© by Springer-Verlag 1977

The Non-relativistic Limit of $\mathcal{P}(\varphi)_2$ Quantum Field Theories: Two-Particle Phenomena

J. Dimock*

Department of Mathematics, SUNY at Buffalo, Amherst, NY 14226, USA

Abstract. It is proved that for two-particle phenomena the $\mathcal{P}(\varphi)_2$ quantum field theories with speed of light c converge to non-relativistic quantum mechanics with a δ function potential in the limit $c \to \infty$.

I. Introduction

In this paper we are concerned with the general question of how relativistic quantum mechanics with speed of light c is approximated by non-relativistic quantum mechanics in the limit $c \rightarrow \infty$. Only a few rigorous results of this nature exist. For example, for a single particle in an external field, the relation between the Dirac equation and the Schrödinger equation is understood. ([12], and earlier references.)

Specifically we consider $\mathcal{P}(\varphi)_2$ quantum field theory models with speed of light c, denoted $\mathcal{P}(\varphi)_{2,c}$. According to the folklore the $c \to \infty$ limit should produce a multiparticle Schrödinger theory with δ -function potentials. For $(\varphi^4)_{2,c}$ the argument goes as follows. Set

$$\begin{split} & \omega_c(p) = (p^2c^2 + m^2c^4)^{1/2} \qquad p \in \mathbb{R}^1 \\ & \varphi_c(x) = (2\pi)^{-1/2} \int e^{-ipx} c(2\omega_c(p))^{-1/2} (a^*(p) + a(-p)) dp \ , \end{split}$$

where m is the single particle mass and a^* , a are the usual creation and annihilation operators. The Hamiltonian for the theory has the form

$$H_c = \int a^*(p)\omega_c(p)a(p)dp + \lambda \int :\varphi_c^4(x):dx$$
 .

As $c \to \infty$ all creation and annihilation processes are somehow kinematically suppressed. If we also ignore the "zitterbewegung" term mc^2 in $\omega_c(p) = mc^2 + (2m)^{-1}p^2 + \mathcal{O}(c^{-2})$, then in some vague sense we have

$$\begin{split} H_\infty &= \int a^*(p)(2m)^{-1}p^2a(p)dp \\ &+ \frac{1}{2}\bigg(\frac{3\lambda}{m^2}\bigg)\int a^*(x)a^*(y)\delta(x-y)a(x)a(y)dxdy \ . \end{split}$$

^{*} Supported by NSF Grant No. PHY 7506746

This corresponds to non-relativistic bosons interacting with a two body potential $V(x) = 3\lambda m^{-2}\delta(x)$.

In trying to establish precise results one must decide for which objects in the theory the limit $c \to \infty$ should exist. It is evident that $\lim_{c \to \infty} H_c = H_{\infty}$ is too much to ask for. On the other hand, at least the physically measurable quantities should have the correct non-relativistic limit. This is essentially what we show, but restricted to two particle interactions.

The main result is the following. Let $\mathscr{P}^{\pm}(\varphi) = \lambda(\mathscr{R}(\varphi) \pm \varphi^4)$ where \mathscr{R} is an even polynomial with no second or fourth order terms.

Theorem. The two particle scattering amplitude and the two particle binding energies for the $\mathscr{P}^{\pm}(\varphi)_{2,c}$ quantum field theory converge to the corresponding objects for a $\pm 3\lambda/m^2\delta(x)$ potential as $c\to\infty$.

The proof of these results depends on the fact that for c large the dimensionless coupling constant λ/m^2c is small, and so we are in the weak coupling regime which is relatively well understood [9, 2, 6]. In particular one has the Bethe-Salpeter equation at one's disposal [16, 8, 17, 4]. The results essentially follow by showing that the Bethe-Salpeter equation (one might better say Bethe-Salpeter identity) converges to the resolvent identity. To obtain this one must shift energies by mc^2 and restrict to wave functions independent of relative energy (i.e. depending only on relative momentum).

The plan of attack is the following. In Section II we define the non-relativistic model. In Section III we develop the weakly coupled $\mathcal{P}(\varphi)_2$ model with c=1. The results here are the basis for the study of the large $c \mathcal{P}(\varphi)_2$ models in Section IV.

II. The Non-relativistic Model

In this section we define non-relativistic quantum mechanics for a δ function potential. To describe two spinless bosons of mass m in a world with one space dimension we take for the Hilbert space $L_2^+(\mathbb{R}^1)$, where \mathbb{R}^1 corresponds to relative momentum and L_2^+ means even functions in L_2 corresponding to Bose statistics. The Hamiltonian has the form $H=H_0+V$ where H_0 is multiplication by p^2/m (the reduced mass is m/2) and V denotes a potential function V(p) and also the bilinear form with kernel $(2\pi^{-1/2}V(p+q)^1)$. We are concerned with the case of constant V, and take $V=V_\alpha$ with $V_\alpha(p)=(2\pi)^{-1/2}\alpha$, $\alpha\in\mathbb{R}^1$. This corresponds to multiplication by $\alpha\delta(x)$ in configuration space.

As is well known $H_{\alpha} = H_0 + V_{\alpha}$ defines a self-adjoint operator on $L_2^+(\mathbb{R}^1)$ (e.g. [7, 15]). This can be approached as follows. Consider the Hilbert spaces

$$\mathcal{H} = L_2^+(\mathbb{R}^1, (p^2+1)^{-1}dp)$$

 $\mathcal{H}^* = L_2^+(\mathbb{R}^1, (p^2+1)dp)$

$$\langle \chi, \mathcal{O}\psi \rangle = \int \overline{\chi}(p)\mathcal{O}(p,q)\psi(q)dpdq$$
.

By the nuclear theorem any such bilinear form has a unique kernel

¹ A tempered distribution $\mathcal{O}(p,q) \in \mathcal{S}'(\mathbb{R}^2)$ is said to be the kernel of the continuous bilinear form \mathcal{O} on $\mathcal{S}(\mathbb{R}^1) \times \mathcal{S}(\mathbb{R}^1)$ given by

which are dual with the pairing given by the Lebesgue inner product. Then both H_0 and V_α define bounded symmetric bilinear forms in $\mathscr{H}^* \times \mathscr{H}^*$ and hence operators in $\mathscr{L}(\mathscr{H}^*,\mathscr{H})$. Thus $H_\alpha = H_0 + V_\alpha$ is well defined in $\mathscr{L}(\mathscr{H}^*,\mathscr{H})$. Furthermore V_α is a small form perturbation of H_0 , and so H_α restricted to $\{\psi \in \mathscr{H}^* : H_\alpha \psi \in L_2^+(\mathbb{R}^1)\}$ is a self-adjoint operator.

The binding energies E < 0 are the eigenvalues of H_{α} on $L_2^+(\mathbb{R}^1)$. These coincide with the eigenvalues of H_{α} on \mathcal{H}^* and hence with the solutions of the implicit eigenvalue problem on \mathcal{H}

$$V_{\alpha}(H_0 - E)^{-1}\psi = -\psi$$
.

The operator $V_{\alpha}(H_0 - E)^{-1} \in \mathcal{L}(\mathcal{H})$ is compact; in fact it is rank one with range equal to the constant functions. For $\psi = \text{constant}$ we have

$$V_{\alpha}(H_0 - E)^{-1}\psi = K_{\alpha}(E)\psi$$
 $K_{\alpha}(E) = \frac{\alpha}{2}m^{1/2}(-E)^{-1/2}$.

Thus E is an eigenvalue if and only if $K_{\alpha}(E) = -1$. If α is positive there are no solutions, while if α is negative there is the unique solution

$$E_R(\alpha) = -\frac{1}{4}\alpha^2 m$$
.

We now note the resolvent identity in $\mathcal{L}(\mathcal{H}, \mathcal{H}^*)$

$$(H_{\alpha}-E)^{-1} = (H_{0}-E)^{-1}(1+V_{\alpha}(H_{0}-E)^{-1})^{-1}$$

valid in the cut plane $\{E \in \mathbb{C} : E \notin \mathbb{R}^+, E \neq E_B(\alpha) \text{ if } \alpha < 0\}$ (Fredholm theorem). We also define the T operator $\mathbb{T}_n(E) \in \mathcal{L}(\mathcal{H}^*, \mathcal{H})$ in the same region by

$$\mathbb{T}_{\alpha}(E) = (1 + V_{\alpha}(H_0 - E)^{-1})^{-1}V_{\alpha}$$
.

