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Abstract. The significance of stability of an equilibrium state under local
perturbations of the dynamics (as defined in [1]) and the different degree of
stability with respect to extended perturbations of states at phase transition
points are discussed. The general conclusions are tested and illustrated in the
example of the free Bose gas. A more transparent proof of the relation between
local stability and the Kubo-Martin-Schwinger relation is given.

I. Introduction

It was argued in [1] that thermodynamic equilibrium states of an infinitely
extended medium are distinguished among (possibly other) stationary states by a
certain stability with respect to small changes of the dynamical law. In fact, this
stability should be considered as the defining property of an equilibrium state.
Specifically we consider the quantum physics of an infinitely extended system1. The
system is described by the algebra 91 of its quasi local observables, the states by
expectation functionals on 51 and the dynamics by the 1-parameter automorphism
group α r

2

The conceptual definition of stability is then the following: Consider a small
change of the dynamical law to the automorphism group α? which results from α, by
the "addition of a perturbation Hamiltonian h". Then if ω is a stationary state with
respect to α, it is called stable under this perturbation if there exists a state ωh,
stationary with respect to αj1, which is close to ω. In particular, in [1] we took h to be
an element of 91, which means physically that we consider essentially local, bounded
perturbations. If A is a coupling constant which we let tend to zero ultimately then
the stability requirement is that \\ωλh — ω\\ -»0 as λ->0 for all such perturbations i.e.

* Present address: Institut fur Theoretische Physik der Universitat Heidelberg, D-6900 Heidelberg,
Federal Republic of Germany
1 This definition of equilibrium states may also be used in classical statistical mechanics. See [4, 5]
2 Notation: ω(A) denotes the expectation value of the element AeW in the state ω. at(A) is the time
translated element A
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that ωλh be continuous in the norm topology of state space at λ = 0. Let us call this
specific form of the stability requirements S^ More generally a stability criterion
will involve on the one hand the specification of a class of perturbations and on the
other hand the specification of the type of continuity of the state which is
demanded.

Requiring S1 i.e. norm continuity of ω under local perturbations (fee 21) it was
shown3 in [1] that this leads to the condition

J ω([h9θLt(AJ])dt = 0 for all 4e2I. (1.1)
— oo

Secondly it was shown3 that if an extremal stationary state ω satisfies condition
(1.1) for a dense set of fee2I then ω satisfies the Kubo-Martin-Schwinger (KMS)-
condition for some value of the inverse temperature β. Thirdly, in the Appendix of
[1] the Condition (1.1) was used directly to compute all the extremal stationary
stable states of a free Fermi gas and verify that they are a 2-parametric set of
quasifree states with a 1 -particle momentum distribution of the form4

ρ(p) = (l+exp(α + )8ep))-1. (1.2)

It is instructive to do the analogous computation for the free Bose gas. In that case
the Condition (1.1) selects two branches of extremal stationary states : the normal
one (labelled by α, β) and the "superfluid" one labelled by β and some constants
c9ct ... describing the state of the superfluid component. This will be done in
Section II.

One may note that while the derivation of (1.1) from the conceptual definition of
stability in [1] took 21 to be a C*-algebra (with A and fe belonging to 21) it appears
that Condition (1.1) itself remains meaningful under wider circumstances. Thus in
Section II we shall apply (1.1) to an algebra of unbounded observables. This is, in
the Bose case, a much simpler procedure. One verifies then afterwards that the
resulting states are indeed KMS-states of a certain C*-algebra (the uniform closure
of the associated Weyl algebra) but this algebra itself depends sensitively on the
class of wave functions, which one allows.

One expects that an equilibrium state which is away from a phase transition
point is stable not only under local but also under homogeneous perturbations and
that the stability class decreases at a phase transition point. Possibly the remaining
stability class depends on the nature of the phase transition ("hierarchy of
stability"). Heuristically a test of this idea would be to see whether (1.1) remains
satisfied for extended perturbations of the form

Λ=Jα,(t;)(l + |jc|)-"d3A; (1.3)

where i eSl is local, αx denotes space translations. For n = 0 we have homogeneous
perturbations n = 1 is roughly equivalent to surface perturbations which should be

3 We had to assume there in addition that ω possesses sufficiently strong dusting properties. This may
be replaced however by a requirement of sufficiently strong asymptotic abelianness of the dynamical
system i.e. by a property of $ί, α, which does not refer to the particular state. See Section IV and Appen-
dix. See also [6]
4 For a general discussion of the origin of the parameter α (i.e. chemical potential) within this
approach see [7]
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the beginning of instability in the case of first order phase transitions n = 3 -f ε are
quasilocal perturbations. The question is then for which range of n the integration
over jc and that over t can still be interchanged if one inserts (1.3) into (1.1). We shall
consider this question in Section III.

