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Abstract. An Ising model traditionally is a model for a repartition of spins on a
lattice. Griffiths and Lebowitz ([3. 5]) have considered distributions of spins
which can occur only on some randomly prescribed sites — Edwards and
Anderson have introduced models where the interaction was random ([6, 7]). In
both cases, the formalism of statistical mechanics reduces mainly to a relativised
variational principle, which has been proved recently by Walters and the author
[1]. In this note, we show how that reduction works and formulate the
corresponding results on an example of either model.

1. Notations and Results

Let 7={0, l}zd, X = {0, +1, -l}zd be the sets of configurations of particles
(respectively of particles with a spin) on a lattice Zd, Let π \X-+ Y denote the natural
map such that (π(x))s = |xs| for s in Zd, τs the shift transformations on X and Y, Λn the
positive cube of side n containing the point (0, 0, . . . , 0) of Zd. A point y is said generic

for an invariant measure v on Y if the measures —^ £ δτsy converge towards the
n seΛn

measure v (δz denotes the Dirac measure at the point z).
Let J, h be real numbers. For x in X with xs = 0 except for a finite number of s,

define :

I7(x)= £ hxs+ £ JχΛ,
seZd s,teZd

|s-t| = l

where |s| - Σ |Sί| if s = (si9 ί = 1, . . . , d\
i

For any finite subset AoίZd and any y in 7 let us consider the partition function
of the box A above yZA(y) :

where the summation is made over the set of x such that |xj = ys for s in Λ., xs =
elsewhere. Let M(X,τ) denote the set of invariant probability measures on X.
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For μ in M(X, τ) and A a finite measurable partition of X, we consider H(μ, A)
the mean entropy of A, and define the entropy h(μ) by: h(μ) = supH(μ,A). Let us
define also the conditional entropy h(μ/Y) by: A

h(μ/Y) = sup inϊH(μ,A)-H(μ,π~1(B)\ where A (resp. B) is a partition of X
A B

[resp. a partition of 7 with π~ 1(5) coarser than A]. lΐh(μ°π~l) is finite, we have the
following formula:

= h(μ)-h(μ.π-1) (see [2]) .

Theorem 1. If y is generic for some measure v then the sequence —^ L,ogZΛn(y)

converges as n goes to infinity towards a number Pv called the pressure above v the
pressure above v satisfies the following variational principle :

Pv = max %) - h(v) + j a(x)dμ ,
μ o π ~ 1 = v

where a(x) = - Λχ0 - - £ xo xs-
Z \s\ = l

Note that if v is ergodic almost every point y is generic.
Let S be the set of pairs of neighbours in Zd the translations of Zd act naturally

on S.
Let 1R denote the real line and fix y' in 7'=IRS. We can define by the usual

formulas the partition functionsP^fj/) of a finite box A corresponding to the
interaction J. .

Jitj = y(ίj) if i and; are neighbours ,

on the space X' = { — 1, + l}zd of spins on the lattice Zd.

Theorem 2. Let v be α Zd-invαriαnt, ergodic probability measure on Y', such that
sup$\yt\dv<oo.

The limit lim —^ LogP^J)/) exists for almost every y' and satisfies a variational

principle. (See Vuillermot [8] for a close result when the ytj are independent.)

2. Proof of Theorem 1

We recall first the notation and results from [1], in a suitable form.
Let X, Y compact metric spaces, π :X -» 7 a surjection and a Zd action onX and 7

which commutes with π. Let ε > 0, n integer be given, d denote a distance on X.
A set E in X is said (n,ε) separated if for any x x Φx 2 in £, supd(τ ίx1,τ /x2) ^s

iεΛn

greater than ε. For / continuous function on X, y in Y, we define:

Pn(τ, /, y, ε) - sup £ exp X /(τ/x) ,
^ xeE \ieAn I

where the sup is taken over the (n,ε) separated sets £ with π(x) = j; for every x in E

p(τj, y) = lim lim sup -̂  LogpΠ(τ,/ 3;, ε) .
ε-» 0 «-^oo n
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Theorem 3 f[l], Proposition 3.5). For any invariant measure μ onX, we have:

lim sup j -̂

Remark. Actually Proposition 3.5 in [1] is stated with j p(τ9f9y)dμ°π~l(y) instead
of sup lim sup.... But this stronger result is also true by not applying Fatou's
lemma at the end the proof of the Proposition 3.5.

Theorem 4 ([1], Proposition 3.6). If y is generic for some measure v and ε positive,
there exists an invariant measure onX such that μ°π~i=v and

1
h(μ/Y) + μ(f)^hm sup —r Logpn(τ,/,y, ε) ..

n-+co n

As the entropy h(μ/Y) is upper semi-continuous on the space M(X9 τ) and as the
set of measures which projects onto v is a closed subset of M(X9τ) there exists a
measure μ0 such that μ0°π"1 = v and:

h(μ0/Y) + μ0(f)= sup h(μ/Y) + μ(f) .
μeM(X,τ)
μoπ~l=v

Therefore Theorem 1 will be proved when we shall have shown the following
inequalities:

(*) lim sup -j LogZA (y) <Ξ sup h(μ/Y) + μ(a)
n n n μeM(X,τ)

as soon as y is generic for v.
We prove these relations with two lemmas :
Let us take on J*Γ the distance δ defined by δ(x1, x2) = of, where 0 <α < 1 and k is

the smallest positive integer such that there exists s = (s1, . . . , sd) in Zd with sup s7 = k
and x^Xς. J

