

© by Springer-Verlag 1977

Amenability of Crossed Products of C*-Algebras

Jonathan Rosenberg*

Department of Mathematics, University of Pennsylvania, Philadelphia, Pennsylvania 19174, USA

Abstract. It is shown that the class of amenable (resp. strongly amenable) C^* -algebras is closed under the process of taking crossed products with discrete amenable groups. Under certain circumstances, amenability is also preserved under taking a "crossed product" with an amenable semigroup of linear endomorphisms. These facts are used to show that certain simple C^* -algebras \mathcal{O}_n studied by J. Cuntz are amenable but not strongly amenable (thus answering a question of B. E. Johnson), yet are stably isomorphic to strongly amenable algebras.

The purpose of this note is to prove stability of the classes of amenable and strongly amenable C^* -algebras under the process of taking crossed products with discrete amenable groups (and under certain circumstances, with discrete amenable semigroups). These facts are used to show that certain simple C^* -algebras \mathcal{O}_n , studied by Cuntz in [4], are amenable but not strongly amenable, yet are stably isomorphic to strongly amenable algebras. We thus answer a question of Johnson [7], who wondered if every amenable C^* -algebra is strongly amenable, and at the same time show that strong amenability is not preserved under "cutting down" by projections. The questions of whether amenability is a stable isomorphism invariant, and whether every nuclear C^* -algebra is amenable, remain open, and the example of the algebras \mathcal{O}_n seems to indicate that positive answers to these are at least plausible. The present results also show that a strongly amenable C^* -algebra need not be an inductive limit of Type I algebras.

We use the following notation. If X is a Banach space, X^* denotes its dual. For $K \subseteq X^*$, co K denotes its weak-* closed convex hull. If A is a C^* -algebra with unit, U(A) denotes the unitary group of A. If A is any C^* -algebra, we use the notation A^* to mean A if A has a unit, A with identity adjoined otherwise. Recall that a C^* -algebra A is amenable if and only if for every 2-sided unital Banach A^* -module X and for every continuous derivation $d:A \to X^*$, d is the coboundary of some element of X^* [7, p. 61]. (One may drop the continuity assumption on d since, by [8], every

^{*} Partially supported by NSF

J. Rosenberg

derivation into X^* is continuous.) A is strongly amenable if and only if for every 2-sided unital Banach A^- -module X and for every $f \in X^*$, there exists $g \in \operatorname{co} \{ufu^* : u \in U(A)\}$ with ag = ga for all $a \in A$ [2, Proposition 1b].

Proposition 1. If A is a strongly amenable C^* -algebra with 1, then A admits at least one finite trace.

Proof. Regard A as a 2-sided A-module and let f be a state of A. Then there exists $g \in co\{ufu^* : u \in U(A)\}\$ with ag = ga for all $a \in A$. Since g(1) = 1, g is a tracial state on A.

Corollary 1. An infinite (in the sense of [5]) simple C^* -algebra with 1 cannot be strongly amenable.

Corollary 2. An infinite simple C^* -algebra with 1 cannot be an inductive limit of Type I C^* -algebras. (This was proved in [4] by a different method, using a slightly stronger definition of infinite C^* -algebras.)

Proof. By [7, Theorem 7.9 and Proposition 7.6], an inductive limit of Type I C*-algebras is strongly amenable.

Our first main result is motivated by [3], which essentially contains a von Neumann algebra version of the same theorem. Since we limit ourselves to actions of discrete groups G [only when G is discrete is A a subalgebra of the crossed product $C^*(G,A)$], Connes' proof works here with only minor modifications. One could probably generalize the theorem to the case where G is non-discrete, but since we have no applications in mind for such a more general result, it doesn't seem worth the additional technical complications.

Theorem 1. Let G be a discrete amenable group acting by automorphisms on an amenable C^* -algebra A. Then the crossed product $C^*(G, A)$ is amenable.