Actually we have $\mathbb{T}_{\alpha}(E) = (1 + K_{\alpha}(E))^{-1} V_{\alpha}$ and so $\mathbb{T}_{\alpha}(E)$ can be analytically continued across the cut onto a two sheeted manifold. For $\alpha > 0$ there is a pole on the second sheet at $E = E_B(\alpha)$. The kernel $\mathbb{T}_{\alpha}(E, p, q)$ has the same analyticity in E, and is constant in P, Q:

$$\mathbb{T}_{\alpha}(E, p, q) = (1 + K_{\alpha}(E))^{-1}(2\pi)^{-1}\alpha$$
.

Finally we consider the scattering operator \mathbb{S}_{α} on L_2^+ (\mathbb{R}^1 , dp). According to the Lipmann-Schwinger equation the kernel of \mathbb{S}_{α} is given by

$$\mathbb{S}_{\alpha}(p,q) = \delta(p-q) - 2\pi i \mathbb{T}_{\alpha} \left(\frac{p^2}{m} + i0^+, p, q \right) \delta \left(\frac{p^2}{m} - \frac{q^2}{m} \right).$$

The verification of this equation as an identity in $\mathcal{S}'(\mathbb{R}^2)$ away from p=0 for a class of potentials including the δ function will be presented elsewhere (for similar results see [13, 19]). For the present we take this as the definition of \mathbb{S}_q . We further define

$$k_{\alpha}(p) = K_{\alpha} \left(\frac{p^2}{m} + i0^+ \right) = \frac{1}{2} i \alpha m |p|^{-1}$$
.

For even test functions $\delta(p-q) = \delta(p+q)$ and so

$$\delta(p^2/m-q^2/m) = \frac{m}{|p|} \delta(p-q) .$$

Thus away from p=0 we have

$$\mathbb{S}_{\boldsymbol{\alpha}}(\boldsymbol{p},\boldsymbol{q}) = \left(\frac{1-k_{\boldsymbol{\alpha}}(\boldsymbol{p})}{1+k_{\boldsymbol{\alpha}}(\boldsymbol{p})}\right)\delta(\boldsymbol{p}-\boldsymbol{q}) \ .$$

Scattering consists of a phase shift.

III. Weakly Coupled $\mathcal{P}(\varphi)_2$ Models

III.1. The Models

A $\mathscr{P}(\varphi)_2$ model for a self-interacting boson field may be defined in terms of its Schwinger functions $\mathfrak{S} = \mathfrak{S}_{\lambda,m,\sigma}$ which are formally given by

$$\mathfrak{S}(x_1,\ldots,x_n) = \frac{\int q(x_1)\ldots q(x_n)\exp(-\int :\mathcal{P}(q(x)):dx)d\mu(q)}{\int \exp(-\int :\mathcal{P}(q(x)):dx)d\mu(q)},$$
(3.1)

where $q \in \mathcal{S}'(\mathbb{R}^2)$, $d\mu = d\mu_m$ is the Gaussian measure with mean zero and covariance $(-\Delta + \mathbf{m}^2)^{-1}$ and $\mathscr{P} = \mathscr{P}^{\pm}_{\lambda,\sigma}$ is an even polynomial of the form

$$\mathcal{P}_{\lambda,\sigma}^{\pm}(q) = \lambda(\mathcal{R}(q) \pm q^4) + \sigma^2 q^2$$

$$\mathcal{R}(q) = \sum_{n=3}^{N} a_{2n} q^{2n}, \quad a_{2N} > 0.$$
(3.2)

With $+q^4$ we also allow $\mathcal{R}=0$. We do not consider polynomials lacking a quartic term (which are trivial for our purposes).

The Schwinger functions $\mathfrak{S}_{\lambda,m,\sigma} \in \mathscr{S}'(\mathbb{R}^{2n})$ may be constructed using the cluster expansion of Glimm et al. [9] provided λ/m^2 and σ/m are sufficiently small. By analytic continuation one obtains a family of Wightman distributions $\mathcal{W}_{\lambda,m,\sigma}$ satisfying the Wightman axioms and by reconstruction a quantum field theory [18, 14]. The energy-momentum spectrum has isolated single particle states of mass $m_* = m_*(\lambda, m, \sigma)$. We make a finite mass renormalization, taking $\sigma = \sigma_*(\lambda)$ so $m = m_*(\lambda, m, \sigma_*(\lambda))$ [6]. Then (m, σ) are supressed, writing $\mathfrak{S}_{\lambda} = \mathfrak{S}_{\lambda,m,\sigma_*(\lambda)}$, etc. The truncated Schwinger function has a Fourier transform of the form

$$\tilde{\mathfrak{S}}_{\lambda}^{T}(p_{1},\ldots,p_{n}) = \delta(\sum p_{i})\mathring{H}_{\lambda}(p_{1},\ldots,p_{n}), \qquad (3.3)$$

where \mathring{H}_{λ} is a bounded real analytic function in $\left\{p \in \mathbb{R}^{2n}: \sum_{i=1}^{n} p_i = 0\right\}$. (Here and in the following, " \circ " means "Euclidean".)

III.2. The Bethe-Salpeter Equation

We now discuss the (Wick-rotated) Bethe-Salpeter equation, mostly following Spencer and Zirilli [17]. We define $S_{\lambda}(p) = \mathring{H}_{\lambda}(p, -p)$ and

$$\mathring{Q}_{\lambda}(k, p, q) = (2\pi)^{-1} S_{\lambda} \left(p + \frac{k}{2} \right) S_{\lambda} \left(-p + \frac{k}{2} \right) (\delta(p+q) + \delta(p-q))$$

$$\mathring{H}_{\lambda}(k, p, q) = (2\pi)^{-1} \mathring{H}_{\lambda} \left(p + \frac{k}{2}, -p + \frac{k}{2}, -q - \frac{k}{2}, +q - \frac{k}{2} \right)$$

$$\mathring{R}_{3}(k, p, q) = \mathring{Q}_{3}(k, p, q) + \mathring{H}_{3}(k, p, q) .$$
(3.4)

Then \mathring{R}_{λ} is the four point function truncated only in the (1,2), (3,4) channel, k is a center of mass variable for this channel, and (p,q) are relative variables. By $\mathring{Q}_{\lambda}(k)$, $\mathring{H}_{\lambda}(k)$, $\mathring{R}_{\lambda}(k)$ we denote bilinear forms with kernels $\mathring{Q}_{\lambda}(k,p,q)$, etc. We are mainly concerned with $Q_{\lambda}(\varkappa) \equiv \mathring{Q}_{\lambda}((i\varkappa,0))$, $H_{\lambda}(\varkappa) \equiv \mathring{H}_{\lambda}((i\varkappa,0))$, $R_{\lambda}(\varkappa) \equiv \mathring{R}_{\lambda}((i\varkappa,0))$, defined initially for \varkappa imaginary.

Consider the Hilbert spaces

$$\mathcal{K} = L_2^+(\mathbb{R}^2, (p^2 + 1)^{-2}dp)$$

$$\mathcal{K}^* = L_2^+(\mathbb{R}^2, (p^2 + 1)^2dp).$$
(3.5)

For λ sufficiently small the Lehman spectral formula for the two point function takes the form [9]

$$S_{\lambda}(p) = Z_{\lambda}^{2}(p^{2} + m^{2})^{-1} + \int_{(3m-\epsilon)^{2}}^{\infty} (p^{2} + a^{2})^{-1} d\varrho_{\lambda}(a)$$
(3.6)

and it follows that $Q_{\lambda}(\varkappa)$ defines a bounded bilinear form on $\mathscr{K} \times \mathscr{K}$, even for $|\operatorname{Re} \varkappa| < 2m$. By integration by parts in the functional integral (3.1) [8], one may also show that for $\operatorname{Re} \varkappa = 0$, $H_{\lambda}(\varkappa)$ defines a bilinear form on $\mathscr{K} \times \mathscr{K}$, and hence so does $R_{\lambda}(\varkappa)$. Corresponding to the forms we have operators $Q_{\lambda}(\varkappa)$, $H_{\lambda}(\varkappa)$, $R_{\lambda}(\varkappa)$ in $\mathscr{L}(\mathscr{K}, \mathscr{K}^*)$.

