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Abstract. We study the classical statistical mechanics of the plane rotator, and
show that there is a unique translation invariant equilibrium state in zero
external field, if there is no spontaneous magnetization. Moreover, this state is
then extremal in the equilibrium states. In particular there is a unique phase for
the two dimensional rotator, and a unique phase for the three dimensional
rotator above the critical temperature. It is also shown that in a sufficiently large
external field the Lee-Yang theorem implies uniqueness of the equilibrium state.

1. Introduction

Some new results have been obtained recently concerning the classical statistical
mechanics of the plane rotator model, defined by the Hamiltonian

H=-β^Jίjσrσj Jy£0 (1.1)

where σt is a two-dimensional vector of unit length. For d ̂  3, it has been proven [6]
that spontaneous magnetization occurs for large β. For d = 2,it is well-known that
there is no spontaneous magnetization for sufficiently short range interactions
[17] moreover Dobrushin and Shlosman have proven that for finite range
interactions all the equilibrium states are invariant under the action of S0(2) on the
configuration space [2]. One may ask: does the absence of spontaneous magneti-
zation imply uniqueness of the equilibrium state, as for example in the Ising model
[16,19]? We show in the present paper that it implies at least uniqueness of the
translation invariant equilibrium state and that the latter cannot be decomposed
into non-invariant equilibrium states. Compared with the similar problem in the
Ising model [16,19], our method looks more complicated the reason is that for this
model, we don't have correlation inequalities comparable to the F.K.G. inequalities
[5] which are valid for all the different boundary conditions. Instead of considering
boundary conditions, we characterize invariant equilibrium states as tangents to the
pressure [9]. We introduce various perturbations to the pressure and control the
derivatives of these perturbed pressures with correlation inequalities.
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In a sufficiently large external field, the correlation inequalities are sufficient to
control all boundary conditions, and together with the Lee- Yang theorem gives
uniqueness of the equilibrium state.

The extension to models where σt has more than two components seems difficult
because of the lack of the necessary correlation inequalities.

Acknowledgements. It is a pleasure to thank F. Dunlop and J. Slawny for helpful discussions, and A.
Messager, S. Miracle, and Ch. E. Pfϊster for providing us with Lemma 3.2 [24] which leads to a
simplification of our original proof of the extremality of the unique phase.

2. The Model

At each point i of the lattice TLd is associated a spin variable σ^elR2. We use two
parametrizations, given by :

σt = (si9 tt) = (rt cos φi9 r . sin φt)

where

The a priori probability distribution for σt is assumed rotation invariant :

and the spin is bounded: |σj^6 with probability 1. In addition the measure v0

satisfies Condition A, which is important for the development of correlation
inequalities :

Condition A.

J (s + sr(s - sTf(t + tj(t'

Remark. 1) The following measures (suitably normalized) are known to satisfy
Condition A [1,3,12,18,22]:

i) δ(r-b)drdφ b>Q (fixed length)

ii) χ(r e [0, b^rdrdφ b>0 (uniform distribution)

iii) exp( - αr4 + cr2)χ(re [0, bj)rdrdφ a, b > 0 .

The interaction between spins is given by a translation invariant, ferromagnetic pair
interaction

where (2.1)

We consider the case of finite range interactions :

J. = 0 if |ΐ-;|

However our results are not sensitive to this restriction and carry over to long range
interactions with sufficiently rapid fall-off.
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If A is a finite region, an exterior configuration ω is a specification of the spins in
ΛC9 the complement of A, and a boundary condition is a probability measure μbc(ω)
on the exterior configurations. A particularly useful boundary condition is denoted
s — b.c. for which all spins in Λc are in the s-direction with maximum value :

for all iεAc σi =(st= max r, ί . = 0\ .
\ suppA /

The boundary condition ί-b.c. is obtained by the interchange of s and ί variables.
An exterior configuration ω induces an effective Hamiltonian for the region A

given by

HΛ,O=- Σ Jijσi'σj~ Σ Jifii σ3{ω)
i, jeA ieΛ

JεΛc

where σ7 (ω) takes the value specified by ω.
The joint probability distribution of the spins in the region A is given by the