Proof. First we extend the action of G to A^{\sim} and show that $B = C^*(G, A^{\sim})$ is amenable. Note that we may view A^{\sim} as a subalgebra of B and G as a subgroup of U(B). Let X be a 2-sided unital Banach B-module and let $d:B \to X^*$ be a (continuous) derivation. We may regard X as an A^{\sim} -module, and by amenability of A, $d|A^{\sim}$ is inner. So subtracting a coboundary if necessary, we may assume $d|A^{\sim}=0$. For $s \in G$, let $f(s)=s \cdot d(s^{-1})$, and let m be a left invariant mean on G. Since f is uniformly bounded and takes values in a dual Banach space, we may form $f_0 = \int f(s)dm(s)$. [We define this weakly by $\langle x, f_0 \rangle = \int \langle x, f(s) \rangle dm(s)$ for each $x \in X$.] We claim $d(b) = bf_0 - f_0 b$ for all $b \in B$. It is enough to prove this for $b \in A^{\sim}$ or $b \in G$ since the algebra generated (algebraically) by A^{\sim} and G is dense in B.

If $a \in A^{\sim}$.

$$a \cdot f(s) - f(s) \cdot a = as \cdot d(s^{-1}) - s \cdot d(s^{-1}) \cdot a$$

= $s \cdot (s^{-1}as \cdot d(s^{-1})) - s \cdot (d(s^{-1}) \cdot a) = s \cdot [d((s^{-1}as)s^{-1}) - d(s^{-1}) \cdot a]$

[since $d(s^{-1}as) = 0$] = $s \cdot [d(s^{-1}a) - d(s^{-1}) \cdot a] = 0$, since d(a) = 0. This being true for all s, we also have $a \cdot f_0 - f_0 \cdot a = 0 = d(a)$.

If $s, t \in G$, we have

$$t \cdot f(s) = ts \cdot d(s^{-1}) = (ts) \cdot d((ts)^{-1}t)$$

= $(ts) \cdot \lceil d((ts)^{-1}) \cdot t + (ts)^{-1} \cdot d(t) \rceil = f(ts) \cdot t + d(t).$

So $d(t) = t \cdot f(s) - f(ts) \cdot t$, and by left invariance of m, $d(t) = t \cdot f_0 - f_0 \cdot t$, as desired. Thus d is inner and B is amenable.

Now note finally that $C^*(G, A)$ is a closed 2-sided ideal of B, so $C^*(G, A)$ is amenable by [7, Proposition 5.1].

Next we have a strong amenability version of Theorem 1.

Theorem 2. Let G be a discrete amenable group acting by automorphisms on a strongly amenable C^* -algebra A. Then the crossed product $C^*(G, A)$ is strongly amenable.

Proof. Form $B = C^*(G, A^*)$ as before. Again, we first show B is strongly amenable. Let X be a 2-sided unital Banach B-module, and let $f \in X^*$. Since X is also an A^* -module, strong amenability of A implies that there exists $g \in co\{ufu^* : u \in U(A^*)\}$ with ag = ga for all $a \in A$. Now by amenability of G (cf. [7, Proposition 7.8]), there exists $h \in co\{tgt^* : t \in G\}$ with sh = hs for all $s \in G$. Clearly $h \in co\{ufu^* : u \in U(B)\}$, so it is enough to show that ah = ha for all $a \in A$. But if $t \in G$ and $a \in A$, $a \cdot (tgt^{-1}) = t(t^{-1}at) \cdot gt^{-1} = tg \cdot (t^{-1}at)t^{-1}$ (since $t^{-1}at \in A$) = $(tgt^{-1}) \cdot a$. So every tgt^* is centralized by A and hence so is h. Thus B is strongly amenable.

Again, as $C^*(G, A)$ is an ideal in B, it, too, is strongly amenable [7, pp. 74–75]. For our applications, we need a modified version of Theorem 1 in which the amenable group G is replaced by an amenable semigroup of linear endomorphisms of A. As the proof indicates, the structure of the argument remains the same.

