Pressure and Variational Principle for Random Ising Model

F. Ledrappier

Université Pierre et Marie Curie, Laboratoire de Calcul Probabilités, F-75230 Paris, France

Abstract. An Ising model traditionally is a model for a repartition of spins on a lattice. Griffiths and Lebowitz ([3. 5]) have considered distributions of spins which can occur only on some randomly prescribed sites—Edwards and Anderson have introduced models where the interaction was random ([6, 7]). In both cases, the formalism of statistical mechanics reduces mainly to a relativised variational principle, which has been proved recently by Walters and the author [1]. In this note, we show how that reduction works and formulate the corresponding results on an example of either model.

1. Notations and Results

Let $Y = \{0, 1\}^{\mathbb{Z}^d}$, $X = \{0, +1, -1\}^{\mathbb{Z}^d}$ be the sets of configurations of particles (respectively of particles with a spin) on a lattice \mathbb{Z}^d , Let $\pi: X \to Y$ denote the natural map such that $(\pi(x))_s = |x_s|$ for s in \mathbb{Z}^d , τ_s the shift transformations on X and Y, Λ_n the positive cube of side n containing the point (0, 0, ..., 0) of \mathbb{Z}^d . A point y is said generic

for an invariant measure v on Y if the measures $\frac{1}{n^d} \sum_{s \in A_n} \delta_{\tau_s y}$ converge towards the measure v (δ_z denotes the Dirac measure at the point z).

Let J, h be real numbers. For x in X with $x_s = 0$ except for a finite number of s, define:

$$U(x) = \sum_{s \in \mathbf{Z}^d} hx_s + \sum_{\substack{s,t \in \mathbf{Z}^d \\ |s-t|=1}} Jx_s x_t ,$$

where $|s| = \sum_{i} |s_i|$ if $s = (s_i, i = 1, ..., d)$.

For any finite subset Λ of Z^d and any y in Y let us consider the partition function of the box Λ above $yZ_{\Lambda}(y)$:

$$Z_A(y) = \sum \exp(-U(x)) ,$$

where the summation is made over the set of x such that $|x_s| = y_s$ for s in Λ , $x_s = 0$ elsewhere. Let $M(X, \tau)$ denote the set of invariant probability measures on X.

For μ in $M(X, \tau)$ and A a finite measurable partition of X, we consider $H(\mu, A)$ the mean entropy of A, and define the entropy $h(\mu)$ by: $h(\mu) = \sup_{A} H(\mu, A)$. Let us define also the conditional entropy $h(\mu/Y)$ by:

 $h(\mu/Y) = \sup_{A} \inf_{B} H(\mu, A) - H(\mu, \pi^{-1}(B))$, where A (resp. B) is a partition of X [resp. a partition of Y with $\pi^{-1}(B)$ coarser than A]. If $h(\mu \circ \overline{\pi}^{-1})$ is finite, we have the following formula:

$$h(\mu/Y) = h(\mu) - h(\mu \cdot \pi^{-1})$$
 (see [2]).

Theorem 1. If y is generic for some measure v then the sequence $\frac{1}{n^d} \operatorname{Log} Z_{A_n}(y)$ converges as n goes to infinity towards a number P_v called the pressure above v; the pressure above v satisfies the following variational principle:

$$P_{\nu} = \max_{\substack{\mu \in M(X,\tau)\\ \mu \circ \pi^{-1} = \nu}} h(\mu) - h(\nu) + \int a(x) d\mu ,$$

where $a(x) = -hx_0 - \frac{J}{2} \sum_{|s|=1} x_0 x_s$.

Note that if v is ergodic almost every point y is generic.

Let S be the set of pairs of neighbours in Z^d ; the translations of Z^d act naturally on S.

Let \mathbb{R} denote the real line and fix y' in $Y' = \mathbb{R}^{S}$. We can define by the usual formulas the partition functions $P_{A}(y')$ of a finite box Λ corresponding to the interaction $J_{i,i}$

 $J_{i,j} = y_{\{i,j\}}$ if *i* and *j* are neighbours,

on the space $X' = \{-1, +1\}^{\mathbb{Z}^d}$ of spins on the lattice \mathbb{Z}^d .

Theorem 2. Let v be a \mathbb{Z}^d -invariant, ergodic probability measure on Y', such that $\sup \int |y_t| dv < \infty$.

The limit $\lim_{n \to \infty} \frac{1}{n^d} \operatorname{Log} P_{A_n}(y')$ exists for almost every y' and satisfies a variational principle. (See Vuillermot [8] for a close result when the $y_{i,i}$ are independent.)