Boltzmann factor

(-#Λ,ω) Π ̂ θK>
ieΛ

where

ieΛ

Expectations with respect to μΛ>ω will be denoted < >^ ω. For a general boundary
condition

The pressure

P^ fω = MI"

and for a general boundary condition

The pressure

P=

and is independent of the boundary condition [20].
An equilibrium state is an infinite volume limit of finite region states < yA >bc

with some boundary condition, or equivalently a probability measure on the
infinite volume configuration space satisfying the DLR equations [9, 13]. We will
generally use the symbol < > for a finite region state and the symbol ρ for an infinite
volume equilibrium state. The set of equilibrium states for the Hamiltonian H is
denoted Δ(H). A phase is an equilibrium state invariant under the lattice
translations, and the set of phases is denoted A ///).

In an external field hn the Hamiltonian (2.1) is modified to

= -Σ Ji^j + ¥j) - Σ (*A + V, ) - (2.2)
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Definition. The spontaneous magnetization M is defined by

M=limρh(n σί)
fc\0

where

Remark. By translation invariance of the phase ρh, M is independent o f / by rotation
covariance, M is independent of the direction n. Using the fact that the pressure is a
convex function of h and the relation between phases and tangents to the graph of
the pressure [9] it is seen that M is the right-derivative of the pressure with respect
to h at ft = 0 and is independent of the choice of phase ρheAj(Hh).

Our basic results can now be formulated :

2.1. Theorem. If the spontaneous magnetization M = 0 then there is a unique phase in
zero external field. Moreover, this phase is then extremal in the equilibrium states. This
phase is also the unique quasi-periodic state.

2.2. Theorem. Let dλ(r) = δ(r — b)dr. Then for a large enough external field the
equilibrium state is unique.

2.3. Corollary. If the lattice dimension d = 2, there is a unique phase In zero external
field. If d — 3, there is a unique phase for T> Tc where Tc is the critical temperature for
spontaneous magnetization.

We point out that for simplicity of presentation we have not given each theorem
or lemma in its most general form. We discuss extensions in Section 6.

3. Inequalities

Let A be a finite subset of ΊLά with multiplicities, and define

ίeA

For example sfSj = sA where A = {i,iJ}.
\A\ denotes the (finite) cardinality of A Similarly we define tA and rA. If AT is a

function from TLά to Z which is equal to zero except at a finite number of points, we
define

Note that if \A\ is even, sA±tA may be expressed in terms of cosines.

(3.1)
M

and similarly for SA — tA: We decompose sA±tA into a sum of products of rfj
(cosφicosφj±sinφisinφj) = rirjcos(φί + φj) and then use the identity
cosNφcosMφ = j[c '
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We denote by supp^ the set A without multiplicities:

su

Also

We define the algebra 9ί as the set of finite linear combinations of the functions sAt&
and the even and odd subspaces 2ίe? 9I0 as linear combinations of {rAcosNφ},
respectively {rAsmNφ}. Equivalently these subspaces are defined as linear
combinations of {sAtB} with \B\ even, respectively odd. The subspaces may equally
well be defined according to transformation properties under the transformation
ί -> — ί Vz (Φi-+ — φiVϊ). Consider the interaction (2.2) with the external field in the
positive s-direction. The Hamiltonian has the form

H=~Σ Jifirj cos (Φt - ΦJ ~hΣrί cos Φi -
With s-b.c. the effective interaction in the region A has the form

HΛ,*=- Σ Jijrirjcos(φi-φJ)-Σθίίricosφi
i,jeA ίeΛ

where α^O. Then Ginibre's inequalities hold [Appendix, Theorems Al, A4]

(rAcosNφrBcosMφys>A^(rAcosNφys>A(rBcosMφyS}Λ. (3.2)

Now consider the interaction (2.2) with the external field such that hs, ht^0. Then
the generalized Griffiths' inequalities hold [Theorems A2, A3]

In addition there are comparison inequalities relating different states [Theorems
A3, A4].