Theorem 3. Let B be a C^* -algebra with 1 generated by an amenable C^* -subalgebra A and by an element S satisfying the conditions $1 \in A$, $S^*S = 1$, and $SAS^* \subseteq A$. Then B is amenable.

Proof. Let $e = SS^*$, which is a projection in A, let X be a 2-sided unital Banach B-module, and let $d:B \to X^*$ be a (continuous) derivation. We must show that d is inner. Since X is also an A-module and A is amenable, we may subtract a coboundary from d and suppose that d|A=0. This implies in particular that d(e)=0, so that $0=d(SS^*)=d(S)S^*+Sd(S^*)$, and $d(S^*)=-S^*d(S)S^*$.

We claim it suffices to show the existence of some $f_0 \in X^*$ such that $af_0 - f_0a = 0$ for all $a \in A$ and such that $d(S) = Sf_0 - f_0S$. Indeed, for such f_0 we would have $d(S^*) = -S^*d(S)S^* = -S^*(Sf_0 - f_0S)S^* = -f_0S^* + S^*f_0e = -f_0S^* + S^*ef_0$ (since $e \in A$ commutes with f_0) = $S^*f_0 - f_0S^*$, so that d would coincide with the inner derivation defined by f_0 on S, S^* , and A, hence on the *-algebra generated (algebraically) by S and A. Since this algebra is dense in B and d is continuous, it would follow that $d(b) = bf_0 - f_0b$ for all $b \in B$, as desired.

To construct f_0 , first let $f(n) = S^{*n}d(S^n)$, and let m be an invariant mean on the semigroup of positive integers. We let $f_0 = \int f(n)dm(n)$. (It would suffice to take for f_0 a weak-* limit point of the sequence $\left\{\sum_{i=1}^n f(i)/n\right\}$.) For $a \in A$, we have

$$a \cdot f(n) - f(n) \cdot a = aS^{*n}d(S^n) - S^{*n}d(S^n)a$$

$$= S^{*n}S^n(aS^{*n}d(S^n)) - S^{*n}d(S^n)a$$

$$= S^{*n}\lceil (S^naS^{*n})d(S^n) - d(S^n)a \rceil.$$

190 J. Rosenberg

But $d(S^n a) = d(S^n a S^{*n} S^n) = (S^n a S^{*n}) d(S^n) + d(S^n a S^{*n}) S^n$, and since $S^n a S^{*n} \in A$, we get $d(S^n a) = (S^n a S^{*n}) d(S^n)$. Substituting above,

$$a \cdot f(n) - f(n) \cdot a = S^{*n} \lceil d(S^n a) - d(S^n)a \rceil = 0$$

since d(a) = 0. Applying m, we get $a \cdot f_0 - f_0 \cdot a = 0$ for all $a \in A$. Next we observe that

$$\begin{split} ed(S) &= ed(S^{*n}S^{n+1}) = e\big[d(S^{*n})S^{n+1} + S^{*n}d(S^{n+1})\big] \\ &= e\big[d(S^{*n})S^n\big]S + S\big[S^{*n+1}d(S^{n+1})\big] \\ &= -ef(n)S + Sf(n+1) = e(Sf(n+1) - f(n)S), \end{split}$$

since $0=d(1)=d(S^{*n}S^n)=d(S^{*n})S^n+f(n)$. Then by invariance of m, we see that $ed(S)=e(Sf_0-f_0S)=Sf_0-(ef_0)S=Sf_0-(f_0e)S=Sf_0-f_0S$, since $e\in A$ commutes with f_0 and since eS=S. But, on the other hand, 0=d((1-e)S)=(1-e)d(S)+d(1-e)S=(1-e)d(S), since $1-e\in A$. Thus $d(S)=ed(S)=Sf_0-f_0S$, as desired. This completes the proof.

