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Abstract. Transforming any lattice system in a polymer model, we use known
analytic and cluster properties of the latter to derive similar ones for general
lattice models with two-body interactions. These properties of the lattice model
hold when the temperature is high enough.

Introduction

Our purpose here is to study various lattice models in some weak coupling regime.
In particular we will prove that, at high enough temperatures, the free energy and
the correlation functions of these models are analytic functions of any parameter
on which the hamiltonian depends analytically. Moreover, under the same
conditions and for finite range interactions, the two-point functions will be proved
to decay exponentially.

These models contain as special cases, lattice gases with two-body interactions,
classical Heisenberg models and lattice approximations of field theoretical models.
They describe also some anharmonic crystals, of interest for ferroelectricity.
Results of this kind were already obtained for some of these models [1,2].
However, the technique used relied heavily on further properties of the model in
question, such as the boundedness of the values taken by the spin variables. They
could not therefore be generalized to lattice approximations of field models for
example.

Our strategy here is the following: we transform any lattice model in a
so-called polymer model, which can be seen as a generalized lattice gas, with hard
core interactions. These polymer models were studied previously [3,4] and
various analytic and clustering properties were established for their gaseous phase
(i.e. in the weak coupling region). The remaining task is therefore to estimate the
parameters of the polymer model in terms of those of the corresponding lattice
models. This is done in the case of two-body interactions only in order to simplify
as much as possible the analysis. Our expansion is very much related to the old
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Mayer expansion for continuous systems and this suggest that there should exist a
simple unifying approach to all these systems. It seems also that there exist some
connection with the cluster expansion of Glimm-Jaffe- Spencer.

The idea to transform a lattice model into a polymer one is not new. It
appeared in the physical litterature mainly in connection with the so called cell-
cluster theory of liquids [10], and has been called by Hurst and Green the general
association problem [11]. The systems discussed however were lattice models with
descrete spin variables.

In the meanwhile, some of the problems we discuss in this paper have been
attacked by other workers [5, 6] using different techniques. Their results, however,
are similar to ours.

1. General Lattice Systems and Polymer Models

Our purpose here is to show how quite generally any lattice system can be recast
into an associated polymer model. Let us recall first what we mean by a general
lattice system. To each point xeZv is associated a given subsystem whose "states"
are numbered by the variables s^elR'*. A configuration SA in a finite box Λc%v is
given by the |vl|-tuple : SA = {sx\xeA}. The potential energy of a configuration sΛ9 in
the box A, is a real function : (Rd|y11, Λ)-»1R, denoted by UΛ(sA). It is choosen to be
such that Ux(sx) = 0 Vxe2ζv. The Gibbs probability distribution of this system is
given by

βV^sJ Wβ(dsΛ) (1)

where

wp(dsΛ)= Y\wβ(dsx) , (2)
xeΛ

wβ(ds) being a measure on Rd normalised to 1, i.e.

fw,(<fa)=l , (3)
Rd

and

QΛ=$Wβ(d*Λ)e-βUA(SΛ} (4)

in the partition function. In physical applications one takes

. . .
we(ds)= - , (5)

β le-^μψs)
Rd

μ(ds) being a measure independent of β, and V(s) a real continuous function on IRd.
The correlation functions of such a system are defined as

βΛ,x(sχ) = QA ' ί wβ(dsΛ,x)e-Pv^ MXtΛ . (6)

The formula we have written make sense if 0<βyl<oo, VACZV is finite, a
property we will suppose to hold from now on.

Let us now define more precisely a polymer model and its associated partition
function and correlation functions.
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We consider a finite set Λc7Lv consisting of \A\ points called sites, which are
denoted by small letters, x, y . . .

With X = {xl9...9xn} a finite subset of A, a "polymer X" is a rigid system of n
particles which can be placed on A in such a way as to cover X. The polymers
consisting of one particle will be called "monomers", of two particles "dimers", . . .
of particles "n-mers".

Polymers are placed on A and we assume that each site is covered by one and
only one particle.

