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Abstract. We investigate the planar approximation to field theory through the
limit of a large internal symmetry group. This yields an alternative and
powerful method to count planar diagrams. Results are presented for cubic
and quartic vertices, some of which appear to be new. Quantum mechanics
treated in this approximation is shown to be equivalent to a free Fermi gas
system.

1. Introduction

We present some investigations of the planar approximation to field theory
calculated through a limit of a large internal symmetry. Part of the motivation for
this work lies in the hope that it might ultimately provide a mean of performing
reliable computations in the large coupling phase of non-abelian gauge fields in
four dimensions. In addition there are some indications that such topological
expansions are related to the dual string models [1]. To support these hopes we
may quote the significant simplifications occuring in the large ΛΓ-limit for the
linear or non-linear σ-models which indeed allow to discriminate the phases of
broken and unbroken symmetry (even in two dimensions where the symmetry is
never broken). On the other hand one has 't Hooft's solution to two-dimensional
QCD in this same limit [2]. These promising features suggest to pursue this line of
reasoning and develop some new techniques.

A first part of this paper is devoted to preliminary combinatorial aspects [3].
Some of these have already been discussed by Koplik, Neveu and Nussinov [4].
The method that we have used for this "zero-dimensional" field theory, in which
every propagator is set equal to unity, is not of combinatorial nature and hopefully
allows for extension to genuine calculations of Green functions in a real field
theory. This enabled us to solve a few counting problems the solution of which
does not seem to be known.

In Section 5, we compute explicitly the contribution of all the planar Feynman
diagrams to the ground state energy of a one dimensional 0x4-anharmonic
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oscillator. The solution may also be generalized to include the first non-planar
corrections. Amazingly it is found that the problem can be restated as the one of
finding the ground state energy of a one-dimensional uninteracting Fermi gas,
which is of course trivial.

Let us note finally that in contrast with the true theory the planar sum is
analytic near the origin in the complex coupling constant space, which reveals that
the large field region of the Feynman path integral has been drastically mutilated.

2. Planar Diagrams and Large N Limit

It is known from the work of 't Hooft that the only diagrams which survive the
large N limit of an SU(AΓ) gauge field theory are planar. The planar topology
maximizes the number of factors N associated to closed index loops for fixed
number of vertices. This feature is not specific of Yang-Mills fields and similar
ideas may be applied to study the planar approximation to a φ3 or a φ4 (or any
interaction V(φ)) field theory. The method consists in introducing a field theory in
which the field is an N x N matrix M(x) belonging to any of the following three sets
characterized by an integer α taking the values 1, 2 or 4

(i) α = 1 real symmetric matrices,
(ii) α = 2 complex hermitian matrices,

(iii) a = 4 complex matrices.
The (Euclidean) Lagrangian is chosen to be

Mϊ)+ tr(MMf)+ -tr(MM^MM^) . (1)

The global invariance group is, respectively SO(A/r), SU(N), and SU(N) x SU(N).
The limit of interest is to let N go to infinity with fixed g this selects only planar
diagrams. It may be useful to state the Feynman rules derived from the
Lagrangian (1). The propagators for the M-fields may be represented by double
lines each one corresponding to the separate propagation of its two indices. These
lines carry two different colors (in order to distinguish the two SU(ΛΓ) groups) and
have the same orientation in the case α = 4. For α = 2 the lines must be oriented in
opposite directions. No orientation is required for α = 1. The large ΛΓ-limit may be
described in terms of a simple φ4-theory with single lines in which all non planar
diagrams are omitted. The remaining diagrams are all those which can be drawn
on a plane from rigid vertices and fixed external lines. For completeness let us
repeat here the original derivation of 't Hooft, establishing the connection between
planarity and large N limit. A general diagram consists of P propagators, V
vertices, I closed loops of internal index. If we take an arbitrary interaction

0 3trM 3+# 4trM 4+...,

there will be V3 three-point vertices, V4 four-point vertices etc..., and

V=V3 + V4 + ....