We derive here some basic results which will be useful in the proofs of Theorems
2.1 and 2.2. The discussion will be given for the interaction (2.1).

3. 1. Theorem. ρs= lim < >s A exists by monotonicίty and is an extremal equilibrium
state.

Remark. We note a useful property of the state ρs. By monotonicity in both h and A
it follows that M = ρs(si).

The proof of Theorem 3.1 is based on ί.

3.2. Lemma. Let ω be any exterior configuration for the region A. Then

<rA cosMφys>A ^ <rA c

Proof. We must show

J (r^ cos Nφ - r'A cos Nφ')dμs({rίf φ

1 Lemma 3.2 is due to A. Messager, S. Miracle, and Ch. E.Pfister. It simplifies our original proof of
Theorem 3.1
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This is proved in the same way as Ginibre's inequalities [7] once the effective
Hamiltonians are combined as

- HA>S -HA>ω = Σ Jij^irj c™(Φi ~ Φj) + W co*(Φi ~ Φ'ji\

+ £ α fr. cos φt + αjr; cos(

where

This can be written as a sum with positive coefficients of products of (rf + rj),
. ίφ' -φ + w\

cos — - — -̂  — — cos — - — -̂  — — and similar terms with sine instead of cosine.

(rAcosMφ — r'AcosMφr) can be written similarly.
Then one expands the exponential in series and, due to the above decom-

positions, each term is a product of integrals over rί5 rj and over φ , φ't. The integral
over φ., φr. factorizes into a product of two integrals of two identical functions, one
in the variables ($ + φ^ and the other in (φ't - φt). Being a square, this expression is
positive. The integral over the variables r , r( reduces to a product of integrals of the
type:

Kη+r r^r.-r ^AWAW).
This integral obviously vanishes if bt is odd and is positive if bt is even. D

Definition. We say the state ρ is clustering if for all /, 0e2l

0(/τ«0)-0(/)β(τα0)->0 as |α|->oo

where τfl denotes a translation by the amount a.

Proof of Theorem 3.1. From Lemma 3.2 it follows that2 <r^cosMφ>s >yl(^0)
decreases as Λ. / Zd. Thus the limit exists. Since (rA sin MφySfA = 0 the state ρs is well-
defined. Again from Lemma 3.2 it follows that

ρ(rA cos Nφ) ̂  ρs(r^ cos AΓφ) for all ρ 6 A (H) ,

which shows that ρs is extremal as a state on the even subspace 9Ie.
The extremality of ρs on the even subspace 9ϊe implies that ρs is clustering on 3ϊe.

Indeed, since A (H) is a metrizable Choquet simplex [9], there is a unique probability
measure ωs carried by the extremal elements of A(H) such that

ρs(f) = $σ(f)dωs(σ), V/6ΪI.

By Lemma 3.2 it follows that ρs|"2ϊe = σ|"2ϊeωs-a.e. Since σ is clustering, ρs is
clustering on 9Ie. By correlation inequalities it follows that ρs is clustering on the full
algebra 91: (Theorem A5 or [3])

is even

and

ίδ °dd '

2 Lemma 3.2 holds for all exterior configurations and hence for any boundary condition b. Take b as
the boundary condition induced by s-b.c. in Λ'c where Λ'^Λ
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By construction, the restriction of ρs to the odd subspace 910 is identically zero.
Thus the extremality of ρs follows from the following lemma.

3.3. Lemma, (a) Let ρ, σ be two states on 21 satisfying
(i) ρ, σ are clustering

(ii)
(iii)

then Um

(b) Let ω be a translation invariant probability measure on a set E of states σ,

satisfying lim σ(τ{(/)) = 0 ω-a.e. for some /e2ϊ.
-

(c) Let ρ = J σdω(σ) be a decomposition of the invariant state ρ into a set of states
E

E, with the measure ω translation invariant. Suppose ρ and ω-a.e. σ satisfy the
hypothesis in (a). Then ρ = σ ω-a.e.