2. Proof of Theorem 1

We recall first the notation and results from [1], in a suitable form.

Let X, Y compact metric spaces, $\pi: X \to Y$ a surjection and a \mathbb{Z}^d action on X and Y which commutes with π . Let $\varepsilon > 0, n$ integer be given, d denote a distance on X.

A set E in X is said (n, ε) separated if for any $x_1 \neq x_2$ in E, $\sup_{i \in A_n} d(\tau_i x_1, \tau_i x_2)$ is

greater than ε . For f continuous function on X, y in Y, we define:

$$P_n(\tau, f, y, \varepsilon) = \sup_E \sum_{x \in E} \exp\left(\sum_{i \in A_n} f(\tau_i x)\right),$$

where the sup is taken over the (n, ε) separated sets E with $\pi(x) = y$ for every x in E

$$p(\tau, f, y) = \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{1}{n^d} \operatorname{Log} p_n(\tau, f, y, \varepsilon)$$

298

A Random Ising Model

Theorem 3 ([1], Proposition 3.5). For any invariant measure μ on X, we have:

$$h(\mu/Y) + \mu(f) \leq \sup_{\varepsilon} \limsup_{n \to \infty} \int \frac{1}{n^d} \operatorname{Log} p_n(\tau, f, y, \varepsilon) d\mu \circ \pi^{-1}(y) \, .$$

Remark. Actually Proposition 3.5 in [1] is stated with $\int p(\tau, f, y)d\mu \circ \pi^{-1}(y)$ instead of sup lim sup.... But this stronger result is also true by *not* applying Fatou's lemma at the end the proof of the Proposition 3.5.

Theorem 4 ([1], Proposition 3.6). If y is generic for some measure v and ε positive, there exists an invariant measure on X such that $\mu \circ \pi^{-1} = v$ and

$$h(\mu/Y) + \mu(f) \ge \limsup_{n \to \infty} \frac{1}{n^d} \operatorname{Log} p_n(\tau, f, y, \varepsilon)$$
.

As the entropy $h(\mu/Y)$ is upper semi-continuous on the space $M(X, \tau)$ and as the set of measures which projects onto v is a closed subset of $M(X, \tau)$ there exists a measure μ_0 such that $\mu_0 \circ \pi^{-1} = v$ and:

$$h(\mu_0/Y) + \mu_0(f) = \sup_{\substack{\mu \in \mathcal{M}(X, \tau) \\ \mu \circ \pi^{-1} = \psi}} h(\mu/Y) + \mu(f) \; .$$

Therefore Theorem 1 will be proved when we shall have shown the following inequalities:

(*)
$$\lim_{n} \sup_{n} \frac{1}{n^{d}} \operatorname{Log}_{Z_{A_{n}}}(y) \leq \sup_{\substack{\mu \in M(X,\tau)\\ \mu \circ \pi^{-1} = \nu}} h(\mu/Y) + \mu(a)$$
$$\leq \liminf_{n} \inf_{n} \frac{1}{n^{d}} \operatorname{Log}_{Z_{A_{n}}}(y)$$

as soon as y is generic for v.

We prove these relations with two lemmas:

Let us take on X the distance δ defined by $\delta(x^1, x^2) = \alpha^k$, where $0 < \alpha < 1$ and k is the smallest positive integer such that there exists $s = (s_1, \dots, s_d)$ in \mathbb{Z}^d with $\sup_J s_j = k$ and $x_s^1 \neq x_s^2$.

Lemma 5. For any y in Y, $\varepsilon > 0$, $\frac{1}{n^d} \log Z_{A_n}(y) \le \frac{1}{n^d} \log p_n(\tau, a, y, \varepsilon) + \frac{2^d J}{n}$, for any y in Y, $\varepsilon > 0$, there exists m such that:

$$\frac{1}{n^d} \operatorname{Log} p_n(\tau, a, y, \varepsilon) \leq \frac{1}{n^d} \operatorname{Log} Z_{\Lambda_n}(y) + \frac{2^d J}{n} + \frac{(2m)^d \log 2}{n} \,.$$

