a function w(x) analytic in a sector D(C',ε), 0<C'^C,
wz£/? £w asymptotic expansion near x = 0 m D(C", ε), ίfte expansion is Borel summable
to vv(x) m D1(C/,ε).

Proof. If there is a solution w(x) analytic in D(C',ε) with an asymptotic expansion
X

X bnxw such that
o

where R(χ\x) = w(x)— ^ bnx'\ uniformly for x in D(C,ε), then (5.5) holds for all
o

N. For, by induction (5.5) holds for all /V if it holds for N = 1, and this is true by the
very existence of the implicit function vv as an analytic function of x in D(C", ε),
which is in turn true because c(F(xw3) — w)/δw= — 1 +0(x)Φθ in D(C,ε) for C'
small enough.

X

Let us now proceed to the verification of (5.5). Let Yjbn kx
n be the asymptotic

o
expansion of w/c(x). Then if k^3(M— 1) by Remark c) after Lemma 5.2 we have:

N- ]

(5.6)

for some positive constants A and B' independent of x in D(C", ε). Substituting into
the equation F(xw3) —w = 0 we get the following relations:

ί — n— I

o i V o

which are satisfied for:

N- 1

o = floA= Σ bj,3
0

M- 1

M)(λ')= Σ a^
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Therefore there are constants A" and B" independent of x such that \R(^}(x)\
^A"(B")MM\\x\M for all x in D(C',c), because \RM(x\^)\^aABMM\\x\M in D(C,ε),
with a suitable α>0 independent of w, since arg(w3) is small for C small enough.

Hence by Watson's theorem ^bnx
n is Borel summable to w(x) in D^C', ε), and this

o
proves Theorem 5.1.

Corollary 5.1. The (Rayleigh-Schrδdinger) perturbation expansion of any function
E™k(F), analytic in U(m, /1,/c), which represents an eigenvalue of the (reduced} Stark
operator for Im(F)>0 and a resonance for F real, is Borel summable to E]^k(F) in
the region (F|0<|F| <C(m, h, k)\η<aτg(F)<π~η}.

Proof. By Theorem A.lc), Theorem 3.2 and Lemma 5.1, with ε = \π — η we can
apply Theorem 5.1 to all functions F(x) = p(y\ x — — />', and all implicit functions
w(x) ΞΞ w(F), x= — IF. The result then follows from Lemma 5.2, Remark b), because
w(FHp0>0 in [/, and E(F)= -((w(F)Γ2).

Remark. The one-to-one relationship between any function E™k(F) and its
perturbation series provided by the Borel summability implies the divergence of
the series itself. For, if it would converge, the function E™k(F) would be real for
F real within the convergence circle since all coefficients are real, and this is
impossible.

Appendix

Consider the differential expression p2 + αx2 + βx4 + (m2- l/4)x~2, m = 0, 1, . . . .
We shall denote by Km(y.,β) its realization as an operator on L2(R + ). This dif-
ferential expression can be obtained in a straightforward way from the two-
dimensional anharmonic oscillator

-Δ+v(x2 + y2) + β(x2 + y2)2 (A.I)

if one changes to polar coordinates and restricts to angular momentum m,
m = 0,1, . . . . Hence if one defines out of (A.I) an operator in L2(R2) on the domain
^(R2\ a direct application of the results of Simon ([19], Section III) yields for
Xm(α,j8), defined on a corresponding domain DmtL2(R + ):

Theorem A.I. Km(α,/?) is an operator family in L2(R + ) enjoying, for any
m = 0,1,..., the following properties:

a) For any β in the cut plane |arg(/J)|<π, and any complex α, Km(α, β) is a
closable operator with Km(α,/J)* = Kw(ά, β), and compact resolvent. For any fixed β
in the cut plane, the resolvent of Km(oc,β) is analytic in α, for any complex α.

b) Let m and i be given non-negative integers, and η<3π/2. Then there is a
B = B(m,i)>0 such that any eigenvalue λ™(l,β] of Km(l,β) is analytic in {β\β on a
three-sheeted Riemann surface\Q<\β\<B, |arg(β)|<??}.

c) The Rayleigh-Schrodinger perturbation expansion of any eigenvalue /™(1,/?)
is divergent and Borel summable to λ™(l,β) in the region {/?|0<|/?|<β||arg(β)|
<π — c,
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Remark. Assertion c) is actually proved in [8] and [20]. Finally, the resolvent
kernel of Km(0,β), |arg(/?)|<π, is given, as it is easily checked, by the following
Green's function :

G( )=
ml ) j l J

where fm(x)= /x/m/3(^x3/3), 0m(*) = l/^m/3(l/£*3/3). /μ and K v are the
Bessel functions of the third kind [3, 7],
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