Proof, (a) By (i) and (iii)

μmρ(/τite)) = 0 V
ι->oo

and by (ii)

limσ(/τ^)) = 0.
ϊ->oo

Therefore by (i) σ(f) lim σ(τi(g)) = 0 V/, 0e2l0 and the conclusion follows.
i->oo

(b) Since ω is translation invariant, J \σ(f)\dω(σ) = ^\σ(τί(f))\dω(σ), VieZd and
£ £

by dominated convergence, (^(τ^/))!^ ||/||)

ι->oo

So σ(/) = 0 ω-a.e.
(c) By points (a) and (b) σ(f) = 0 ω-a.e. for each /e 3Ϊ0. Since 9ί0 is separable, we

conclude σ/2I0 = 0 ω-a.e. and σ = ρ ω-a.e. D

We now begin the argument leading to the proof of Theorem 2.1.
There is a useful "bootstrap" principle which allows one to conclude that certain

higher order correlation functions are zero if certain lower order ones are zero. In
particular we shall conclude from M = 0 and Lemma 3.2 that the equilibrium states
have certain symmetry properties.

3.4. Theorem. Let ρ be any weak* limit point of the finite volume states < >^ as
A / Zd, where the effective Hamίltonian for the region A has the form

-HΛ= Σ ^M+^+ΣβA+M (3-4)
iJeΛ ίeΛ

with
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Then if ρ(si-ti) = Q for all z, it follows that ρ(sA-tA) = Q for all A.

Proof. Define the random variables xi = 2~^(si + tί\ yi = 2~^(si — tί). The effective
Hamiltonian in terms of the variables x, y is

Σ Jtfaxj + yjj) + 2 - * £ (α< + J8ί)xj + (α, - ft)?, .

Also the a priori measure for (x, y) is the same as for (s, ί) by rotation invariance.
Therefore the generalized Griffiths' inequalities are valid (Theorem A2) and

these extend to the limit point ρ :

0^ρ(xByc)^ρ(xB)ρ(yc). (3.5)

We first show : Given n(odd), if ρ(yA) = 0 for all |^4|(odd) < n then ρ(sA) = ρ(tA) for all
\A\<n.

Indeed3

ρ(sA-tA) = 21-^ X Q(xByc) = 0 if \A\<n
BuC = A

|C|odd

by (3.5) and the hypothesis ρ(j;c) = 0.
We next show : ρ(yA) = 0 for all \A\ odd. Indeed, by hypothesis ρ(si) = ρ(ίf) for all i

and so ρ(;y.) = 0 for all i. The proof proceeds by induction. Let τt(odd) be given and
suppose ρ(y^) = 0 for all |^4|(odd)<n. To show ρ(^) = 0 if |^4| = n we write

Q(sBtc)-ρ(sctB)

\B\odd
\<\A\

But

= ρ(sB)ρ(sc)-ρ(tB)ρ(tc)

by a comparison inequality (A6) where ρ' denotes the state obtained from ρ by the
interchange of s and t variables4.

Since Q(sB) = ρ(tB), ρ(sc) = ρ(tc) by the induction hypothesis, we have

\C\odd

which implies ρ(yA) = Q. Π

3 In the summation over subsets of A we distinguish different occurences of the same lattice point
(multiplicities). Otherwise combinatorial factors should be included in the expression
4 Note that for ρ' the effective Hamiltonian for the region A has the form

~H'Λ= Σ ΛM + ̂ +Σαώ + flίί
IJeΛ ieΛ

where αJ = /?£, $ = 0^. Since α^lβj the hypotheses of comparison Theorem A3 are satisfied
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4. Uniqueness of the Phase

We consider the plane rotator in zero external field and suppose there is no
spontaneous magnetization. We will show that there is a unique phase. We use the
equivalence between phases and tangents to the graph of the pressure [9]. For fe 9ί
we consider the perturbation λf to the Hamίltonian H. That is, we consider

where we sum over the lattice translates of/. (Equilibrium states for Hλ are defined
as in Section 2, via finite volume states with some effective Hamiltonian Hλ Λ, or
directly by the DLR equations appropriate for Hλ.) If we can show that the pressure
pλ is differentiable at λ = 0 it follows that all invariant equilibrium states take the
same value on /. This may be formulated as

4.1. Lemma. Let there exist a sequence of positive numbers (Aπ)ne]N and another one of
negative numbers (λ'n)neN, both converging to zero and invariant equilibrium states ρ ,̂

ρλn of Hλ,n, Hλn such that lim ρλίι(/) = lim ρλn(f).