Proof. Take $\varepsilon > \alpha$. A set *E* is (n, ε) separated if and only if any two different points in *E* have some different coordinate in Λ_n . So the set of *x* such that $|x_s| = y_s$ for *s* in Λ_n , $x_s = 0$ elsewhere is (n, ε) separated and we may write, by estimation of the boundary effect

$$Z_{A_n}(y) \leq p_n(\tau, a, y, \varepsilon) \cdot \exp(2^d n^{d-1} J) .$$

On the other hand for any ε there exists *m* such that $\varepsilon > \alpha^m$ and so if a set *E* is (n, ε) separated any two different points in *E* have some different coordinate *s* with $-m \le s_i < n+m$. If *z* is some point with $|z_s| = y_s$ for s in Λ_n , $z_s = 0$ elsewhere, there are

at most $2^{(2m)^{d_n d-1}}$ different points in E with $x_s = z_s$ for all s in Λ_n . For any (n, ε) separated set E in $\pi^{-1}(y)$ we have:

$$\sum_{x \in E} \exp\left(\sum_{i \in A_n} a(\tau_i x)\right) \leq 2^{(2m)^{d_n d - 1}} \cdot \exp(2^d n^{d - 1} J) \cdot Z_{A_n}(y), \quad \text{q.e.d.}$$

Corollary 6. For any y in Y, any measure v on Y:

$$\lim_{n} \sup \frac{1}{n^{d}} \operatorname{Log} Z_{A_{n}}(y) = p(\tau, a, y) ,$$

$$\lim_{n} \sup \frac{1}{n^{d}} \int \operatorname{Log} Z_{A_{n}}(y) dv(y) = \lim_{\varepsilon \to 0} \lim_{n} \sup \frac{1}{n^{d}} \int \operatorname{Log} p_{n}(\tau, a, y, \varepsilon) dv(y) .$$

Lemma 7. If y is generic for some measure v, we have:

$$\lim_{n} \sup \frac{1}{n^{d}} \int \operatorname{Log} Z_{A_{n}}(y) dv(y) \leq \lim_{n} \inf \frac{1}{n^{d}} \operatorname{Log} Z_{A_{n}}(y) .$$

Proof. Let us take m > n, j in Λ_n . The box Λ_m is made of disjoint boxes $\Lambda_n + j + ns$, where $ns = (ns_1, ..., ns_d)$, s_i is a positive integer smaller than $\frac{m}{n} - 1$, and of less that $(2n)^d m^{d-1}$ other points.

There are less than $\left(\frac{m}{n}\right)^d 2^d n^{d-1}$ points in the boundaries of the small $\Lambda_n + j + ns$ boxes. Therefore we may write:

$$\log Z_{A_m}(y) \ge \sum_{s, 0 \le s_i < \frac{m}{n} - 1} \log Z_{A_n}(\tau_{ns+j}y) - J 2^d n^{d-1} \left(\frac{m}{n}\right)^d - (h+2J)(2n)^d m^{d-1} .$$

Averaging over all j in Λ_n , dividing by m^d and taking \liminf_m , we get by the generiticity of y:

$$\liminf_{m} \frac{1}{m^d} \operatorname{Log} Z_{A_m}(y) \ge \int \frac{1}{n^d} \operatorname{Log} Z_{A_n}(y) d\nu(y) - J \frac{2d}{n}.$$

The lemma follows by taking lim sup.

The inequalities (*) are proved by comparison of Theorems 3 and 4, Corollary 6, and Lemma 7.

3. Proof of Theorem 2

Let us choose a sequence of continuous real functions g_k on \mathbf{R} with compact support such that

$$\delta_k = \sup_t \int |g_k(y_t) - y_t| dv$$
 goes to 0 as k goes

to infinity.

Let $P_A^k(y')$ be the partition function on X' corresponding to the interaction $J_{i,j}^k$: $J_{i,j}^k = g_k(y_{(i,j)})$ if *i* and *j* are neighbours.

300

Let a_k and a be real continuous functions on the product space $Y' \times X'$ defined by

$$a_{k}(y', x') = -\frac{1}{2d} \sum_{|s|=1} g_{k}(y_{\{0,s\}}) x_{0} x_{s}$$
$$a(y', x') = -\frac{1}{2d} \sum_{|s|=1} y_{\{0,s\}} x_{0} x_{s}.$$

For any k, the following lemma is got by considering Y' as a factor of $Y' \times X'$.

Lemma 8. For v almost every y', we have

$$\lim_{n \to \infty} \frac{1}{n^d} \operatorname{Log} P_{xo}^k(y') = \max_{\substack{\mu \in \mathcal{M}(Y' \times X', \tau) \\ \mu \circ \pi^{-1} = \nu}} h(\mu|Y') + \int a_k d\mu \; .$$

Let us consider the compact spaces $\overline{R} = R \cup \{\infty\}$ and $\overline{Y}' = \overline{R}^S$. The space Y' is naturally continuously imbedded in \overline{Y}' , the function a_k is the restriction to $Y' \times X'$ of a continuous function $\overline{a_k}$ on $\overline{Y}' \times X'$, the measure ν is the measure induced on the invariant set $Y' \times X'$ by an invariant ergodic measure $\overline{\nu}$ on $\overline{Y}' \times X'$.