It is straightforward that $Q_{\lambda}(\varkappa)^{-1}$ exists and is in $\mathscr{L}(\mathscr{K}^*,\mathscr{K})$. We also have $\|H_{\lambda}(\varkappa)\| \leq \mathscr{O}(\lambda)$ and so $R_{\lambda}(\varkappa)^{-1}$ exists for λ sufficiently small. Thus we may define $K_{\lambda}(\varkappa) \in \mathscr{L}(\mathscr{K}^*,\mathscr{K})$ by

$$K_{\lambda}(\varkappa) \equiv R_{\lambda}(\varkappa)^{-1} - Q_{\lambda}(\varkappa)^{-1} \tag{3.7}$$

and then we have the Bethe-Salpeter equation

$$R_{\lambda}(\varkappa) = Q_{\lambda}(\varkappa) - R_{\lambda}(\varkappa)K_{\lambda}(\varkappa)Q_{\lambda}(\varkappa) . \tag{3.8}$$

Spencer [16] shows that for λ sufficiently small, the kernel $K_{\lambda}(\varkappa, p, q)$ of $K_{\lambda}(\varkappa)$ is analytic and bounded in

$$|\operatorname{Re}\varkappa| < 3m - \varepsilon$$

$$|\operatorname{Imp}_{0}|, |\operatorname{Imq}_{0}| < \frac{3}{4}m - \varepsilon \equiv \delta_{0}$$

$$|\operatorname{Imp}_{1}|, |\operatorname{Imq}_{1}| < \frac{1}{4}m - \varepsilon \equiv \delta_{1}.$$

$$\varepsilon > 0$$
(3.9)

(Note: our (p, q) variables are half those of [16].)

Furthermore in the same domain, $K_{\lambda}(\kappa, p, q)$ is C^{∞} in $\lambda \ge 0$ and the coefficients of the asymptotic series in λ are the usual two particle irreducible diagrams [4]. In first order there is one diagram, and for $\mathscr{P} = \mathscr{P}^{\pm}$ we have

$$K_{\lambda}(\varkappa, p, q) = \pm \frac{3\lambda}{\pi} + \mathcal{O}(\lambda^2)$$
 (3.10)

As a consequence of the analyticity, the operator $K_{\lambda}(\varkappa)$ has an analytic continuation to $|\text{Re}\varkappa| < 2m$. Furthermore $(KQ)_{\lambda}(\varkappa) \equiv K_{\lambda}(\varkappa)Q_{\lambda}(\varkappa)$ is compact and

analytic in this region. Therefore the implicit eigenvalue problem $(KQ)_{\lambda}(\varkappa)\psi = -\psi$ has solutions at only a discrete set of points, and the identity

$$R_{\lambda}(\varkappa) = Q_{\lambda}(\varkappa)(1 + (KQ)_{\lambda}(\varkappa))^{-1} \tag{3.11}$$

provides a meromorphic continuation of $R_{\lambda}(\varkappa)$ to $|\operatorname{Re}\varkappa| < 2m$ (Fredholm theorem). The poles of $R_{\lambda}(\varkappa)$ (= implicit eigenvalues) contain all two particle bound state masses [17].

At this point we remark that it is not necessary to stick with the Hilbert space $\mathcal{K} = L_2^+(\mathbb{R}^2, (p^2+1)^{-2}dp)$. Instead we could take, for example, the smaller spaces $\mathcal{K} = \mathcal{K}_q$,

$$\mathcal{K}_{\alpha} = L_{2}^{+}(\mathbb{R}^{2}, (p^{2}+1)^{-\alpha}dp) \qquad 1 < \alpha < 2.$$
(3.12)

One easily shows that with new $\mathscr{K}, Q_{\lambda}(\varkappa)$ restricts to an element of $\mathscr{L}(\mathscr{K}, \mathscr{K}^*)$ that $K_{\lambda}(\varkappa)$ extends to an element of $\mathscr{L}(\mathscr{K}^*, \mathscr{K})$ (since the kernel is bounded), that $(KQ)_{\lambda}(\varkappa) \in \mathscr{L}(\mathscr{K})$ is compact with the same eigenvalues, and that $R_{\lambda}(\varkappa)$ restricted to $\mathscr{L}(\mathscr{K}, \mathscr{K}^*)$ is given by (3.11). [However we do not have $Q_{\lambda}^{-1} \in \mathscr{L}(\mathscr{K}^*, \mathscr{K})$.] Another possible choice we will use is

$$\mathcal{K} = L_2^+(\mathbb{R}^2, \pi^{-1}(p_0^2 + (p_1^2 + 1)^2)^{-1}dp)$$
(3.13)

One can also take $\mathcal{K} = L_2^+(\mathbb{R}^2, dp)$, however $K_{\lambda}(\varkappa)$ is no longer a bounded operator (as was erroneously stated in [3]).

We also consider the Sobolev-Hardy space A [17], consisting of even functions on \mathbb{R}^2 which have analytic continuations to the tube $\mathbb{R}^2 + iI$ where $I = (-\delta_0, \delta_0) \times (-\delta_1, \delta_1)$ and satisfying

$$\|\psi\| = \sup_{\alpha \in I} \left[\int |w(p + i\alpha)\psi(p + i\alpha)|^2 dp \right]^{1/2} < \infty$$

$$w(p) = (p^2 + 16m^2)^{-2/3} . \tag{3.14}$$

We have the topological inclusions $Z \subset A \subset \mathcal{K}_{4/3} \subset \mathcal{S}'$ [where $Z = C_0^{\infty}(\mathbb{R}^2)^{\sim}$] and hence $\mathcal{S} \subset \mathcal{K}_{4/3}^* \subset A^* \subset Z'$. Using the boundedness and analyticity of $K_{\lambda}(\varkappa, p, q)$ one can show that $K_{\lambda}(\varkappa)$ extends to $\mathcal{L}(A^*, A)$. Furthermore $Q_{\lambda}(\varkappa) \in \mathcal{L}(A, A^*)$, $(KQ)_{\lambda}(\varkappa) \in \mathcal{L}(A)$ is compact with the same eigenvalues, and $R_{\lambda}(\varkappa) \in \mathcal{L}(A, A^*)$ and is given by (3.11).

For λ sufficiently small, the eigenvalue problem $(KQ)_{\lambda}(\varkappa)\psi = -\psi$ on A has been solved by the author and Eckmann [4]. For $\mathscr{P} = \mathscr{P}^+$ there are no solutions, while for $\mathscr{P} = \mathscr{P}^-$ there is one solution $\varkappa = m_B(\lambda)$ which is C^{∞} in $\lambda \geq 0$ and has the expansion

$$m_B(\lambda) = 2m - \frac{9}{4} \frac{\lambda^2}{m^3} + \mathcal{O}(\lambda^4)$$
 (3.15)

Correspondingly the \mathscr{D}^+ field theories have no bound states and the \mathscr{D}^- field theories have one bound state of mass $m_B(\lambda)$.

III.3. The T-Operator

We now define an operator which will turn out to play a role analagous to the non-relativistic \mathbb{T}_{α} . Let \mathring{H}'_{λ} be the amputated Euclidean *n*-point function

$$\mathring{H}'_{\lambda}(p_1, \dots, p_n) = \prod_{j} (p_j^2 + m^2) \mathring{H}_{\lambda}(p_1, \dots, p_n)$$
(3.16)

and

$$\mathring{T}_{\lambda}(k,p,q) = -(2\pi)\mathring{H}'_{\lambda}\left(p + \frac{k}{2}, -p + \frac{k}{2}, -q - \frac{k}{2}, q - \frac{k}{2}\right). \tag{3.17}$$

By integration by parts $\mathring{T}_{\lambda}(k, p, q)$ is a bounded function and we let $\mathring{T}_{\lambda}(k)$ be the associated form on $\mathscr{K}^* \times \mathscr{K}^*$ [\mathscr{K} given by (3.5)]. For \varkappa imaginary we set $T_{\lambda}(\varkappa) = \mathring{T}_{\lambda}((i\varkappa, 0))$.