If we consider for instance a connected vacuum diagram, a simple topological
argument gives 2P=3F3+474 + ... . Each loop of internal index may be con-
sidered as a face of a polyhedron, and the Euler relation gives

V-P+I=2-2H
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in which H is the number of holes of the surface on which the polyhedron is drawn
(0 for a plane or a sphere, one for a torus, etc....). The contribution of the diagrams
is proportional to

1 . . . N2~2H.

Thus provided one takes coupling constants gp proportional to Nl~pl2, the
vacuum energy divided by N2 has a finite limit for the diagrams which may
be drawn on a planar (H = 0) surface. Corrections of order i/N2 are given by
diagrams which may be drawn on a torus. If E(^(g) stands for the sum of the
connected vacuum diagrams for any of the three theories (1) in d dimensions and if
E(d\g) is the same sum for the planar φ4-theory then in any dimension

— '-"' * —'-"' " / Λ \

The counting rules for the lowest orders are given in Table 1 and Equation (2) may
be checked from the Lagrangian (1).

Table 1. Counting rules for the vacuum amplitude E(0\g) in
the planar limit, up to order three
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It is thus sufficient to study the simpler hermitian case α = 2, which is analyzed
in the following. Note however that the corrections to the leading behaviour may
be different in the various cases.

3. Combinatorics of Quartic Vertices

1) Vacuum Diagrams

Setting each diagram equal to unity, apart from the overall weight, is equivalent to
treat a field theory in zero dimension, in which space-time is reduced to one or
to a finite number of points. It means that

exp - N2E(0\g) = lim j rfN2Mexp - ktr M2 + |- tr M4|. (3)
N-+OO [ N \

The integration measure on hermitian matrices is

dN2M = Π dMti Π d(Re Mf MIm Mt.) (4)

and it is convenient to express it in terms of the eigenvalues λ{ of M and of the
unitary matrix U which diagonalizes the matrix M. This is a well-known problem
[5] and the result is

λ^dV. (5)
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Since the integrand (3) depends only on the eigenvalues λi9 this allows us to
integrate over U and, up of to a ^-independent normalizing factor we obtain

exp - N2E(0\g) = lim J f] dλt Π (̂  - λ .)2 exp - £ £ λf + ̂  £ /If . (6)

In the large ΛMimit the steepest descent method can be used to compute (6),

noting that the factor [~[ (λt — λj)2 in the measure requires that the eigenvalues

repel each other and spread evenly around zero. To leading order we have

r 1 ί v / l o 2 , 9 i4\ VM M o il /τ\= l ι m ττ2iΣ iΛ +^?Λ -Σ l n IΛ -^/l^ (7)

(in which the primed sum runs over ίφj), and the λt are given by the stationary
condition

έ ^ Σ ' T ^ (8)

The eigenvalue Equation (8) may be solved in the large N limit by going to a
continuous problem. Let us introduce a non decreasing function λ(x) such that

λ{=]/Nλ(i/N). (9)

Then the large IV-limit may be explicitly performed and the Equations (7) and (8)
are replaced by

= } dx [^2(x) + gλ\x)-\ - } } dxdyln \λ(x) - λ(y)\ (10)
0 0

(up to a constant ^-independent term) and

in which f stands for the principal part of the integral.

The condition (11) on λ(x) suggests to introduce the density of eigenvalues u(λ)
defined as

djj-=u(λ}. (12)

The function u(λ) should be positive, even, and normalized to

+ 2α

J dλu(λ) = l. (13)
-2α

The condition (11) becomes an equation for u(λ)

+ 2a U(LL)
'= f dμ-r^-9 \λ\^2a (14)

-2a λ — μ



Planar Diagrams 39

and w(μ) should vanish outside some support (— 20, 20), otherwise the equation is
inconsistent for large λ. The solution is easily obtained by introducing the analytic
function

F(λ)= J dμ- (15)
-2α Λ — μ

defined for complex λ outside the real interval ( — 20, 20). Clearly F(λ) enjoys the
following properties:

(i) it is analytic in the complex λ plane cut along the interval (— 20, 20),
(ii) it behaves as ί/λ when \λ\ goes to infinity, as a consequence of (13),

(iii) it is real for λ real outside (— 20,20),
(iv) when λ approaches the interval (— 20,20),

F(λ ± is) = ̂ λ + 2gλ3 T iπu(λ). (16)