A configuration of the polymer system is therefore defined as a partition
{Xί9X29 9Xk} of the set A\ we recall that by definition of a partition, we have

k

A= [JXi9 ^iΦ0, Xtr\Xj = 0 if iή=j9 we will denote from now on this partition by
ί= 1

the symbol

Λ= Σ* t.
i=l

The state of the system is defined as usual by a probability measure
vΛ({Xί9...9Xk}) on the configuration space; for polymer systems this measure is
caracterised by a positive, bounded function Φ(X) defined on subsets XcA, which
is interpreted as the "activity of the polymer X", and

(7)
i = l

where

^[φ] = Σ Σ Π<W (8)
k A=i,Xi ί=1

is the partition function.
The correlation functions ρΛ(Xl . . . lXp) are defined as the probability of finding

polymers Xί9...9Xp. With the above probability measure we have

ρΛQίl9...,Xp) = 0 ifXίnZJ.φ0 for some

or XiίΛ (9)

, , v ^vΛ\ u Xi = TlYj J

i = 1 j J

otherwise.
From this follows that all the correlation functions can be expressed in terms of

the various ratios of partition functions :
Namely

QΛ(X, . . . ;Xp)= Π Φ(Xi)ρΛ I \J x] (10)
i = ι V = ι /

where

(11)
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and

In order to map a lattice system into a polymer model, we need to introduce
some well known algebraic formalism.

Let MΛ be the complex vector space of functions Fx(sx)eJL1(Rd^,ωβ( ))
defined on all the subsets XcΛ. This vector space becomes an algebra with unit
element 1, when we introduce the following * product.

(F*G)x(sx)= Σ Fy(sy)Gw(5^y), F, GεMΛ (13)
YCX

i being the vector defined by

If MΛ denotes the subspace of MΛ formed by the functions F such that

0(s0) = 0, we define as usual on M\ an exponential Γ.

It appears also useful to introduce the following mapping on this algebra

(DSχF)γ(sγ) = Fx^γ(sXuY)δXnYίΰ . (16)

This has the basic property

[Z>JF*G)]y(sy) = {(DSχF*G)γ(sγ) + (F*DSχG)γ(sγ)}δxnY>0 , (17)

from which follows that

LDSχ(ΓG)-]γ(sγ) = lDSχG*ΓGlY(sγ)δ^γ>0 (18)

and

5y)^ny>0. (19)

This formulation allows us to define in a simple way the Ursell functions
ΨeMΛ of our lattice system. They are defined by

Ψχ(Sχ) = 1 and <Γ /?t/x(sχ) = (Γ Ψ)x(sx) when |AΓ| > 1 . (20)

We can now state precisely the correspondance between a lattice and a
polymer model.

Theorem 1.

1) QΛ = PΛ\Φ \ (21)

where

$Wβ(dsx)Ψx(sx) (22)



Analyticity with Unbounded Spins 57

PΛ\_Φ~\ being the polymer partition function of a system of activities (Φ(X)}.

2) QA,χ(Sχ) = Σ ί wp(dsγ)Fsχ(sγ)ρΛVCv 7) (23)
Y

where

ρΛ(Y) = χ^(ϊ)£^l (24)

and

FM = IFT1 *DSχ(ΓΨ)-]γ(sγ)δx^β (25)

(ΓΨ)'1 being the * inverse ofΓΨ.
N.B. when 7=0 in the formula we do not integrate.

Ml *
Proof. 1) Ot = f ωβ(dsΛ)(ΓΨUsY) = Σ ί <*p(dsj Σ Π VΛ^Λ)

k-l Λι...Λk i = l
j— 0

Ml *

= Σ Σ Π

2) ίU*(sx) = 6; 1 ί ω^s^X^O^) = QA ' ί ω^ds^) Psχ (Γ «P )] (

= β;1JωΛ^) Σ Σ (D,xΨ*. ^DfχΨ)(

But since

= Σ Σ $ωβ(dsγ)(DSχιΨ*...*DSχrΨ)(Sγ)ρA(XvY).
X= Σ *i

from the definition of FSχ(sY) we get

F*x(Sγ) = δχnY.* Σ
ZCY

Z c Y

since

and

ps (sy) = <5 0 Σ (1

which concludes the proof.
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2. Analyticity and Clustering Properties of the Polymer Model

The following result has been obtained about the analyticity properties of the
polymer model [4]. This is the analogue of the results obtained by Ruelle and
Penrose about the convergence of the Mayer expansion for imperfect classical
gases.