Lemma 3.1. $T_{\lambda}(\varkappa) \in \mathcal{L}(\mathcal{K}^*, \mathcal{K})$ is meromorphic in $|\operatorname{Re} \varkappa| < 2m$ and is given by

$$T_{\lambda}(\varkappa) = 4(Q_0^{-1}Q_{\lambda})(\varkappa)(1 + (KQ)_{\lambda}(\varkappa))^{-1}K_{\lambda}(\varkappa)(Q_{\lambda}Q_0^{-1})(\varkappa). \tag{3.18}$$

Proof. It suffices to prove the identity for $\text{Re}\varkappa=0$, then the right side provides the continuation with poles at implicit eigenvalues of $(KQ)_{\lambda}(\varkappa)$. We note that $\mathring{Q}_{0}(k)$ is multiplication by $\mathring{Q}_{0}(k,p)$ where

$$\mathring{Q}_0(k,p) = \pi^{-1} \left(\left(p - \frac{k}{2} \right)^2 + m^2 \right)^{-1} \left(\left(p + \frac{k}{2} \right)^2 + m^2 \right)^{-1} \; .$$

Hence we have $\mathring{T}_{\lambda}(k) = -4(\mathring{Q}_{0}^{-1}\mathring{H}_{\lambda}\mathring{Q}_{0}^{-1})(k)$ and hence $T_{\lambda}(\varkappa) = -4(Q_{0}^{-1}H_{\lambda}Q_{0}^{-1})(\varkappa)$. However since $H_{\lambda}(\varkappa) = R_{\lambda}(\varkappa) - Q_{\lambda}(\varkappa)$ we have

$$H_{\lambda}(\varkappa) = Q_{\lambda}(\varkappa)((1 + (KQ)_{\lambda}(\varkappa))^{-1} - 1)$$

= $-Q_{\lambda}(\varkappa)(1 + (KQ)_{\lambda}(\varkappa))^{-1}(KQ)_{\lambda}(\varkappa)$ Q.E.D.

Lemma 3.2.(a) $(Q_0^{-1}Q_{\lambda})(\varkappa) \in \mathscr{L}(\mathscr{K})$ is multiplication by a function $(Q_0^{-1}Q_{\lambda})(\varkappa,p)$ which is analytic and bounded in $|\operatorname{Re}\varkappa| < 3m - \varepsilon$, $|\operatorname{Imp}_0| < \frac{3}{4}m - \varepsilon$, $|\operatorname{Imp}_1| < \frac{1}{4}m - \varepsilon$.

(b)
$$\lim_{\lambda \to 0} (Q_0^{-1}Q_{\lambda})(\kappa, p) = 1$$
 uniformly in this region.

Proof. We have

$$(\mathring{\mathcal{Q}}_0^{-1}\mathring{\mathcal{Q}}_\lambda)(k,p) = D_\lambda \left(p + \frac{k}{2}\right) D_\lambda \left(p - \frac{k}{2}\right), \tag{3.19}$$

where

$$D_{\lambda}(p) = (p^2 + m^2) S_{\lambda}(p)$$

$$= Z_{\lambda}^2 + \int_{3m-\epsilon}^{5} (p^2 + m^2) (p^2 + a^2)^{-1} d\varrho_{\lambda}(a) . \tag{3.20}$$

Thus $(Q_0^{-1}Q_\lambda)(\varkappa,p) = (\mathring{Q}_0^{-1}\mathring{Q}_\lambda)((i\varkappa,0),p)$ depends on $D_\lambda \left(p_0 \pm \frac{i\varkappa}{2}, p_1\right)$. This is analytic and bounded in the stated region since the denominator is bounded away from zero. The convergence follows from $Z_\lambda \to 1$, $\varrho_\lambda \to 0$. Q.E.D.

Corollary 3.3. Lemma 3.1 holds for any of the spaces \mathcal{K} , A given by (3.12), (3.13), (3.14).

Proof. Lemma 3.2a shows that $(Q_0^{-1}Q_{\lambda})(\varkappa)$ restricts to $\mathcal{L}(\mathcal{K})$ or $\mathcal{L}(A)$. The other operators are treated similarly. Q.E.D.

In the next lemma we explore the analytic structure of the kernel $T_{\lambda}(\varkappa, p, q)$ near the threshold (2m, 0, 0) and find that it is meromorphic in \varkappa on a two sheeted domain with branch point at $\varkappa = 2m$.

Lemma 3.4. $T_{\lambda}(\varkappa,p,q)$ has the form $T_{\lambda}(\varkappa,p,q)=\hat{T}_{\lambda}((4m^2-\varkappa^2)^{1/2},p,q)$ where $\hat{T}_{\lambda}(\zeta,p,q)$ is meromorphic in $|\zeta|<\frac{m}{8}$ and analytic in |p|,|q|< m/8. Furthermore, let $\zeta_B(\lambda)=(4m-m_B(\lambda)^2)^{1/2}$. Then we have $\hat{T}_{\lambda}(\zeta,p,q)=U_{\lambda}(\zeta,p,q)+V_{\lambda}(\zeta,p,q)$ where $U_{\lambda}(\zeta,p,q)$ and $(\zeta\pm\zeta_B(\lambda))V_{\lambda}(\zeta,p,q)$ (for $\mathscr{P}=\mathscr{P}^{\pm}$) are analytic and bounded in $|\zeta|,|p|,|q|< m/8$ with constants which are respectively $\mathcal{O}(\lambda)$, $\mathcal{O}(\lambda^2)$.

Proof. Consider all operators relative to the A, A^* pairing. For $f \in A$, and $p \in \mathbb{R}^2 + iI$ define $\langle \varepsilon_p, f \rangle = f(p)$. Then $\varepsilon_p \in A^*$, ε_p is analytic in $\mathbb{R}^2 + iI$ and for $g \in \mathscr{S} \subset A^*$ we have $\int \overline{g}(p) \langle \varepsilon_p, f \rangle dp = \langle g, f \rangle$. Now we claim that for $|\text{Re}\varkappa| < 2m$ (except a discrete set) and $p, q \in \mathbb{R}^2$

$$T_{\lambda}(\varkappa, p, q) = 4(Q_0^{-1}Q_{\lambda})(\varkappa, p) \langle \varepsilon_p, (1 + (KQ)_{\lambda}(\varkappa))^{-1}K_{\lambda}(\varkappa)\varepsilon_q \rangle$$
$$\cdot (Q_0^{-1}Q_{\lambda})(\varkappa, q) . \tag{3.21}$$

This is true because it holds in the sense of distributions by Lemma 3.1. This equation provides a continuation of $T_{\lambda}(\varkappa,p,q)$ to $|\operatorname{Re}\varkappa| < 2m, p, q \in \mathbb{R}^2 + iI$. In fact every factor except $(1 + (KQ)_{\lambda}(\varkappa))^{-1}$ also continues to $|\operatorname{Re}\varkappa| < 3m - \varepsilon$ and hence in

terms of $\zeta = (4m^2 - \kappa^2)^{1/2}$ is analytic in $|\zeta| < \frac{m}{8}$. Furthermore these terms are

bounded in $|\zeta|, |p|, |q| < m/8$ ($\|\varepsilon_p\|$ is bounded on compact sets) and we have a factor of λ from $\|K_{\lambda}(\varkappa)\| \le \mathcal{O}(\lambda)$.