There is a unique function which satisfies these requirements which is

F(λ) = ̂ λ + 2gλ* - (I + 4ga2 + 2gλ2) γλ2 - 4a2 (11 a)

with

f0 2 - l=0. (17b)

The square root is defined in the cut A-plane and is chosen to be positive for λ real
larger than 20. The odd function F(λ) has an even discontinuity

(18)

with a given by (17b).
In order to obtain E(0\g\ we first transform (10) into

+ 2α 2α

E(0\g)= J dλu(λ)[^λ2-^-gλ4'] — JJ dλdμu(λ)u(μ)In\λ — μ\. (19)
-2α -2α

Then, integrating (14) with respect to λ we replace this expression by

2α

E(0\g) - £(0)(0) = J dλu(λ)(±λ2 + gλ4-2 In λ)-(g = 0)
o

(20)

This is supplemented by Equation (17b) giving

.... (21)

Correspondingly the first perturbative terms of Equation (20) give

E(0\g) - £(0)(0) = 2g - l%

in agreement with Table 1.
The formulae (20) and (21) count the connected planar vacuum diagrams of the

φ4-theory. It is interesting to note that it yields an expression for E(0\g) which is
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analytic in the neighborhood of 0 = 0. Its nearest singularity occurs for real
negative g at

(22)

which is the singularity of α2(g); the branch point of the logarithm, α2 = 0,
corresponds to g= oo. It is easy to derive from (20) the large order behaviour of

(23)
Ak -- -(48) f c/ 7 / 2

Finally let us note that the solution (18) for u(λ) generalizes Wigner's semi-
circle law for the spacing of eigenvalues of hermitian random matrices with
gaussian distributions, which corresponds to the simple case 0 = 0, and hence

1
a2 = 1, u(λ)= — 1/1 — λ2/4 [5]. For g not equal to zero u(λ) may be interpreted as

7Γ

the distribution of eigenvalues of a non-gaussian random set of hermitian matrices.
For any g real, and greater than the critical gc of Equation (22), u(λ) has a square
root behaviour near the end points of the interval ( — 2α, 2α). When g reaches the

value gc9 a has increased from 1 to j/2, and u(λ) now vanishes as (/l + 2]/2)3/2

(Fig. 1).

Fig. 1. The level spacing u(λ) as a function of λ/2a solid line, 0 = 0, the semi-circle law πw(A) = ]/\ — λ2

23/2 / ^2\3/2

dotted line, the critical curve gc= — 1/48, πu(λ)= - 1 1 -- , normalized to the same area
3 \ 8 /

2) Green Functions

The same method may be applied to derive the planar limit of the (zero
dimensional) Green functions. They are given by the moments of the distribution
u(λ) since

G2p(g) = <tr M2*> = dλu(λ)λ2' . (24)
-2α

Consequently the generating function

ΦW = fj2'G2p (25)
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may be expressed in terms of the function F(λ) of Equation (17) by noting that u(λ)
is the discontinuity of F(λ).

The result is

It then follows that

(26)

(27)

Clearly the singularity of G2p in the complex g plane is again given by the
analytic structure of a(g\ i.e. a branch point at g = gc= — 1/48. Note also that G2p

does not involve any logarithm and is purely algebraic in g.
An explicit check of the formula (27) for p = 2 and 4 can be made at the first few

orders in g with the help of the Table 2.

Table 2. Counting factors for G2 and G4 to the first few orders

27g3

8g

28g3

16g2 64g2
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64g2

28g3

7^329g3 2 g 2V 2yg
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5j Connected Green Functions

The usual exponential relation between the generating functionals of connected
and disconnected diagrams is invalid in the planar theory. We have rather to use a
Lagrange relation expressed as follows. Let ψ(j) generate the connected Green
functions

(28)

The Green functions may be obtained in terms of the connected ones if the source;
is replaced in ψ(j) by the solution of the implicit equation

(29)
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Consequently, if we solve for z(j\ then

φ(j) = ψ(z(j)), (30)

This defines ψ through a purely algebraic procedure and before giving the
solution, it may be useful to note that (29) and (30) summarize the following
relations between the connected and disconnected Green functions:

v (2p)! (G'2Γ (GIΓ (Gc

2qϊ* ....
^J2p— Lu i . V-. \ « I « f " « I " v 3 1^

or explicitly

G8 = GC

8 + 8GC

6G
C

2 + 4(G4)
2 + 28GC

4(GC

2)
2 + 14(GC

2)
4

etc .....