Then all the ρeA^H) take the same value on f 1= lim ρλn(f)

Proof. The equivalence between invariant equilibrium states and tangents to the
graph of the pressure [9], together with the hypothesis and the convexity of Pλ

shows that Pλ is differentiable at λ = Q and this is equivalent to the conclusion
[9,13]. D

We shall apply Lemma 4.1 to various perturbations and first to {SA, tA}. Once we
have shown uniqueness on these functions (Lemma 4.2) we use this result to get
uniqueness on the even subspace 2Ie.

4.2. Lemma. All phases take the same value on SA and on tA.

Proof. The proof proceeds in three steps.
a) Qs(sA) = Qs(tA) for all A, and ρs(sA) = 0 if |4|odd:
Since M = 0 Lemma 4.1 implies ρs(sf) = 0. Since ρs(ί.) = 0 by construction, we

have ρs(5f —ίf) = 0. By the "bootstrap" Theorem 3.4, ρs(sA — tA) = 0 for all A. Since
ρs(ί^) = 0 if \A\ odd by construction, we may also conclude ρs(s^) = 0 if \A\ odd.

b) For all ρeA(H) ρ(sA) = ρ(tA) for all A and ρ(sA) = Q if \A\odd:
By Lemma 3.2 ρ(sA — tA)^ρs(sA — tA) = 0 if \A\ even [expanding in terms of

cosines—Eq. (3.1)]. Thus by the symmetry of interchanging s and t variables, we
conclude

ρ(sA — tA) = 0 for all ρe A (H), \A\ even .

If \A\ odd, ρ(sA)^ρs(sA) = Q. By the symmetry s-»— s, we conclude

ρ(sA) = 0 for all ρeA(H), \A\ odd.

By the symmetry of interchanging s and t variables we now conclude

ρ(tA) = Q for all ρεA(H), \A\ odd.
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c) All phases take the same value on SA and on tA :
Consider the perturbation + λsA, λ > 0.
Let ρ + λ be the (translation invariant) limit (Theorem 3. 1) as Λ / TLd of < >Sj + λfΛ

and ρ+ = lim ρ + λ (Griffiths' inequalities). Let ρ_λ be any weak* limit point as

Λ/TLd of < >s _λ Λ and let ρ_λ be an average over translations of ρ_λ. Let ρ_ be a
weak* limit point ofρ.^asλ-^O. Since by a comparison inequality [Eq. (A4)]

\SB/s, λ,Λ = \SB/s, - λ,Λ

it follows that

Similarly

Since ρ+eA^H), it follows by point (b) that ρ + (sB-tB) = 0 and so ρ + (sA)
= ρ_(sA). By Lemma 4.1 all phases agree on SA. By the symmetry of interchanging 5

and t variables all phases agree on tA. D

4.3. Lemma. All phases take the same value on the even subspace 2Ie.

Proof, a) Consider the perturbation ±λrAcosMφ. From a comparison inequality
(Theorem A4) we have

(rBcosNφys>λ9Λ^(rBcosNφySί_λ}Λ for λ>0 .

