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Abstract. An Ising model traditionally is a model for a repartition of spins on a
lattice. Griffiths and Lebowitz ([3. 5]) have considered distributions of spins
which can occur only on some randomly prescribed sites—Edwards and
Anderson have introduced models where the interaction was random ([6, 7]). In
both cases, the formalism of statistical mechanics reduces mainly to a relativised
variational principle, which has been proved recently by Walters and the author
[1]. In this note, we show how that reduction works and formulate the
corresponding results on an example of either model.

1. Notations and Results

Let Y={0,1}%", X={0, +1, —1}%° be the sets of configurations of particles
(respectively of particles with a spin) on a lattice Z%, Let 7:X — Y denote the natural
map such that (n(x)), = |x,| for s in Z4, 7, the shift transformations on X and Y, A4, the
positive cube of side n containing the point (0, 0,...,0) of Z%. A point y is said generic

. . . 1
for an invariant measure v on Y if the measures —; ) &, , converge towards the
seAn

measure v (6, denotes the Dirac measure at the point z).

Let J, h be real numbers. For x in X with x,=0 except for a finite number of s,
define:

Ux)= ) hx,+ Y Jx.x,,

seZd s,teZ4
|s—t|=1

where [s]=) |s;| if s=(s, i=1,...,d).

For any finite subset A of Z%and any y in Y let us consider the partition function
of the box A above yZ ,(y):

Z,n=Yexp(-U(x),

where the summation is made over the set of x such that |x =y, for sin 4, x,=0
elsewhere. Let M(X, 1) denote the set of invariant probability measures on X.
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For pin M(X, ) and A a finite measurable partition of X, we consider H(u, A)
the mean entropy of 4, and define the entropy h(u) by: h(u)= supH (u, A). Let us
define also the conditional entropy h(u/Y) by:

h(u/Y)—sgp 1r;fH(u, A)— H(u,n~Y(B)), where A (resp. B) is a partition of X

[resp. a partition of Y with =~ *(B) coarser than A7. If h(uo7 1) is finite, we have the
following formula:
h(p/Y)=h()—h(u-n~")  (see [2]).
1
Theorem 1. If y is generic for some measure v then the sequence — LogZ, (y)
n n

converges as n goes to infinity towards a number P, called the pressure above v ; the
pressure above v satisfies the following variational principle :
P, = max h(,u) h(v)+ [ a(x)dp ,

Vo peM(X,<
uon 1=y

J
where a(x)= —hx,— 3 > XoX,
Is|=1

Note that if v is ergodic almost every point y is generic.

Let S be the set of pairs of neighbours in Z¢; the translations of Z act naturally
on S.

Let R denote the real line and fix y' in Y'=IRS, We can define by the usual
formulas the partition functionsP ,(y) of a finite box A corresponding to the
interaction J, ;

J; ;=Y if i and j are neighbours ,
on the space X'={—1, + 1} of spins on the lattice Z“.

Theorem 2. Let v be a Z%invariant, ergodic probability measure on Y', such that
sgpj ly,ldv < 0.

The limit nhm i LogP , (') exists for almost every y' and satisfies a variational
— 00 n

principle. (See Vuillermot [8] for a close result when the y, ; are independent.)

2. Proof of Theorem 1

We recall first the notation and results from [1], in a suitable form.
LetX, Y compact metric spaces, 7 :X — Y a surjection and a Z? actiononX and Y
which commutes with n. Let ¢>0,n integer be given, d denote a distance on X.
A set E in X is said (n,¢) separated if for any x, #x, in E, supd(t X1, T;X,) 18

iedn

greater than e. For f continuous function on X, y in Y, we define:

P (z, fy,s)—sup Zexp(Zfrx)

xeE ied

where the sup is taken over the (n, ¢) separated sets E with n(x)=y for every x in E

o 1
p(t.f,y)= hrg lim sup pr Logp,(t,/,y,¢e) .
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Theorem 3 ([1], Proposition 3.5). For any invariant measure y on X, we have:

. 1 _
h(w/Y)+u(f) = sup lim sup | — Logp,(z. f,y,e)duon™'(y) .

Remark. Actually Proposition 3.5 in [1] is stated with | p(z, /; y)duon~'(y) instead
of sup lim sup.... But this stronger result is also true by not applying Fatou’s
lemma at the end the proof of the Proposition 3.5.

Theorem 4 ([ 1], Proposition 3.6). If y is generic for some measure v and ¢ positive,
there exists an invariant measure on X such that pen~'=v and

h(/Y)+p(f) 2 lim sup Logpn(f Ly.e) .

As the entropy h(u/Y) is upper semi-continuous on the space M (X, t) and as the
set of measures which projects onto v is a closed subset of M(X,t) there exists a
measure , such that yyen~!'=v and:

hluo/Y) + po(f) = sup )h(u/ Y)+ulf) .

usM
pom™ 12y

Therefore Theorem 1 will be proved when we shall have shown the following
inequalities :

. 1
(+) limsup;LogZ, ()< sup h(w/Y)+u(a)
n n reM(X,t

pomw™ 1 =)v
o1
< lim inf a LogZ, (y)

as soon as y is generic for v.