1 1 2dJ
Lemma 5. For any yinY,ε>Q,-j LogZΛn(y) ^ -j Logpn(τ, α, y, ε) H -- , for any y in

Y, ε > 0, there exists m such that :

~ Logpn(τ, α, y, ε) ̂  1 LogZ^Jy) + ̂  + .
n n n n

Proof. Take ε > α. A set E is (n, ε) separated if and only if any two different points in
E have some different coordinate in Λn. So the set of x such that \xs\=ys for s in An,
xs = Q elsewhere is (n, ε) separated and we may write, by estimation of the boundary
effect

On the other hand for any ε there exists m such that ε > αm and so if a set E is (n, ε)
separated any two different points in E have some different coordinate s with
— m ̂  Sj < n + m. If z is some point with |zj = ys for s in Λn, zs = 0 elsewhere, there are



300 F. Ledrappier

at most 2(2m)d"d~1 different points in E with xs = zs for all s in An. For any (n,ε)
separated set E in π"1^) we have:

Σ exp Σ a(τiX) ^2»d^exp(2V- V) Z^(j ), q.e.d.
xeE \ieyl n /

Corollary 6. For αrcy y in Y, any measure v on Y :

lin\sup —* LogZΛn(y) = p(τ,a,y) ,

limnsup ̂  ί L°gzvjy)dv(j0= I™ linkup —ά f Logpn(τ,a,y,ε)dv(y).

Lemma 7. // y is generic for some measure v, we have :

lim sup -j f LogZ^ Cy)dv(jO ̂  lim inf -̂  LogZ^ (3;) .n n n n

Proof. Let us take m>n,j in Λ.n. The box /lw is made of disjoint boxes Λn+j + ns,

where ns = (nsί9...,nsd), st is a positive integer smaller than -- 1, and of less that
(2n)dmd"1 other points. "

There are less than — 2dnd~1 points in the boundaries of the small Λn+j + ns

boxes. Therefore we may write :

LogZ^jj;)^ £ LogZΛn(τns+jy)

s,0^Sl<^--l

ίm\d

-J2dnd'1 - -
\ n /

Averaging over all 7 in Λn, dividing by md and taking lim inf, we get by the generiti-
. , Γ

 m

city oi y :

lira inf -ί LogZ^Jy)^ | -j LogZ/ln(y)Λ(y)- J — .
mm n n

The lemma follows by taking lim sup.
n

The inequalities (*) are proved by comparison of Theorems 3 and 4, Corollary 6,
and Lemma 7.

3. Proof of Theorem 2

Let us choose a sequence of continuous real functions gk on jR with compact support
such that

j \gk(yt} — yt\dv goes to 0 as k goes

to infinity.
Let Pk

Λ(y') be the partition function on X' corresponding to the interaction Jk

tJ :

Jkj = gk(y(iJ}) if i and 7 are neighbours .
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Let ak and a be real continuous functions on the product space Yf xX' defined
by 1

ak(yf,χ')=-τrj ΣLa | s j =

a(y',χ')=-τy-j Σ
^a\s\ = l

For any /c, the following lemma is got by considering Y' as a factor of Y' xX'.

Lemma 8. For v almost every /, we have

lim^LogPk

xo(y')= max Wμ| Γ) + J Vμ .
n-»oo Π μeΛf(y xX' .τ)

μ o π ~ 1 = v

Let us consider the compact spaces R = Ru{co} and Ϋ'=RS. The space F is
naturally continuously imbedded in F, the function ak is the restriction to Y' x Xf of
a continuous function ά~k on 7' x X', the measure v is the measure induced on the
invariant set Y' x X f by an invariant ergodic measure v on Ϋ' xX'.

We get then by the same estimations as in §2: If y is generic for v, we have:

lim -j LogP* (y)= max h(μ\Ϋ)+ J akdμ .
n->oo γf ° Λn^ βeM(Y'xX',τ)

μoπ ~ * = v

Lemma 8 follows by observing that almost every y' in Y' is generic for v and that
measures on Ϋ' xX' which projects onto v are actually carried by Y' xX'.

We also have the following uniform approximations :

Lemma 9. For any measure μ such that μ°π~ 1 = v,

\\ akdμ- \adμ\^δk

obvious.

Lemma 10. The sequence of functions on F, sk(y)

sk(y) = sup -d \LogPΛn(y)- LogP^(y)|
n n

converges to zero in probability (i.e. for any

Proof of Lemma 10. We have for any y and any n

|LogP^(y) - Log/* BϋOI ̂  Σ \Vt '
ί

where the sum extends over all pairs of neighbours in An. Let τ denote the action of

ί,ί3(0,0,0)

We have then :

yln
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and

n " An

By a maximal ergodic lemma for a Zά action ([9], Theorem IV), there exists a
number λ such that

<-2dδk
An J " ~tf

and the lemma follows.
We can now proof Theorem 2. Let us choose a sequence kt such that sk.(y)

converges to zero almost everywhere. For almost every y, the conclusion of Lemma
8 holds for every feί5 we have sk.(y)-+Q and

sup J ak.dμ — J adμ^Q by Lemma 9 .
μeM

μoπ~*=v

The conclusion of Theorem 2 follows.
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