Theorem 2. Let A(ξ) be the set of complex activities Φ such that

| | |Φ|| |ξ=sup Σ|Φ(X)|£w<oo for some ξeIR+ (26)
X X3X

and

|Φ(x)|>supΓ 1[l+ Σ \Φ(X)\ξlxl]=R(ξ) (27)
x \ Xex

[ \ X \ Z 2 J

then for any ΦeA(ξ).
1) PJ>P]ΦO.

Moreover, if one of the two conditions are satistied
a) Φ(X) is finite ranged (i.e. Φ(X) = 0 when diamAT> d),
b) Φ(X) is translation invariant

then.

2) There exists a positive, decreasing function ε(λ) such that

and a function ρ(X) such that

where λ is the minimum distance from xteX to the boundary of A.

3) ρA and ρ defined on the Banach space of activities {Φ(X}} with the norm \\\Φ\\\ξ

is norm analytic in A(ξ) the norm of QΛ and ρ being defined as

W (28)

4) \\ρA\\ξ^M(ξ) , (29)

M(ξ) being some constant function of R(ξ) and ξ.

It is also known that the correlation functions have good clustering properties,
when the monomer activity is sufficiently large. More precisely, we have the
following general result [3, 7].

Theorem 3. Let A' be the set of complex activities such that z — inf |Φ(x)| > z0, where
X

z0 is the positive root of the equation

±= fz 0-«sup Σ \Φ(X)\. (30)
2 n = 2 ,
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Then if Φ£Δ'r\Δ(ξ) and if one of the two conditions is satisfied

a) Φ(X) is finite ranged,
b) Φ(X) is translation invariant.

Then

sup Σ |gr(Y)|gz-1+ V (31)
x X3X I -i Z0 Iw- I1—)

ρτ(X) being the truncated correlation functions associated to ρ(X).

In fact, using standard techniques, it is also possible to prove in some cases,
exponential weak and strong clustering [7,8].

Theorem 4. If ΦeΔ'nA(ξ)

when d(X,Y)^δ (32)

where d(X, Y) is the distance between the sets X and Y and φ(X) = Φ(X) — δ\x\ί then
the following properties hold

2} \dτ(X}\<Lcf](X^e~^L(X} when |X|>1 (34)

where L(X) is the length of the minimal tree built on X, and

C=~/ TVTΓ' C = 7 7\~> /C = m , L,= (-^J
(α—l)z (α— l)z αz0 z0

z
α being any number such that

l<α<—. (36)

3. Analyticity Properties of the Lattice Model with 2-Body Potentials

The general strategy would be to exploit known results about the polymer model,
such as those described above, in order to get similar ones for a general lattice
system. To achieve this, we need to estimate the polymer activities, as well as the
functions FSχ(sγ\ in terms of the lattice model potential. This analysis, although
possible in the general case, can be made simple enough only when we restrict
ourselves to the case of two-body potentials. This is what we will do from now on.
It is defined by the condition that

(37)
(χ,y)cΛ

Φx,y( * > ' ) being the two-body potential.
We will suppose that the two-body potential satisfies the following conditions :

(38)
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where v(s):lRd->]R+ is a function such that

J \wβ(ds)\exv2(s} < oo VxeR (39)

and

J(*> y) ̂  0 , with J = sup Σ J(x, y) < oo . (40)
x yezv

These conditions ensure that our system is superstable and upper-lower
regular in the sense of [9], when the potential is translation invariant.

Let us define now the following quantity, which will play an essential role in
the analysis.

y being for the moment an arbitrary number.
It can be estimated in terms of the potential as follows:

Lemma 2. Let

B, = |jS|*f|w,(dφ(s)e 2 inffj, | jJ |*Jsupv(s)l (42)
L seβ J

with

Reβ>0 and y>2+-^-
Rep

Ω denoting the support of the measure ωβ(ds) and

J= sup X J*, . (43)

/(«,«)= sup X |AJJ (44)
^,sx y
l * l=« \Ύ\=m

then we have

BΎa\m + n

(45)
a I

a being any positive number.