Taking weak* limit points as in Lemma 4.2 we obtain states ρ+ which satisfy

ρ + (rBcosNφ)^ρ_(rBcosNφ). (4.1)

b) If \B\ is even, inequality (4.1) implies

and

Q-(sAtB)=-Q-(sA(
SB-

^-Q + (S

A(
SB ~ **)) + Q - (SASB)

Since ρ + (sAsB) = ρ_(sAsB) by Lemma 4.2 the above inequalities imply

and

Thus Q-(sAtB)==Q + (sAtβ) ^n particular ρ + (r^c
Therefore all phases agree on the even subspace 2Ie by Lemma 4.1. Π

Proof of Theorem 2.1. From Lemma 4.3 ρ(f) = ρs(f) for all /e2ϊe, and by
construction ρs(f) = 0 for all / in the odd sub-space 9I0. If there were a phase ρ such
that, ρ(/)Φθ for some /e9I0, then defining ρ' from ρ by the transformation
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Φi-^ — φiVi we would have a nontrivial decomposition of £s= 2 (# + £?') which
contradicts the extremality of ρs (Theorem 3.1). Thus ρ(/) = 0 for all ρeA^H) if
/e9ϊ0. Thus ρ5 is the unique phase, and by Theorem 3.1 this phase is an extremal
equilibrium state. That ρs is also the unique quasi-periodic state follows from the
extremality of the unique phase, as in [21, Appendix C]. D

Proof of Corollary 2.3. If the lattice dimension d = 29 we know by the theorem of

Mermin [17] that lim <<τ w>h periodic = 0 with periodic boundary conditions. This
h \ 0

implies that M = 0 and the corollary follows from Theorem 2.1. If d = 3 we define Tc

as the lowest temperature such that M = 0 for all T> Tc. (Tc is finite by the high
temperature cluster expansion and T C ΦO by [6].) Theorem 2.1 implies the
uniqueness of the phase for T> Tc. D

5. Uniqueness of the Equilibrium State

It will be shown that for sufficiently large external field, the plane rotator with fixed
length (dλ = δ(r — b)dr) has a unique equilibrium state. We define two phases ρM and
ρm which suitably bound all equilibrium states. Proving that ρM = ρm then gives the
uniqueness of the equilibrium state. We take the external field interaction

for the case hs = ht = h. (By rotation covariance the result is true for the external field
in an arbitrary direction.)

The effective Hamiltonian for the region A has the form (3.4) where αί? βt depend

on the exterior configuration. If h^b^J^ then α f, β.^0 for all exterior con-
j

figurations. This allows the use of correlation inequalities for all equilibrium states.
Let

Ai = max αf = max βi
coeΛc (oeΛc

Bt = min a. = min βt
ωeΛc ωeΛc

and define the states < >M>yl (resp. < > J by taking a;=4, βt=Bt (resp. at = Bt,

A = 4).
Note that < >m <A is obtained from < >M>/1 by the interchange of s and t variables.

Then from comparison inequalities (A4, A 5) for any exterior configuration ω

,

ί B M , ί B ω , ί ΰ m ^

and

l<MB>Mf Λ ~ <S^ίB>ω f^l ̂  <SA>MtA<tB>ωtΛ ~ <SA>(o,Λ<tB>M,Λ (5 2)

from (A6).

5.1. Lemma. The following infinite volume limits exist.
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Proof. It follows from Equations (5.1) that5

<s^>Mjyl decreases as A increases ,

(ΪAΪM Λ increases as A increases.

Thus the limits as A / TLd exist. From (5.2) it now follows that5 <s^£β>M A converges
as A/7Ld. By the interchange of s and t variables the same holds for < >m>yl. D

Proof of Theorem 2.2. The Lee- Yang theorem for this model has been deduced by
Dunlop and Newman [4] from a theorem of Suzuki and Fisher [23]. Although it is
not stated in this form in [4], one can deduce from [23] analyticity of the pressure in
hs with ht fixed, real, and non-zero and analyticity in ht with hs fixed, real and non-
zero. Here hs (resp. ht) is the field in the s-direction (resp. the ί-direction). (In our case
we are interested in a neighbourhood of hs = ht = h.) Therefore for all h Φ 0, ρ(si) and
ρfa) are independent of ρeAj(H).