The expression (31) is the solution to the following combinatorial problem:
label 2p points on the boundary of a circle and join them in non overlapping
clusters of rί pairs, r2 quadruplets, ..., rq2q-plets, ... in all possible ways. This gives
the coefficients of Equation (31). The algebraic relations (29) and (30) are of course
much more tractable. The solution z(j) is very simple, since z(j)=jφ(j\ and thus
from (26)

Γ4?F. (32)

We then solve for j in terms of z and from (29) we obtain

ιp(z) = z/j(z) (33)

Substituting (33) into (32) and using the (g, a) relation (17b) we end up with the
cubic equation for ψ(z)

3(1 - a2)ψ\ψ - 1) + 9a4z2ιp - a2z2 [_9a2z2 + (2 + α2)2] = 0 . (34)

This equation can be further simplified if we define a new variable

3>2 = izV(α2-l), (35)

then it follows from (34) that (a2 — ί)ψ(z) can be written uniquely as

(36)

with λ and μ independent of a2. Indeed inserting (35) and (36) into (34) leads to
four equations for the two unknown functions λ(y) and μ(y\ which reduce to the
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two equations

'λ3-λ2+y2=Q (37a)

Solving these equations we obtain

It is gratifying to observe that due to the factor (a2 — l)p~ 1 the lowest order term of
G€

2p is indeed in gp~~ 1. Once again we verify that G€
2p is a simple polynomial in a2.

4) One Panicle Irreducible Functions

Finally we may define one particle irreducible vertex-functions. For convenience
we set

Γ(x) = Γ2x
2+ ΣΓ2px

2*, (38)
p=2

Of course the unusual weights appearing in (39) are consequences of the planar
topology. The Legendre transformation defined on a generating function ψ which
would include the division by the cyclic symmetry factor 2p is equivalent to the
following relations

ι (40)

x=τ[vϋ)-l].

This is easily seen to be a summary of the previous Equation (39). Thus Γ(x) is
Γ

obtained by substituting in (34) 1 + Γ for ψ and — for z. The result is the cubic

equation

3x2(l - α2)(l + Γ)2 + 9α4Γ (l + Γ - ̂  ] - α2Γ(2 + α2)2 = 0 (41)
\ χ I

which gives Γ(x) by an algebraic formula.
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4. Combinatorics for a Cubic Interaction

For completeness we shall briefly present some results for the case of a cubic
interaction which makes sense for real symmetric (α = l) or hermitian matrices
(α = 2). Calculations will be presented in the latter case. The case of a combined
cubic and quartic interaction is then a simple extension.

The integral

exp -N2E^(g) = ^Πdλt f[ (λ- A/exp-l + -=λf (42)
VN

is only meaningful for complex-0 due to the instability of the cubic interaction.
However the power series in g is well defined and is the quantity of interest. We
repeat the steps of the previous section in the limit of N large using the steepest
descent method

(43)

λ-μ

with the normalization condition

The symmetry property A-> — λ is lost and v has a non-vanishing support in an
interval 2a ̂  λ rg 2ft. The solution is defined in terms of the analytic function

F(X) = Γ V_^VL = λ + igtf _ ̂ gλ +1 + 3g(a + bj] |-μ _ 2a^λ _ 2Vft 1/2 (44)
L λ-μ

which has been determined by the fact that its real part on the interval (20, 2b)
should be given by (43), and by demanding that the coefficients of λ2 and λ vanish
at infinity. The function υ(λ) is related to the imaginary part of F(λ) since

F(λ ± IB) = λ + 3gλ2 + iπυ(λ) 2a<λ<2b
1 (45)

V(λ) = [l + lg(a + b) + 3gλ] \/(λ-2a)(2b-λ).