We get then by the same estimations as in §2: If y is generic for \overline{v} , we have:

$$\lim_{n \to \infty} \frac{1}{n^d} \operatorname{Log} P^k_{\Lambda_n}(y) = \max_{\substack{\bar{\mu} \in \mathcal{M}(\bar{Y}' \times X', \tau) \\ \bar{\mu} \circ \pi^{-1} = \bar{y}}} h(\bar{\mu}|\bar{Y}) + \int \bar{a}_k d\bar{\mu} .$$

Lemma 8 follows by observing that almost every y' in Y' is generic for \overline{v} and that measures on $\overline{Y}' \times X'$ which projects onto \overline{v} are actually carried by $Y' \times X'$.

We also have the following uniform approximations:

Lemma 9. For any measure μ such that $\mu \circ \pi^{-1} = v$,

$$\left|\int a_{k}d\mu - \int ad\mu\right| \leq \delta_{k}$$

4

obvious.

Lemma 10. The sequence of functions on Y', $s_k(y)$

$$s_k(y) = \sup_n \frac{1}{n^d} \left| \operatorname{Log} P_{A_n}(y) - \operatorname{Log} P_{A_n}^k(y) \right|$$

converges to zero in probability (i.e. for any $\alpha v(s_k \ge \alpha) \rightarrow 0$).

Proof of Lemma 10. We have for any y and any n

$$|\operatorname{Log} P_{A_n}(y) - \operatorname{Log} P_{A_n}^k(y)| \leq \sum_t |y_t - g_k(y_t)|,$$

where the sum extends over all pairs of neighbours in Λ_n . Let τ denote the action of

$$Z^d$$
 on Y , $G_k(y) = \sum_{t,t \in (0,0,0)} |y_t - g_k(y_t)|.$

We have then:

$$|\operatorname{Log} P_{A_n}(y) - \operatorname{Log} P_{A_n}^k(y)| \leq \sum_{A_n} G_k(\tau^i y)$$

and

$$s_k(y) \leq \sup_n \frac{1}{n^d} \sum_{A_n} G_k(\tau^i y)$$
.

By a maximal ergodic lemma for a Z^d action ([9], Theorem IV'), there exists a number λ such that

$$v\left\{\sup_{n}\frac{1}{n^{d}}\sum_{A_{n}}G_{k}\circ\tau^{i}\geq\alpha\right\}\leq\frac{\lambda}{\alpha}\int|G_{k}|dv\leq\frac{\lambda}{\alpha}2d\delta_{k}$$

and the lemma follows.

We can now proof Theorem 2. Let us choose a sequence k_i such that $s_{k_i}(y)$ converges to zero almost everywhere. For almost every y, the conclusion of Lemma 8 holds for every k_i , we have $s_{k_i}(y) \rightarrow 0$ and

$$\sup_{\substack{\mu \in \mathbf{M} \\ \circ \pi^{-1} = \psi}} \int a_{k_i} d\mu - \int a d\mu \to 0 \quad \text{by Lemma 9} .$$

The conclusion of Theorem 2 follows.

Acknowledgements. I am grateful to Professors D. Ruelle and J. Lebowitz for discussions and particularly for suggesting the problem and to the referee P. A. Vuillermot for his remarks.

References

μ

- 1. Ledrappier, F., Walters, P.: A relativised variational principle for continuous transformations. Preprint. To appear in J. London Math. Soc.
- 2. Rohlin, V.A.: Russ. Math. Surv. 22, 1-52 (1967)
- 3. Griffiths, R.B., Lebowitz, J.L.: J. Math. Phys. 9, 1284 (1968)
- 4. Gallavotti, G.: J. Math. Phys. 11, 141 (1972)
- 5. Essam, J. W.: In phase transition and critical phenomena (ed. C. Domb, Green). pp. 249–263. New York : Academic Press 1972
- 6. Edwards, S. F., Anderson, P. W.: J. Phys. F 5, 965 (1975)
- 7. Sherrington, D.: J. Phys. C: Solid St. Phys. 8, L 208 (1975)
- 8. Vuillermot, P.A.: Thermodynamics of quenched random spin systems and applications to the problem of phase transition in magnetic-(spin)-glasses. To appear in J. Phys. A. Math. Gen. (1977)
- 9. Wiener, N.: Duke Math. J. 5, 1-18 (1939)

Communicated by E. Lieb

Received March 18, 1977; in revised form July 11, 1977

302