In particular QM(si) = QM(ti)- The "bootstrap" Theorem 3.5 then implies QM(sA)
= ρM(tA) for all A. By the symmetry of interchanging s and t variables we conclude
that QM(sA) = Qm(sA) Now by Equations (5.1) we conclude that all equilibrium states
take the same value on SA similarly for tA. By Equation (5.2) all equilibrium states
take the same value on sAtB. D

6. Generalizations

In this section we discuss extensions of results derived in preceding sections.
Using a modification of Condition A, Messager et al. [24] have obtained

uniqueness of the phase in any nonzero external field with the Lee- Yang theorem
(e.g. fixed length rotator).

Theorems 2.1, 2.2, and Corollary 2.3 extend to long-range interactions with
sufficiently rapid fall-off.

For d = 2, Corollary 2.3 is valid with Jtj such that £ ^/[/I2<00 i e f°r Λ/
jeZ2

decreasing like \i—j\ α with α>4. Kunz and Pfister [11] have shown that if Jtj

decreases like \i— j\~a with 2<α<4, spontaneous magnetization occurs at low
temperatures. They remark that in the borderline case, α = 4, there is no
spontaneous magnetization. The conclusion of Corollary 2.3 should hold in this
case too.

Theorem 2.2 is valid for any a priori measure satisfying Condition A and such
that the pressure is differentiable in hs and ht (the s- and ί-components of the
external field). In particular a weak version of the Lee- Yang property would be
sufficient.

We will denote by "generalized interaction" a Hamiltonian of the form

where J(A)^Q and \A\ is even.

5 Inequalities (5.1) and (5.2) hold for any exterior configuration and hence for any boundary
condition b. Take b induced by < >M < y l ' where Λ ' D Λ L
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Lemma 3.2 and Theorem 3.1 depend only on Ginibre's inequalities
[Theorem Al].

Lemma 3.3 is a general result for states on a separable algebra.
Lemma 4.1 is a general statistical mechanical result.
Given that Qs(sA) = Qs(tA)VA and ρs(sA) = 0 for \A\ odd, then Lemma 4.2b) follows

for any generalized interaction, c) follows for a translation invariant generalized
interaction, as does Lemma 4.3.

Given the correlation inequalities of Dunlop [3], one can extend all the above
results to get results on the Heisenberg model and on 4-component models. The
correlation inequalities are not sufficient to get uniqueness of the translation
invariant equilibrium state on all the correlation functions but only on a subset of
those.

It has already been noticed that Griffiths' inequality for rotators (Theorem
A2—A3) has some analogy with Lebowitz' inequality [15] for Ising models [3, 1,
22]. In support of this, one may note that using only Lebowitz' inequality (in a
similar way to the use of Theorem A3 in this paper), and assuming that the
equilibrium states are invariant under the spin-flip symmetry, at zero external field,
one can show that the equilibrium state is unique. Of course, in this case, the use of
FKG inequalities [5] gives much stronger results [16,19].

Appendix: Correlation Inequalities

We first recall Ginibre's and (generalized) Griffiths' inequalities :

Theorem Al. (Ginibre [7], Dunlop-Newman [4].) Let

dμ = ZΛ

1 exp £ (J(A, M)rA cos Mφ) Π dλί(ri)dφί
suppAcΛ izA
suppMcA

λ t(r •) any measure on R+ of compact support. Then

<JA cosMφrB cosNφy ^ (rA cosMφ) (rB cosNφy . (Al)

Theorem A2. (Generalized Griffiths' inequality [1, 3, 12, 18, 22].) Let

AcA I ίeΛ

ί/v;(s;ί;) satisfy Condition A and are of compact support. Then

<S^B>^<S^><SB> (A2)

0^<sΛίJl>S<s^><tB> (A3)

Proof. Stated in this form, the proof is in [1, 3]. D
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We want to extend these inequalities to some cases where Jx or J2 are not
necessarily positive. This is an extension of a remark of Griffiths [8] and of a recent
inequality of Lebowitz [14].

Theorem A3. Let

dμ = Z-ι exp / £ J1(A)sA + J2(A)t
\suppAcA

dμ' = Z'- ' exp Σ W)sA + J'2(A)tA
ieΛ

dv{ satisfy Condition A and are of compact support.