Proof. In the appendix we show that the ,4's satisfy the following recursion
formula in the case of two-body interactions.

(46)
ίeΓ
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Here x is any point of X and X' =X\x

U(x\sx) = ΣvXy(sx>Sy) when |*| £2
yeX'

= 0 when |*| = 1.

Condition (38) on the potential implies that

Σ φ^s^-j Σv2(5x)
(x,y)CΛ ^ xeΛ

and consequently there is at least one xeX, noted w(*) such that

Uw^(sx)^-Jv2(swm).

in Formula (46), we take then for x, always w(*), therefore

when Reβ>0 and y>2.
The recursion formula gives

m- 1

/(m,n)^J(m,n-l)+sup £ X Π^x^W^ w- 1+m-fc)
x,sx k = 0 Γ : |Γ |=m-fc ίeT

where

hence if

we get

-/(m-U-H-/) (47)

since /(1, 0) = 0 and /(0, 1) = 1, (45) follows simply from (47) by induction on m + n if
b^Bγ. This is therefore what we have to prove now. Using the inequality \exy — 1|
^ (ey2-rf(ey2-l)ί and property (38) of the potential, we get

Re/gJy

fe^supf Iw^dsOle 2

x,s

since

Reβ>0 and

when Wβ(ds) has compact support, we can take seΩ and Schwartz inequality gives
us

>g||8|J(supv(s)
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whereas in the general case we get

L ^ i f l i ^ T Γ i ίJ ι\\ / f\ 9b^\β\*J]\wβ(ds')\v(s')e 2

This crucial estimate allow us to use Theorem 2 to get the desired analytic
properties of our class of lattice models.

Theorem 5. // the potential energy is given by

where the two-body potential φxy and the measure wβ(ds) satisfy Conditions (38) and
(39). // moreover the two-body potential is finite ranged i.e. φxy(s,s') = Q when
\x — y\^δ or translation invariant, i.e. φxy(s,sf) = φx_y(s,s') then in the domain
defined by

RejS>0 By + 2(BγDγ)ί^e-
ί (48)

where

D^I\Wβ(ds)\e^β^ (49)
I /?!

y being any number larger than 2 + — — - .
Rep

The following properties hold

1) OiΦO,

2) lim 6Λtχ(sx)=ρx(sx),
Λχ»Z v

exist and extends to an analytic function of β and of any parameter on which wβ( - )
or φ depends analytically. If the potential is translation invariant, then so are the
correlation functions Qx(sx}.

3) \ρΛιX(Sχ)\ΪMeR<βJ-ϊ^v2MξW (50)

where ξ= — — - — — — ̂  and M is some constant depending on By.
*-*γ ' \*3γ^γ)

Proof. In inequality (45), we choose a = B~l and we get

I(m,n)^(eBy)
men . (51)

We can now estimate the polymer activities Φ(X), since Φ(x) = 1 and

βJy 2

Φ(X)=$wβ(dsx)e~v(Sχ)A^ when X'=X\x (52)

because FSχ(sx,)=Ψ(sxuX/), as can be seen from (22) and (25).
The correlation functions ρΛ x(sx) are given by :

according to (23).
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Inserting (51) in (52), we get that R(ξ) defined in Theorem 2 is bounded above

by
f R oϊ~\ o~ i

choosing ξ=-
ί-(Byeξ)

we can check that Condition (27) of Theorem 2 is satisfied if (48) holds. Therefore
ΦeA(ξ).

Theorem 2, Part 4, tells us then that

\ρΛ(X)\ £

Using the estimate (51) for /(m,n), we obtain

~ — 2

with

M(ξ)
ξ = ξe and M =

which is (50).
Part 1 of our theorem follows from Part 1 of Theorem 2.
For the same reasons ρ(X) depends analytically on β or any parameter on

which φ depends analytically by Theorem 2, Part 3. The same is true of QAtX(sx)
and of ρx(sx) by (50), and this proves Part 2 of our theorem.

It remains to see under which physical Conditions (48) is satisfied. We want to
discuss here the range of temperatures, i.e. β for which (48) holds, by looking at
three important special cases defined by various conditions on the measure wβ( ).