It remains now to express that F(λ) behaves as 2/λ for \λ\ going to infinity. This
determines the interval (20, 2b) in terms of g by the conditions

(46)
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Thus for g small

lα=-l-30-1802-W

It is convenient to introduce the single parameter

σ = 3g(a + b) (48)

which, as a consequence of Equation (46) is the solution of

18#2 + σ(l + σ)(l + 2σ) = 0. (49)

The expansion of σ as a power series in g2 reads

σ = —z
k\

The vacuum diagrams are then readily obtained and their generating function
E(Q\g) is given as

2b

2a

With the explicit expression (45) we obtain

in which σ is given by (49) and (50).
After tedious calculations, one obtains from (49)-(51)

which gives explicitly the number of connected vacuum diagrams with 2k vertices.
The function E(0}(g) is thus analytic near g = 0 since σ is itself analytic, up to the

value of g2 for which Equation (49) acquires a double root. This gives the closest
singularity of E(Q\g] for a value

0c

2 = l/(108]/3) (52)

which gives the radius of convergence of the planar perturbation series. Again for
this value gc, v(λ\ instead of vanishing as a square root at both ends of its support,
vanishes as a power 3/2 at one of these limits.

By the same techniques we can obtain the generating function for the planar
Green functions

26

(53)
2α

(54)
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which from (44) yields

3

This gives the following expressions for the Gp

1/21

(55)

ί p - ί (56)

The connected Green functions are generated by

V(/)=1+Σ/C7« (57)
1

given by the quadratic equation

3a ' (58)

The one-particle irreducible function are more delicate to derive due to the
presence of tadpole graphs. To cope with this difficulty we generalize the initial
model by including an extra term ρ ]Γ λt in Equation (42). By adjusting ρ it enables

i

one to cancel all tadpole insertions. Consequently the expectation value of λ
vanishes and in this new theory the bare propagator remains equal to unity. This
has the effect of modifying the Green functions. The new connected ones are
generated by ψ' satisfying

3gψ'2 + (/' - 3gW -j(l - QJ +j2) = 0 . (59)

The demand that G1 vanishes leads after some algebra to the parametric relation
between ρ and g

3qρ= — τ(l — 3τ)
^ V ; (60)

9g2 = τ(l-2τ)2.

The expansion of τ is

One then deduces the one-particle irreducible functions Γp(g)

00

i (x) = 2_j ί p(g)χ (y2)
2
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from the same equations as in Section 3. This gives

Γ2(x) - Γ(x)[ρx + x2 + 3#x3] - 30x3 = 0 . (63)

Note that the coefficients of the expansion ofΓp(g) in powers of g give correctly the
number of irreducible diagrams with p external lines and a given number of
vertices. For instance

_(l-2τ)2

= l-902-3(902)2-17(9i72)3... (64)

As noticed by the authors of [4] it is also simple to count one-particle irreducible
diagrams without self-energy insertions. This can be achieved using a similar
modification of the theory. Not only do we add the ρλ term but we also change the

λ2 λ2

quadratic part from — to (1 +w)— Again ρ and m are chosen as functions of g2

to give G! =0 and the complete propagator G2 = 1. The resulting equations for the
connected functions are

3gj2-j3=0 (65)

with

m = α(l — 2α)

90

2 = α(l-α)3. (66)

This generates modified irreducible functions denoted Γp(g) with

f\x) + f (x)[30x - x2(l + m) - 3#x3] - 3#x3 - 0 .

Of course by construction Γ2 = 1, while for instance

Γ3 = g. (68)

Using the parametric relations (66) we obtain

Analogous formulae hold for higher functions. They all have a radius of
convergence equal to

(70)
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This is of course larger than the value given by Equation (52). Similar techniques
can also be applied to the computation of the vacuum energy without tadpole and
self energy insertions.