We prove these relations with two lemmas:

Let us take on X the distance ¢ defined by d(x!, x?) =¥, where 0 <a <1 and k is
the smallest positive integer such that there exists s=(s,,...,s,) in Z* with sups,=k
and x!#x2. d

1 24
d

. 1
Lemma5. Foranyyin Y’8>0’F LogZ, (y)< — Logp,(t,a,y, e)+ —, forany yin

Y, >0, there exists m such that :

1 27 (2m)'log2
"‘Lngn(T,ay,g)< - LogZ, (y)+— (m)—Og

Proof. Take ¢>a. A set E is (n,¢) separated if and only if any two different points in
E have some different coordinate in A,. So the set of x such that |x,|=y, forsin 4,,
x,=0 elsewhere is (n, &) separated and we may write, by estimation of the boundary
effect

ZA,,(Y) épn(‘t, a,y,e): eXp(Z"nd“ 1]) )

On the other hand for any & there exists m such that e > o™ and so if a set E is (n, €)
separated any two different points in E have some different coordinate s with
—m=s;<n+m.Ifzis some point with |z | =y, for sin 4,, z,=0 elsewhere, there are
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nd-1

at most 2™“"“™" different points in E with x,=z, for all s in A,. For any (n,¢)
separated set E in n~ !(y) we have:

Y exp( Y a(rix)) <20mm exp(2nt ) Z, (1), qed.

xeE iedy,

Corollary 6. For any y in Y, any measure v on Y :
. 1
hmnsup W LOgZAn(y) :p(r9 a, y) ’

. 1 L 1

hmnsup o [ LogZ, (y)dv(y)= llrr(% lim sup 7 | Logp,(z,a,y,e)dv(y).
Lemma 7. If y is generic for some measure v, we have :

. 1 T |

lim sup i [ LogZ, (y)dv(y) < lim inf . LogZ, (v) .

Proof. Let us take m>n, j in A,. The box 4,, is made of disjoint boxes A, +j+ns,

where ns=(ns,,..., ns,), s; is a positive integer smaller than — — 1, and of less that
(2n)*m*~1 other points. n

d
There are less than (%) 2?n?~ 1 points in the boundaries of the small A, +j+ns

boxes. Therefore we may write:

LogZ, ()= Y LogZ, (t,4;))

s,O§s,<%—1

d
—JZ"n"_l(%) —(h+2J)2n)'mi 1

Averaging over all j in 4,, dividing by m* and taking lim inf, we get by the generiti-
city of y: "

T | 1 2d
lim inf o LogZ, (nz=] P LogZ , (y)dv(y)—J o
The lemma follows by taking lim sup.

The inequalities (x) are proved by comparison of Theorems 3 and 4, Corollary 6,
and Lemma 7.

3. Proof of Theorem 2

Let us choose a sequence of continuous real functions g, on R with compact support
such that

d=sup | lg,(v)—yldv goes to 0 as k goes
t

to infinity.
Let P%(y) be the partition function on X’ corresponding to the interaction J§ ;:

J¥ /=g,y if i and j are neighbours .
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Let a, and a be real continuous functions on the product space Y’ x X" defined
by i
a(y,x)=— 2 MZ: . gk(J’(o,s})xoxs

U r 1
a(y,x)= - Egl Zly(o,s}xoxs-

|=
For any k, the following lemma is got by considering Y” as a factor of Y’ x X".

Lemma 8. For v almost every y', we have

.1
lim -5 LogPL(V)= _ max h(uY)+[adp.
pom~l=y

Let us consider the compact spaces R=Ru{o} and Y'=R®. The space Y’ is
naturally continuously imbedded in Y”, the function a, is the restriction to Y’ x X" of
a continuous function @ on Y’ x X', the measure v is the measure induced on the
invariant set Y’ x X’ by an invariant ergodic measure ¥ on Y’ xX".

We get then by the same estimations as in §2: If y is generic for v, we have:

.1 " 5 -
lim 5 LogP} ()= max h(@Y)+ | @ dpi .
fon~1l=%
Lemma 8 follows by observing that almost every )" in Y is generic for v and that
measures on Y’ x X’ which projects onto v are actually carried by Y’ x X"
We also have the following uniform approximations:

Lemma 9. For any measure y suchthat yon™ 1=y,
| aydpe— fadu] <6,
obvious.

Lemma 10. The sequence of functions on Y, s,(y)

1
sey)=sup 5 |LogP, (y)— LogP% (y)l

converges to zero in probability (i.e. for any av(s,=a)—0).

Proof of Lemma 10. We have for any y and any n

|LogP, (v)— LogP WI= Y. 1y, —g:0)l

where the sum extends over all pairs of neighbours in A,. Let T denote the action of

Z'on Y, G()= Y [n—a0)

t,t3(0,0,0)
We have then:

|[LogP, (v)— LogP% (»)I< Y G (<'y)
An
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and
1 .
S(V) = sup 5 Y G (t'y) .
n An

By a maximal ergodic lemma for a Z¢ action ([9], Theorem IV’), there exists a
number A such that

1 ; A
v{sgp pr ;Gkor‘ga} = g [1Gdv< M 2d9,

and the lemma follows.

We can now proof Theorem 2. Let us choose a sequence k; such that s, (y)
converges to zero almost everywhere. For almost every y, the conclusion of Lemma
8 holds for every k;, we have s, (y)—0 and

sup [a.dp—[adu—0 by Lemma 9.
neM

pon~1=vy
The conclusion of Theorem 2 follows.
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