Notice first that if we write y as 7 = 2 + 1——r- with λ>ί then we have
Rep

M/2+rι v 2<<Λ r -,

Bγί\β\^\Wβ(ds)\v(S)eZ( mf J,|fl*/supφ) (53)
L seΩ J

therefore if we fix λ > 1 independent of β, then

if

lim|]S|*f|W/ϊ(dφ(s) = 0 . (54)
β-+0

And since

T>v 2<s> /co2 (55)

we see that

if

lim \β\*($ \wβ(ds)\ (j I wβ(ds)\ v(s)) = 0 (56)
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and (54) hold. Therefore (48) will always be satisfied at sufficiently high
temperatures if wβ( ) fulfills the condition (54) and (56).

Let us consider now three special cases:
a) wβ(ds) = w(ds) with w(ds) satisfying (39), then clearly (54) and (56) hold

with μ(ds)^0 and Jμ(ds)>0, $μ(ds)ewv(s)+av2(s}}< oo when 0^\β\^β0, Vα>0.
Then, there exists a constant d independent of β such that

\$μ(ds)e-βv(s)\^d>0 when 0^\β\^β^β0

and wβ(ds) will be analytic in β inside this circle and (54) and (56) will be satisfied,
c) If

e-βV(s)-βh'S(jds

Wβ(ds) = r-pvto-βH s^

where V(s)=V(\s\) is a polynomial of degree 2n in |s| with a positive coefficient for
the term of highest degree, then taking

v(s) = |s|m with m<n

we will have

when Reβ >0 and β in some domain D in the complex plane containing the origin.
wβ(ds) will be analytic in this domain and since when β is real

we see that (54) and (56) will be satisfied when β is in the domain D.
We can summarise these results in the following

Theorem 6. // wβ( - ) satisfies one of the three Conditions a, b, c, then there
exists a domain D in the complex β plane containing a segment (0, βQ) of the positive
real axis, such that if wβ( ), and the potential satisfies the conditions of Theorem 5.

2) Hm
ΛsTLv

exist and extends to an analytic function of β.

3 ) \ Q Λ t X ( 2

4. Clustering Properties of the Two-Point Function of the Lattice Model

We will not in this section discuss the clustering properties of general π-point
functions. Moreover, we will restrict our attention to finite range interactions. The
main reason for this, as will appear clearly in the course of the proof, is that the
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connection between correlation functions of the lattice model and the polymer
model being quite complicated in the general case of n-point function, more precise
estimates on the functions AΎ

Sχ would be needed than those we have obtained so
far.

Our result is the following :

Theorem 7. Suppose that the two-body potential and the measure wβ(ds) satisfy
conditions (38) and (39). // the potential is finite ranged, then in the domain defined
by

<e-1 (57)

we have

(sf)e-^χ-^ (58)

V s

where m is a function of By and Dr and A(s) = Ae 2 , A being some function
of By.

Proof. The idea is of course to use Theorem 4, and various estimates established
before for the AΎ

sχ.
Φ belongs to A' when (57) holds because z0<Bye + (2ByDye

2)* as can be seen
easily by using the estimate

(59)

obtained from (51).
Moreover in the course of the proof of Theorem 5, we have shown that

(60)

On the other hand, since (Γφ)(X)= £ (ΓΦ)(Y)(-l)'*My' and (ΓΦ)(Y) = QY

YcX
from Theorem 1, with Qγ^γ2 = QYlQγ2 when d(Yl9Y2)^δ, we see that
(Γφ)(XίuX2) = (Γφ)(Xί)(Γφ)(X2) when dpf1?X2)^(5 and all the conditions nec-
essary to apply Theorem 4 are fulfilled.

We will need moreover the following estimates:

since Ψx is the Ursell function of a system with a two-body potential of range δ
[8].

On the other hand
Re/?Jy

Σ l I 14.7 (Π C I ̂ Jf 1 C C ^1 ^. £3 ^ P\ P fi t^ ί f\) II W / j l Ci Oy ( JΓ γyl Oγ, Oy II -̂  tί t^\t^JJ^.I \ \J ί* I

by (59) and similarly

Y:\Ύ\=m
(63)