It remains to consider the factor $(1+(KQ)_{\lambda}(\zeta))^{-1} \in \mathcal{L}(A)$ where $(KQ)_{\lambda}(\zeta) = (KQ)_{\lambda}((4m^2-\zeta^2)^{1/2})$. In [4] it is shown that $(KQ)_{\lambda}(\zeta) = \tau_{1,\lambda}(\zeta) + \tau_{2,\lambda}(\zeta)$ where $\tau_{1,\lambda}(\zeta)$ is a rank one operator with a pole at $\zeta = 0$ and satisfies $\|\zeta\tau_{1,\lambda}(\zeta)\| \leq \mathcal{O}(\lambda)$ while $\tau_{2,\lambda}(\zeta)$ is analytic near zero and satisfies $\|\tau_{2,\lambda}(\zeta)\| \leq \mathcal{O}(\lambda)$. Thus in

$$(1+KQ)^{-1} = (1+(1+\tau_2)^{-1}\tau_1)^{-1}(1+\tau_2)^{-1}$$

we may focus attention on the first factor. Since $(1+\tau_2)^{-1}\tau_1$ is rank one we have

$$(1+(1+\tau_2)^{-1}\tau_1)^{-1} = 1-(1+\operatorname{Tr}(1+\tau_2)^{-1}\tau_1)^{-1}(1+\tau_2)^{-1}\tau_1$$

and this defines the division into U_{λ}, V_{λ} . We have immediately $|U_{\lambda}(\zeta, p, q)| \leq \mathcal{O}(\lambda)$. For the second term multiply the numerator and denominator by ζ . Then the numerator $\zeta(1+\tau_2)^{-1}\tau_1$ is holomorphic and bounded by $\mathcal{O}(\lambda)$ for a second factor of λ . The denominator $\zeta(1+\operatorname{Tr}((1+\tau_2)^{-1}\tau_1))$ is the function $H(\lambda,\zeta)$ of [4] which has a simple zero at $\zeta=\mp\zeta_B(\lambda)$ and satisfies $|(\zeta\pm\zeta_B(\lambda))H(\lambda,\zeta)^{-1}|\leq \mathcal{O}(1)$. Thus we have $|(\zeta\pm\zeta_B(\lambda))V_{\lambda}(\zeta,p,q)|\leq \mathcal{O}(\lambda^2)$. Q.E.D.

III.4. The S-Operator

We now consider the real time aspects of $\mathcal{P}(\varphi)_2$ theories. It is known that time ordered products $\tau_{\lambda}(p_1,\ldots,p_n)\in\mathcal{S}'(\mathbb{R}^{2n})$ and retarded products exist for these models, and hence so does the momentum analytic function $H_{\lambda}(k_1,\ldots,k_n)$, defined on the "axiomatic domain" in $\sum k_j=0$, whose boundary values are locally the $\tau_{\lambda}(p_1,\ldots,p_n)$. At Euclidean points these are the Schwinger functions [6]:

$$(i)^{n-1}H_{\lambda}(\mathring{p}_{1},\ldots,\mathring{p}_{n}) = \mathring{H}_{\lambda}(p_{1},\ldots,p_{n}), \qquad (3.22)$$

where for $p = (p_0, p_1) \in \mathbb{R}^2$ we denote $\mathring{p} = (ip_0, p_1)$. We also consider the amputated functions τ'_{λ} which are the boundary values of

$$H'_{\lambda}(k_1, \dots, k_n) = \prod_{j} (k_j \cdot k_j - m^2) H_{\lambda}(k_1, \dots, k_n)$$
(3.23)

(here $k \cdot k = k_0^2 - k_1^2$). Then H'_{λ} and \mathring{H}'_{λ} are also related by an equation like (3.22).

The LSZ formula [10] gives the scattering operator (S-matrix) in terms of the restriction of τ'_{λ} to the mass shell. This formula has been used by Eckmann et al. [6] to show that the scattering operator is a C^{∞} function of $\lambda \ge 0$ and hence that standard perturbation theory is asymptotic. We remark that in general for the LSZ formula one must require all velocities to be non-overlapping. However for two particle scattering it is sufficient to require that the initial and final velocities be separately non-overlapping [1]. This is fortunate since, as noted in the non-relativistic case, we are kinematically constrained to forward scattering on one spatial dimension.

In detail, let ψ_{\pm} be the canonical injections of the Fock space

$$\mathscr{F} = \bigoplus_{n=0}^{\infty} \left[\bigotimes_{s}^{n} L_{2}(\mathbb{R}^{1}, dp) \right]$$

(note: Lesbesgue measure) into the physical Hilbert Space as given by the Haag-Ruelle scattering theory. Let Π be the projection of $L_2(\mathbb{R}^2, dp)$ onto $L_2(\mathbb{R}^1, dp) \otimes_s L_2(\mathbb{R}^1, dp) \subset \mathscr{F}$. We define the kernel of the S-matrix $S_{\lambda} \in \mathscr{S}'(\mathbb{R}^4)$ by

$$(\psi_{+}(\Pi g), \psi_{-}(\Pi f)) = \int \bar{g}(p_1, p_2) S_{\lambda}(p_1, p_2, p_3, p_4) f(p_3, p_4) dp_1, \dots, dp_4.$$
 (3.24)

Then the LSZ formula says that away from $p_1 = p_2$ and $p_3 = p_4$ we have [with $\omega(p) = (p^2 + m^2)^{1/2}$]

$$\begin{split} S_{\lambda}(p_{1},...,p_{4}) &= (2!)^{-1} \left[\delta(p_{1} - p_{3}) \delta(p_{2} - p_{4}) + \delta(p_{1} - p_{4}) \delta(p_{2} - p_{3}) \right. \\ &+ Z_{\lambda}^{-4} (2\pi)^{2} \prod_{j} (2\omega(p_{j}))^{-1/2} \tau_{\lambda}'(\omega(p_{1}),p_{1},...,-\omega(p_{4}),-p_{4}) \\ &\cdot \delta(p_{1} + p_{2} - p_{3} - p_{4}) \delta(\omega(p_{1}) + ... - \omega(p_{4})) \right]. \end{split} \tag{3.25}$$

We now restrict to small momenta in this formula. For the time ordered product this means we are interested in a center of mass energy \varkappa in an interval $(2m, 2m + \varepsilon)$ and all other momenta in a neighborhood of zero. In such a region it follows from Lemma 3.4 that the distribution τ'_{λ} is actually an analytic function. To see

this consider $\tau'_{\lambda}(k, p, q) = \tau'_{\lambda}\left(p + \frac{k}{2}, ...\right)$, the boundary value of $H'_{\lambda}(k, p, q) = H'_{\lambda}\left(p + \frac{k}{2}, ...\right)$, and note that by Lorentz invariance it suffices to consider $\tau'_{\lambda}((\varkappa, 0), p, q)$. Then by analytically continuing (3.17) we have

$$\tau'_{\lambda}((\varkappa,0),p,q) = H'_{\lambda}((\varkappa+i0^+,0),p,q)$$

$$= -i(2\pi)^{-1} T_{\lambda}(\varkappa+i0^+,(ip_0,p_1),(iq_0,q_1)). \tag{3.26}$$

To compare the scattering amplitude with the non-relativistic formula, we shift to center of mass and relative variables in S_{λ} , defining $S_{\lambda}(k,p;k',q)$ by $S_{\lambda}(k,p;k',q)$ = $S_{\lambda}\left(p+\frac{k}{2},\ldots,-q+\frac{k'}{2}\right)$. Then $S_{\lambda}(k,p;k',q)=S_{\lambda}(k,p,q)\delta(k-k')$ and we consider the center of mass at rest defining $S_{\lambda}(p,q)\in \mathcal{S}'(\mathbb{R}^2)$ by $S_{\lambda}(p,q)=S_{\lambda}(0,p,q)$. Then by (3.25), (3.26), for (p,q) small and away from zero

$$S_{\lambda}(p,q) = \delta(p-q) - 2\pi i Z_{\lambda}^{-4} (8\omega(p)\omega(q))^{-1} \cdot T_{\lambda}(2\omega(p) + i0^{+}, (0, p), (0, q))\delta(2\omega(p) - 2\omega(q)) .$$
(3.27)