Now let \mathcal{O}_n denote the simple infinite C^* -algebra generated by n isometries S_1 , S_2 , ..., S_n with $S_1S_1^* + ... + S_nS_n^* = 1$, as analyzed in detail in [4]. Since \mathcal{O}_n is infinite, it is not strongly amenable, by Corollary 1 to Proposition 1. On the other hand, it is shown in [4, § 1] that $B = \mathcal{O}_n$ satisfies the hypotheses of Theorem 3, with A a UHF-algebra (for n finite – when $n = \infty$, A is merely AF) and $S = S_1$. Thus \mathcal{O}_n is amenable.

Let \underline{K} denote the C^* -algebra of all compact operators on an infinite-dimensional separable Hilbert space. By [4, 2.1], $\mathcal{O}_n \otimes \underline{K}$ is isomorphic to a crossed product of an AF-algebra (matroid if n is finite) by an action of the integers. Hence $\mathcal{O}_n \otimes \underline{K}$ is strongly amenable by Theorem 2. (It was already observed in [4] that $\mathcal{O}_n \otimes \underline{K}$, and hence \mathcal{O}_n , is nuclear.) Thus with stable isomorphism defined as in [1], strong amenability is *not* a stable isomorphism invariant. On the other hand, nuclearity is a stable isomorphism invariant, and there are indications that the same may be true for amenability.

Finally, we note that by the proof of [4, 2.3], $\mathcal{O}_n \otimes K$ is not an inductive limit of Type I C^* -algebras. (Alternatively, we know this for \mathcal{O}_n by Corollary 2 to Proposition 1. But as Philip Green has indicated to us, it is easy to see that the class of inductive limits of Type I C^* -algebras is closed under stable isomorphism 1 , for if A is an inductive limit of a directed family of Type I C^* -subalgebras A_α , and if $A \otimes K \cong B \otimes K$, then $B \cong p(A \otimes K)p$ for some projection p in $A \otimes K^2$. However, by [6, Lemmas 1.6 and 1.8], there exists a projection e contained in some $A_\alpha \otimes K$ and an inner automorphism of $(A \otimes K)^*$ carrying e to e. So e imperiod in e and e is an inductive limit of Type I algebras. In particular, $\mathcal{O}_n \otimes K$ cannot be an inductive limit of Type I algebras if \mathcal{O}_n is not.) So a strongly amenable e-algebra need not be an inductive limit of Type I algebras. The known relations among various classes of "nice" e-algebras are summarized in the following Table 1.

At least with suitable assumptions regarding existence of units

Assuming B has a unit. One could also extend the argument to the case where B has an approximate identity consisting of projections

Table 1

Property of C*-algebras	Inductive limit of Type I C*-algebras	$ \begin{array}{c} [7] \\ \Rightarrow \\ \Leftarrow \\ \mathscr{O}_n \otimes K \end{array} $	Strongly amenable	$ \begin{array}{c} [7] \\ \Rightarrow \\ \Leftarrow \\ \mathcal{O}_n \end{array} $	Amenable	[3] ⇒ <i>⇔</i> ?=	Nuclear
Stable isomorphism invariant?	yes ^a		no		?		yes

At least with suitable assumptions regarding existence of units

References

- Brown, L.G., Green, P., Rieffel, M.A.: Stable isomorphism and strong Morita equivalence of C*algebras. Pacific J. Math. 71, 349—364 (1977)
- Bunce, J.: Characterizations of amenable and strongly amenable C*-algebras. Pacific J. Math. 43, 563—572 (1972)
- 3. Connes, A.: On the cohomology of operator algebras. Preprint
- 4. Cuntz, J.: Simple C*-algebras generated by isometries. Commun. math. Phys. 57, 173—185 (1977)
- 5. Dixmier, J.: Traces sur les C*-algèbres II. Bull. Sci. Math. 88, 39—57 (1964)
- 6. Glimm, J.G.: On a certain class of operator algebras. Trans. Am. Math. Soc. 95, 318-340 (1960)
- 7. Johnson, B.E.: Cohomology in Banach algebras. Mem. Am. Math. Soc. 127 (1972)
- Ringrose, J.: Automatic continuity of derivations of operator algebras. J. London Math. Soc. 5, 432— 438 (1972)

Communicated by H. Araki

Received April 25, 1977