\J2(A)\ZJ'2(A).

Then

(i) \<sAy\^sA-> (A4)

(ii) KOI^X (A5)

(iii) |<S^ίB> - <s^B>'| ̂  <s^> <ίB>' - < V<tB> . (A6)

Proof. We use the method of duplicate variables [7]. We consider the integral

J (SA - slS'A) (t'B - e2gdμ({siίί})dμ'({sίί/

i}) (*)

where ε f = ±1. Now

J1(A)sA + J2(Λ)tA + J\(A)s'A + J'2(A)tfA

= i K^i^) + W)) (̂  + ̂ ) + (JiW - J'lW) (SA - s'A)
+ (J'2(A) + J2(A)) (tA + t'A) + (J'2(A) - J2(A)) (t'A - ί J] .

By hypothesis all the coefficients

JiW + J'^A), J,(A)-J\(A)

J2(A) + J2(A) , J'2(A) - J2(A) are positive .

We expand the exponential in series and develop in each term the factors SA + s'A,
SA — s'A, etc. with the iterated formula :

We get a series with positive coefficients of products of integrals which are all
positive by Condition A.

Thus the integral (*) is ^0, which gives

This gives

where ε= +1.
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(i) follows taking B = φ, ε = ± 1

(ii) follows taking A = φ, ε = ± 1

(iii) follows taking ε = — 1. D

Combining this method with Ginibre's method of proving his inequalities, we
have:

Theorem A4. Let

dμ = Z-ι exp/ £ J(A, M)rA cosMφ\
I s u p p M c Λ I
\suppAcA /

dμ' = Z- l exp/ Σ J(A, M)'rA cosMφ\ Π dλjrjdφ, .
1 suppM CΛ I
\suppAcA /

If for all M, A J(M9A)^\J(M,A)'\ then

(rB cosNφy ^ (TB cosNφy .

Proof.

J (rA cosMφ - r'A cosMφ^dμ^ φ^dμ^φ',}) ^ 0

by the same method as above. The inequalities used in the proof of Theorem 3.1 are
derived as follows.

Theorem A5. (Generalized Dunlop-Newman inequalities [3].) Let ρ be a state
satisfying Ginibre's inequalities (Theorem Al) and such that ρ(sAtB) = Q if\B\ is odd.
Then

i) \Q(sAtBsctD)-ρ(sAtB)ρ(sctD)\

^ρ(sAsBscsD)-ρ(sAsB)ρ(sctD) if \B\ is even;

ii) ρ(sAtBsctD)2 ^ ρ(sAsBscsD)2 - ρ(sAsB)
2ρ(scsD)2

if \B\ is odd.

Proof. We assume that |D| is even in i) and odd in ii) otherwise the l.h.s. vanishes.

i) Let lt = ± 1. Using Ginibre's inequalities and Equation (3.1), we have

Q(SA(SB + Ί ̂ )SC(SD + '2^) ̂  Q(SA(SB + lι tB))ρ(sc(sD + l2tD))

which gives

^ Q(SASBSCSD) ~~ Q(SASB)Q(SC

- ρ(sAtB)ρ(scsD)) + l2(ρ(sAsBsctD) - ρ(sAsB)ρ(sctD)) .

Take the case /1 = 1, 12 = 1, add it to the case l± = — 1, 12 = — 1 and divide by 2 :

- (ρ(sAtBsctD) - ρ(sAtB)ρ(sctD)) ^ Q(SASBSCSD) - ρ(sAsB)ρ(scsD) .
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With /! = +1, /2 = — 1 added to /1 = — 1,12 = +1, we get the same result with the sign
instead of — in front of the l.h.s. So i) is proved,

ii) We use duplicate variables and apply i). Then

\ρ(sAtBsctD)2-ρ(sAtB)
2ρ(sctD)2\

^ ρ(sAsBscsD)2 - ρ(sAsB)
2ρ(scsD)2

but Q(sAtB) = ρ(sctD) = 0 since \B\9 \D\ are odd. D
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