IV. $\mathscr{P}(\varphi)_{2,c}$ Models as $c \to \infty$

IV.1. The Models

We define the $\mathcal{P}(\varphi)_{2,c}$ models in terms of their Schwinger functions $\mathfrak{S}_{\lambda,m,\sigma,c}$. These are given by a functional integral like (3.1) except that now $d\mu = d\mu_{m,c}$ is the Gaussian measure on $\mathcal{S}'(\mathbb{R}^2)$ with covariance

$$\left(-\frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial x^2} + m^2 c^2\right)^{-1} \tag{4.1}$$

and $\mathscr{P} = \mathscr{P}_{\lambda,\sigma,c}^{\pm}$ is the polynomial

$$\mathcal{P}_{\lambda,\sigma,c}^{\pm}(q) = \lambda(\mathcal{R}_{c}(q) \pm q^{4}) + \sigma^{2}c^{2}q^{2}$$

$$\mathcal{R}_{c}(q) = \sum_{n=3}^{N} c^{-n+2} a_{2n}q^{2n} .$$
(4.2)

With this choice we have the scaling relation (at least formally)

$$\mathfrak{S}_{\lambda,m,\sigma,c}(t_1,x_1,\ldots,t_n,x_n) = \alpha^{n/2} \beta^{-n/2} \mathfrak{S}_{\lambda\alpha/\beta^3,m\alpha/\beta^2,\sigma\alpha/\beta^2,c\beta/\alpha}(\alpha t_1,\beta x_1,\ldots) . \tag{4.3}$$

In particular with $\alpha = c^2$, $\beta = c$ we have

$$\mathfrak{S}_{\lambda,m,\sigma,c}(t_1,x_1,\ldots,t_n,x_n) = c^{n/2} \mathfrak{S}_{\lambda/c,m,\sigma}(c^2t_1,cx_1,\ldots) . \tag{4.4}$$

For arbitrary (λ, m) , c sufficiently large, and σ sufficiently small we take this as the definition of $\mathfrak{S}_{\lambda,m,\sigma,c}$. We further define $\mathfrak{S}_{\lambda,c} = \mathfrak{S}_{\lambda,m,\sigma,c}(\lambda/c),c$ and then

$$\mathfrak{S}_{\lambda,c}(t_1, x_1, \dots, t_n x_n) = c^{n/2} \mathfrak{S}_{\lambda/c}(c^2 t_1, c x_1, \dots)$$
 (4.5)

We also define distributions \mathcal{W}_{1} by

$$\mathcal{W}_{\lambda,c}(t_1, x_1, \dots, t_n, x_n) = c^{n/2} \mathcal{W}_{\lambda/c}(c^2 t_1, c x_1, \dots) . \tag{4.6}$$

Then the $W_{\lambda,c}$ are the analytic continuations of $\mathfrak{S}_{\lambda,c}$ and satisfy the Wightman axioms for a two-dimensional Minkowski space with quadratic form

$$((t,x)\cdot(t,x))_c = c^2t^2 - x^2$$
.

By reconstruction we obtain a $\mathcal{P}(\varphi)_{2,c}$ quantum field theory. We still have single particles of mass m, i.e. the spectral measure $dE_{\lambda,c}(p_0,p_1)$ has support on the hyperbolas $p_0^2/c^2-p_1^2=mc^2$.

The momentum analytic function $H_{\lambda,c}(k_1,\ldots,k_n)$ and the amputated function $H'_{\lambda,c}(k_1,\ldots,k_n)$ are given by

$$H_{\lambda,c}(k_1,\ldots,k_n) = c^{-5n/2+3} H_{\lambda/c}(k_{1,c},\ldots,k_{n,c})$$

$$H'_{\lambda,c}(k_1,\ldots,k_n) = c^{-n/2+3} H'_{\lambda/c}(k_{1,c},\ldots,k_{n,c}),$$
(4.7)

where for $k = (k^0, k^1)$ we define

$$k_c = (k^0/c^2, k^1/c)$$
 (4.8)

If we define $\mathring{Q}_{\lambda,c}$, $\mathring{R}_{\lambda,c}$, $\mathring{T}_{\lambda,c}$ in terms of $\mathring{H}_{\lambda,c}$, $\mathring{H}'_{\lambda,c}$ as before, then

$$\mathring{Q}_{\lambda,c}(k,p,q) = c^{-7} \mathring{Q}_{\lambda/c}(k_c, p_c, q_c)
\mathring{R}_{\lambda,c}(k,p,q) = c^{-7} \mathring{R}_{\lambda/c}(k_c, p_c, q_c)
\mathring{T}_{\lambda,c}(k,p,q) = c \mathring{T}_{\lambda/c}(k_c, p_c, q_c) .$$
(4.9)

These are the kernels of operators $\mathring{Q}_{\lambda,c}(k)$, etc. in $\mathscr{L}(\mathscr{K},\mathscr{K}^*)$, and we define $Q_{\lambda,c}(\varkappa) = \mathring{Q}_{\lambda,c}((i\varkappa,0))$, etc. If we further define

$$K_{\lambda,c}(\varkappa,p,q) = cK_{\lambda/c}(\varkappa/c^2, p_c, q_c)$$
(4.10)

and let $K_{\lambda,c}(\varkappa) \in \mathcal{L}(\mathcal{K}^*,\mathcal{K})$ be the operator with this kernel, then we have the Bethe-Salpeter equation

$$R_{\lambda,c}(\varkappa) = Q_{\lambda,c}(\varkappa) - R_{\lambda,c}(\varkappa) K_{\lambda,c}(\varkappa) Q_{\lambda,c}(\varkappa) \ .$$

IV.2. The $c \rightarrow \infty$ Limit

Now we are ready to discuss the non-relativistic limit. The following four theorems all say that some object for the $\mathscr{P}^{\pm}(\varphi)_{2,c}$ field theory converges to a corresponding object for the $\alpha\delta(x)$ model, $\alpha = \pm 3\lambda/m^2$, as defined in Section II.

Theorem 4.1. Let c be sufficiently large.

- a) $(KQ)_{\lambda,c}(\varkappa) \in \mathcal{L}(\mathcal{K})$ is compact and analytic in $|\text{Re}\varkappa| < 2mc^2$.
- b) For $\mathscr{P} = \mathscr{P}^{\pm}$ the eigenvalue equation $(KQ)_{\lambda,c}(\varkappa)\psi = -\psi$ has respectively no solutions or one solution at $\varkappa = m_B(\lambda/c)c^2$.

c) The corresponding masses (\varnothing or $\{m_B(\lambda/c)\}$) coincide with the two particle bound state masses for the \mathscr{P}^{\pm} field theory.

d) Let $E_{B,c}(\lambda) = m_B(\lambda/c)c^2 - 2mc^2$ be the binding energy for the \mathscr{P}^- bound state. Then with $\alpha = -3\lambda/m^2$

$$\lim_{c \to \infty} E_{B,c}(\lambda) = E_B(\alpha) .$$

Proof. Define $\sigma_c \in \mathcal{L}(\mathcal{K})$ by

$$(\sigma_c \psi)(p) = c^{-3/2} \psi(p_c)$$
.

This operator has a bounded inverse, namely $(\sigma_c)^{-1} = \sigma_{c^{-1}}$. Since

$$(KQ)_{\lambda,c}(\varkappa, p, q) = c^{-3}(KQ)_{\lambda/c}(\varkappa/c^2, p_c, q_c)$$

we have

$$(KQ)_{\lambda,c}(\varkappa) = \sigma_c(KQ)_{\lambda/c}(\varkappa/c^2)\sigma_c^{-1} . \tag{4.11}$$

Now a) follows immediately. Furthermore $(KQ)_{\lambda,c}(\varkappa)$ has eigenvalue -1 if and only if $(KQ)_{\lambda/c}(\varkappa/c^2)$ has eigenvalue -1, and so b) follows from the results quoted in § II.2. Part c) also follows from the same result for c=1. For Part d) we use (3.15) to obtain

$$\lim_{c \to \infty} E_{B,c}(\lambda) = -\frac{9}{4} \frac{\lambda^2}{m^3} = E_B(\alpha) \quad \text{Q.E.D.}$$

We can rephrase d) by saying that the implicit eigenvalues of $(KQ)_{\lambda,c}(E+2mc^2)$ converge to those of $V_{\alpha}(H_0-E)^{-1}$. The next theorem indicates why this should be true: the operators themselves converge. However, since they act on different Hilbert spaces, we must clarify what this statement means.