5. One Dimensional Planar Theory

We must now go beyond the mere counting problem and try to sum the planar
theory corresponding to interacting systems. The simplest problem, the only one
which will be solved in this article, corresponds to one dimension, where we put on
the lines a propagator l/(p2 + l) and integrate the momenta from — oo to + 00.
This corresponds to coupled anharmonic oscillators, and as before we introduce
hermitian N x N matrices (α = 2). The extension to real symmetric or complex
matrices is straightforward. We thus consider the problem of determining in the
large N limit the vacuum diagrams, i.e., the ground state energy of the
Hamiltonian

and for a φ4 interaction

F-|trM2+|;trM4. (72)

We set in this limit

Hψ = N2E(1\g)ιp (73)

and look for a ground state wave function symmetric under the U(N) group. Thus
φ is a symmetric function of the eigenvalues λt of M, if we note that the Laplacian
is invariant under the group. The energy E(1) is then the minimum

^
over functions invariant under the transformation ψ(M)^ιp(UMU~ 1), We rewrite
(74) by eliminating the "angular" variables U as

E(ί\g) = lim Min — ? - ̂  - ' Λ < - ί , (75a)
>N

i i<j

/ Λ \ £

where we have noted that the gradient term reduces to \ £ — and the potential

Falso appears as a symmetric function of the eigenvalues λt. This relation suggests
to introduce the antisymmetric function

φ(λί,...,λN)=ίγi(λi~λJ)\ψ(λl,...,λN) (75b)
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as if we were dealing with a fermionic problem with N degrees of freedom. The
corresponding Schrodinger equation

(76)

could of course also be derived directly from (71) and (72) by going over to "polar"
coordinates. Note that the substitution (75) has not generated any new terms in the
potential, and as a result we have a non interacting Fermi gas where each

λ2 Q
"particle" is only submitted to the central potential— + — λ4.

We denote e1^e2^e3... the individual energies corresponding to the one

particle Hamiltonian h= — i^-rr + -̂ - H—^4 and define eF to be the Fermi level.
dλ2 2 N

Then

E^ = eθe-e

k

This involves no approximation whatsoever. In the limit of large TV we may use
the semi classical approximation which reads

j Λ j / 2 1 2 14-\ / 7 T ? Λ Δ~dλdp p λ gλ \ p λ gλeρ~*^ϊτΓ v F ~ τ ~ τ ~ Ί v " J v F ~ τ ~ τ ~ Ί V

N-^'^θlc -P λ
W — » Ά " VF

2π \ * 2 2 N

Integration over p yields

.dλ

'3^

3/2

θ{2eF-λ2~2g
N

(79)

rescaling λ as ]/Nλ and eF as Nε we obtain a pair of equations giving E(1\g) in the
planar limit as

E(1\g) = £-^l2ε-λ2-2gλ4Y/2θ(2ε-λ2-2gλ4), (80a)

1 Λ

1 = J _ [2e - λ2 - 2gλ4^ 1/2θ(2ε -λ2- 2gλ4) . (80b)

It is to some extent surprising to find in such an explicit manner the ground state
energy for this approximation. We observe that equation (80b) may be given the
following obvious interpretation from the statistical point of view. If the equation
(80a) is considered as defining E(1) as a function of ε and g then the Fermi level ε is
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obtained from the requirement of stationarity

dε v ? y /

The expression (80) defines an analytic function of g in the neighborhood of g = 0.
The nearest singularity occurs for negative g when the Fermi level just reaches the
degenerate maximum of the potential

1
ε= — —r-

or

The approximate formulae (80) can be compared with the results of accurate
numerical computations on the true anharmonic oscillator [6].

Table 3

9

0.01
0.1
0.5
1.0

50
1000

-^planar

0.505
0.542
0.651
0.740
2.217
5.915

E

0.507
0.559
0.696
0.804
2.500
6.694

For very large value of g the agreement gets worse. Asymptotically one finds
from (80)

14/3

=0.58993 flf1/3 (82)rw 7y h\^
whereas the exact result is

E(l\g)~ 0.66799 gί/3.

The planar approximation is therefore at most 12% wrong.
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Note Added in Proof

We collect, some explicit formulas completing the text.

Quartic Vertices. Vacuum diagrams, Equation (20)

Green functions, Equation (27)

Connected Green functions, following Equation (37)

=
2p (p-l) l(2p - 1) ! ptT ! (k - p + 1) \(k + 2p) ! '

Cubic Vertices. Generating functions of connected Green functions, Equations (57) and (58)

OO 00 /••-) Γ7 n\ I

V E y \v (2-E — 2)1
2-s J Zj v y J (Ί7 i \ i / i 7 _ '

(£=number of external lines; F = number of vertices).
This formula was known to G. 't Hooft [7].