Until now the space \mathscr{K} could be any of (3.5), (3.12), (3.13); now we only consider the last, namely $\mathscr{K} = L_2^+(\mathbb{R}^2, \pi^{-1}(p_0^2 + (p_1^2 + 1)^2)^{-1}dp)$. The advantage of this choice is that with $\mathscr{H} = L_2^+(\mathbb{R}^1, (p_1^2 + 1)^{-1}dp_1)$ the map $i \in \mathscr{L}(\mathscr{H}, \mathscr{K})$ defined by

$$(ig)(p_0, p_1) = g(p_1) \tag{4.12}$$

is an isometry. (Thus one could regard \mathscr{H} as a subspace of \mathscr{K} .) The adjoint $i^* \in \mathscr{L}(\mathscr{K}^*, \mathscr{H}^*)$ is a partial isometry onto \mathscr{H}^* and is given by

$$(i*f)(p_1) = \int f(p_0, p_1) dp_0 . \tag{4.13}$$

Theorem 4.2. Let $\alpha = \pm 3\lambda/m^2$ and E < 0. Then in the sense of strong operator convergence:

a)
$$\lim_{c \to \infty} i^* Q_{\lambda,c}(E + 2mc^2)i = (2m^2)^{-1}(H_0 - E)^{-1}$$
 in $\mathcal{L}(\mathcal{H}, \mathcal{H}^*)$.

b)
$$\lim_{c\to\infty} K_{\lambda,c}(E+2mc^2) = i(2m^2V_{\alpha})i^*$$
 in $\mathcal{L}(\mathcal{K}^*,\mathcal{K})$.

c)
$$\lim_{\alpha \to \infty} (KQ)_{\lambda,c} (E + 2mc^2) i = iV_{\alpha}(H_0 - E)^{-1}$$
 in $\mathcal{L}(\mathcal{H}, \mathcal{K})$.

d)
$$\lim_{c \to \infty} i R_{\lambda,c}(E + 2mc^2)i = (2m^2)^{-1}(H_{\alpha} - E)^{-1}$$
 in $\mathcal{L}(\mathcal{H}, \mathcal{H}^*)$.

e)
$$\lim_{c \to \infty} T_{\lambda,c}(E + 2mc^2) = i(8m^2 \mathbb{T}_{\alpha}(E))i^*$$
 in $\mathcal{L}(\mathcal{K}^*, \mathcal{K})$.

For d), e) we exclude $E = E_B(\alpha)$ if $\mathcal{P} = \mathcal{P}^-$.

Proof.

a) We have

$$\begin{split} &Q_{\lambda,c}(\varkappa,p,q) = \pi^{-1} S_{\lambda,c} \bigg(p_0 + \frac{i \varkappa}{2}, \, p_1 \bigg) S_{\lambda,c} \bigg(p_0 - \frac{i \varkappa}{2}, \, p_1 \bigg) \delta(p-q) \\ &S_{\lambda,c}(p) = Z_{\lambda,c}^2((p_0/c)^2 + p_1^2 + m^2c^2)^{-1} + \int\limits_{3m-c}^{\infty} \bigg(\bigg(\frac{p_0}{c} \bigg)^2 + p_1^2 + a^2c^2 \bigg)^{-1} d\varrho_{\lambda,c}(a) \; . \end{split}$$

However $Z_{\lambda,c} = Z_{\lambda/c} \rightarrow 1$ and $Q_{\lambda,c} = Q_{\lambda/c} \rightarrow 0$ and

$$\begin{split} &\lim_{c\to\infty} \left(c^{-2} \left(p_0 \pm \frac{i}{2} (E + 2mc^2)\right)^2 + p_1^2 + m^2 c^2\right)^{-1} \\ &= (2m)^{-1} \left(\left(\frac{p_1^2}{2m} - \frac{E}{2}\right) \pm i p_0\right)^{-1} \end{split}$$

and so

$$\lim_{c\to\infty} Q_{\lambda,c}(E+2mc^2,p,q) = Q_{\infty}(E,p,q)$$

$$Q_{\infty}(E,p,q) = (4m^2\pi)^{-1} \left(\left(\frac{p_1^2}{2m} - \frac{E}{2} \right)^2 + p_0^2 \right)^{-1} \delta(p-q) \ .$$

Now $Q_{\infty}(E,p,q)$ is the kernel of a bilinear form on $\mathscr{K}\times\mathscr{K}$ and defines an operator $Q_{\infty}(E)\in\mathscr{L}(\mathscr{K},\mathscr{K}^*)$. Then $Q_{\lambda,c}(E+2mc^2)\to Q_{\infty}(E)$ strongly since this holds a dense set [say $\mathscr{S}(\mathbb{R}^2)$] and $\|Q_{\lambda,c}(E+2mc^2)\|$ is bounded. Finally we note that as bilinear forms on $\mathscr{H}\times\mathscr{H}$

$$i^*Q_{\infty}(E)i = (2m^2)^{-1}(H_0 - E)^{-1}$$
 (4.14)

b) Using (3.10) we have

$$\begin{split} K_{\lambda,\infty}(p,q) &\equiv \lim_{c \to \infty} K_{\lambda,c}(E+2mc^2,p,q) \\ &= \lim_{c \to \infty} c K_{\lambda/c}(E/c^2+2m,p_c,q_c) \\ &= \pm \frac{3\lambda}{\pi} \; . \end{split}$$

If $K_{\lambda,\infty} \in \mathcal{L}(\mathcal{K}^*,\mathcal{K})$ is the operator with this kernel then $K_{\lambda,c}(E+2mc^2) \to K_{\lambda,\infty}$. The result now follows from

$$K_{\lambda,\infty} = i(2m^2 V_{\alpha})i^* . \tag{4.15}$$

c) It suffices to note

$$K_{\lambda,\infty}Q_{\infty}(E)i = iV_{\alpha}(H_0 - E)^{-1}$$
 (4.16)

$$\begin{split} \mathrm{d)} \quad & \lim_{c \to \infty} i^* R_{\lambda,c} (E + 2mc^2) i \\ & = \lim_{c \to \infty} i^* Q_{\lambda,c} (E + 2mc^2) (1 + (KQ)_{\lambda,c} (E + 2mc^2))^{-1} i \\ & = i^* Q_{\infty} (E) (1 + K_{\lambda,\infty} Q_{\infty} (E))^{-1} i \\ & = (2m^2)^{-1} (H_0 - E)^{-1} (1 + V_{\alpha} (H_0 - E))^{-1} \\ & = (2m^2)^{-1} (H_0 - E)^{-1} \; . \end{split}$$

Note that $R_{\lambda,c}(E+2mc^2)$ has a pole at $E+2mc^2=m_B(\lambda/c)c^2$ which we avoid for c large by the assumption $E \neq E_B(\alpha)$.

e) We have the identity

$$T_{\lambda,c}(\varkappa) = 4(Q_0^{-1}Q_{\lambda})_c(\varkappa)(1 + (KQ)_{\lambda,c}(\varkappa))^{-1}K_{\lambda,c}(\varkappa)(Q_{\lambda}Q_0^{-1})_c(\varkappa)$$
(4.17)

which follows by applying $\sigma_c[\cdot]\sigma_c^*$ to Lemma 3.1. Here $(Q_0^{-1}Q_{\lambda})_c(\varkappa)\in \mathscr{L}(\mathscr{K})$ is interpreted as multiplication by $(Q_0^{-1}Q_{\lambda/c})(\varkappa/c^2,p_c)$ as given by Lemma 3.2a. Then $(Q_0^{-1}Q_{\lambda})_c(E+2mc^2)$ is multiplication by $(Q_0^{-1}Q_{\lambda/c})(E/c^2+2m,p_c)$ and hence converges to the identity by Lemma 3.2b. Thus we have

$$\begin{split} &\lim_{c \to \infty} T_{\lambda,c}(E + 2mc^2) \\ &= 4(1 + K_{\lambda,\infty} Q_{\infty}(E))^{-1} K_{\lambda,\infty} \\ &= 8m^2 i ((1 + V_{\alpha}(H_0 - E))^{-1} V_{\alpha}) i^* \\ &= 8m^2 i \mathbb{T}_{\omega} i^* \; . \quad \text{O.E.D.} \end{split}$$

Next we study the convergence of the kernel of $T_{\lambda,c}(E+2mc^2)$ and enlarge the domain in E to include positive values. Let \mathscr{D} be the two sheeted domain for $(-E)^{1/2}$ with $E_R(\alpha)$ deleted.

Theorem 4.3. For c sufficiently large, $T_{\lambda,c}(E+2mc^2, p, q)$ is analytic in any compact set in $\{E \in \mathcal{D}: p, q \in \mathbb{C}^2\}$ and is bounded there uniformly in c. Furthermore for $p, q \in \mathbb{R}^2$

$$\lim_{c \to \infty} T_{\lambda,c}(E + 2mc^2, (p_0, p_1), (q_0, q_1)) = 8m^2 \, \mathbb{T}_{\alpha}(E, p_1, q_1)$$

uniformly on compact sets in \mathcal{D} .

Proof. By (4.9) we have

$$\begin{split} T_{\lambda,c}(E+2mc^2,p,q) &= c \, T_{\lambda/c}(E/c^2+2m,p_c,q_c) \\ &= c \, \hat{T}_{\lambda/c}((4m^2-(E/c^2+2m)^2)^{1/2},p_c,q_c) \; . \end{split}$$

The analyticity follows by Lemma 3.4 since

$$(4m^2 - (E/c^2 + 2m)^2)^{1/2} = (4m + E/c^2)^{1/2}(-E/c^2)^{1/2}$$

and the pole is avoided for c sufficiently large.

For the uniform bound we also use Lemma 3.4. The U term in immediately $\mathcal{O}(1)$, and for the V term we must bound

$$c(\lambda/c)^2|(4m^2-(E/c^2+2m)^2)^{1/2}\pm(4m^2-m_B(\lambda/c)^2)^{1/2}|^{-1}$$
.

Rationalizing this expression, the numerator is $\mathcal{O}(c^{-1})$, and so this is bounded by a constant times

$$\begin{split} &= c^{-2}|-(E/c^2+2m)^2+m_B(\lambda/c)^2|^{-1}\\ &= c^2|m_B(\lambda/c)c^2-E-2mc^2|^{-1}|m_B(\lambda/c)c^2+E+2mc^2|^{-1}\\ &\leq \mathcal{O}(1)\;. \end{split}$$

For the convergence we note that by Vitali's theorem it is sufficient to prove convergence for $p, q \in \mathbb{R}^2$ and Re E < 0 (first sheet). However we have convergence

here in the sense of distributions in (p,q) by Theorem 4.2e, and for uniformly bounded analytic functions this implies pointwise convergence. Q.E.D.

Theorem 4.4. Let $S_{\lambda,c}(p,q) \in \mathcal{S}'(\mathbb{R}^2)$ be the two body scattering amplitude for $\mathscr{P}^{\pm}(\varphi)_{2,c}$. Then away from p,q=0 with $\alpha=\pm 3\lambda/m^2$

$$\lim_{c \to \infty} S_{\lambda,c}(p,q) = \mathbb{S}_{\alpha}(p,q) .$$

Proof. Here $S_{\lambda,c}(p,q)$ is the amplitude for relative momentum q to scatter to relative momentum p, defined from the full kernel $S_{\lambda,c}(p_1,\ldots,p_4)$ as in §III.4. We have $S_{\lambda,c}(p,q)=c^{-1}S_{\lambda/c}(p/c,q/c)$ and (3.27) scales to become

$$\begin{split} S_{\lambda,c}(p,q) &= \delta(p-q) - 2\pi i (Z_{\lambda,c})^{-4} c^4 (8\omega_c(p)\omega_c(q))^{-1} \\ &\quad \cdot T_{\lambda,c}(2\omega_c(p) + i0^+, (0,p), (0,q)) \delta(2\omega_c(p) - 2\omega_c(q)) \ . \end{split}$$

Then using $\omega_c(p) = mc^2 + p^2/2m + \mathcal{O}(c^{-2})$) and Theorem 4.3 we have

$$\begin{split} \lim_{c\to\infty} S_{\lambda,c}(p,q) &= \delta(p-q) - 2\pi i \mathbb{T}_\alpha(p^2/m+i0^+,p,q) \delta(p^2/m-q^2/m) \\ &= \mathbb{S}_\alpha(p,q) \ , \quad \text{Q.E.D.} \end{split}$$

V. Concluding Remarks

- 1. We have not dealt specifically with the question of asymptotics. However by combining the methods of the present paper with those of [4] one can show that $R_{\lambda,c}(E+2mc^2)$, for example, is a C^{∞} function of $1/c \ge 0$. Thus $R_{\lambda,c}(E+2mc^2)$ has an asymptotic expansion in powers of 1/c with leading term $(H_{\alpha}-E)^{-1}$. There seems to be no obstacle to extending this type of result to the S-matrix.
 - 2. We conjecture that the 2n-point function:

$$\tau_{\lambda,c}(p_1+(mc^2,0),\ldots,p_n+(mc^2,0),p_{n+1}-(mc^2,0),\ldots,p_{2n}-(mc^2,0))$$

has a non trivial limit as $c \to \infty$. (Theorem 4.3 establishes this for the 4-point function.) The limit should be the 2n-point function for a non-relativistic multiparticle system with δ -function potentials.

- 3. The methods of this paper should work for other models once one has control over the Bethe-Salpeter kernel. For Yukawa models we still expect to get a δ -function potential in the limit. This is consistent with a Yukawa potential of the form $c^2(p^2+mc^2)^{-1}$ which also converges to a constant. It is not clear whether the Yukawa potential plays any more fundamental role. For models with a massless particle exchange one presumably gets the Coulomb potential in the limit.
- 4. A related question to the present investigation is to reinstate \hbar as a parameter and ask for the limit $\hbar \to 0$. One expects the quantum field theory to converge to a classical field theory. Some results in this direction for $\mathcal{P}(\varphi)_2$ have been obtained by Hepp [11] and Eckmann [5].

References

- 1. Bros, J., Epstein, H., Glaser, V.: Helv. Phys. Acta 45, 149 (1972)
- 2. Dimock, J.: Commun. math. Phys. 35, 347 (1974)
- 3. Dimock, J., Eckmann, J.P.: Commun. math. Phys. 51, 41 (1976)

- 4. Dimock, J., Eckmann, J. P.: Ann. Phys. 103, 289 (1977)
- 5. Eckmann, J.P.: Remarks on the classical limit of quantum field theories. Geneva Preprint
- 6. Eckmann, J.P., Epstein, H., Fröhlich, J.: Ann. Inst. Henri Poincaré 25, 1 (1976)
- Faris, W.: Self-adjoint operators. Lecture notes in mathematics, Vol. 433. Berlin-Heidelberg-New York: Springer 1975
- 8. Glimm, J., Jaffe, A.: Commun. math. Phys. 44, 293 (1975)
- Glimm, J., Jaffe, A., Spencer, T.: Ann. Math. 100 (1974), and contribution to: Constructive quantum field theory (eds. G. Velo, A. Wightman). Lecture notes in physics, Vol. 25. Berlin-Heidelberg-New York: Springer 1973
- 10. Hepp, K.: Commun. math. Phys. 1, 95 (1965)
- 11. Hepp, K.: Commun. math. Phys. 35, 265 (1974)
- 12. Hunziker, W.: Commun. math. Phys. 40, 215 (1974)
- 13. Ikebe, T.: Arch. Rat. Mech. Anal. 5, 1 (1960)
- 14. Osterwalder, K., Schrader, R.: Commun. math. Phys. 31, 83 (1973); 42, 281 (1975)
- 15. Reed, M., Simon, B.: Methods of modern mathematical physics, Vol. II. New York: Academic Press 1975
- 16. Spencer, T.: Commun. math. Phys. 44, 143 (1975)
- 17. Spencer, T., Zirilli, F.: Commun. math. Phys. 49, 1 (1976)
- 18. Streater, R., Wightman, A.: PCT, spin-statistics, and all that. New York: Benjamin 1964
- Simon, B.: Quantum mechanics for Hamiltonians defined as quadratic forms. Princeton University Press 1971

Communicated by A. Jaffe

Received April 8, 1977; in revised form July 12, 1977