Finally, in Section IV we discuss again the relation between the conceptual
formulation of stability and Condition (1.1). Apart from a proof of this relation
under somewhat modified assumptions (as compared to [1]) we are interested in the
qualitative physical picture of the perturbed state in the case when ω is not S^
stable. It appears that in this case the local perturbation causes the expectation
value of almost every local current, to decrease only like |jt|~2'with distance so that
the flux through each solid angle becomes asymptotically constant (independent of
the distance from the origin) whereas in the stable case the asymptotic outward flux
vanishes. This is the mechanism by which || ωλh — ω\\ becomes small in the stable case
and remains equal to 2 independent of the size of λ in the unstable case. In the
appendix we sketch the derivation of the KMS-condition from (1.1) for a primary
state without the use of additional assumptions on the rate of decrease of
correlation functions.

II. The Extremal, Stable, Stationary States of the Free Bose Gas

Consider an infinite system of non-interacting identical Bose particles and let

α*(/) = f a*(p)f(p)d*p , a(f] = J a(p)f(p)d*p (2)

be the creation- (respectively annihilation) operators of a particle with momentum
space wave function / The commutation relations are

M/), β*fo)] = (f, g) = ί f(p)g(p)d3

P ,
M/)X0)]=o.

Let g denote the (not closed, nor normed) algebra of polynomials of the a*(f), a(g)
where/, g are smooth wave functions5 and $ϊ the subalgebra of "gauge invariant"
elements of g i.e. those polynomials which have in each term an equal number of
creation and annihilation operators (conservation of particle number). 21 will be
considered as the observable algebra. The dynamical law (in g) is given by

ata*(p)=el^a*(p) εp = p2/2m. (2.2)

We shall analyse the consequences of the "stability condition" (1.1) for a state ω,
allowing for A and h arbitrary elements of 9ί. The state ω may be described by the
set of "Wightman distributions"

which are Laurent Schwartz distributions over T)(6π).
First take

(2.4)

= a*(g)a(g')

Specifically we take/eT>, the infinitely often differentiable functions with compact support
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and denote the support of the respective wave functions by

suppg = K suppg' = K' .

If we choose

K' disjoint from Ki for i = 2,...n
J l (2.5)

K disj oin t from K'j for j=l,...n

then Condition (1.1) gives (for stationary ω)

(2.6)

with

F(p) = β(p) ί δ(εp - ε OΛQ/ W¥V (2 7)

whenever (2.5) is satisfied. If we choose 2n points pl9 . . .pn, p'ί9 . . .p'n such that p: φp^
for any 7 and pίή=0 then there exists a neighborhood K oϊp1 and neighborhoods Xf

of p.(i = 2, . . .n), X} of p$ =!,...«) such that for arbitrary F, .̂(i = 2, . ..«),/)'(/ = !,...«)
from class D with supports respectively in K, Ki9 K'j we can choose test functions
fl9g,g' with supports. respectively in K19 K, K' so that (2.5) and (2.7) is satisfied6.
This means that W*π)(pl5 ...p^, Pή'. Pi) vanishes unless either pA =0 or p1 —γ' for
some;. Since the argument may be repeated, interchanging all the primed quantities
with the unprimed ones in the choice of the supports and since the Index 1 is not
preferred (w(2π) being symmetric under permutations of the pt)9 this means that W2n

is a sum of terms each one having point support at the origin in some of the pt, p'j and
point support at (pk — pΐ) = 0 for some pairing of the remaining momenta.

In particular, the 2-point function is of the form

W*2)(P, p') = c(p)c(p') + ρ<2\p, p') (2.8)

where

Here c, ci etc. are constants, the indices ij referring to the 3 components of the vector
p. The stationarity and positivity of the state ω implies that in ρ(2) no derivatives
may occur7. Thus

6 If />! ή=p'j we can choose the neighborhoods of the points pl9...,p'n small enough so that (2.5) is
satisfied with a K' which covers the whole energy spread of K. Then for f^ —Q' the function φ(p)
= J δ(ε — £')fι(p')g'(p')(Pp' will be infinitely differentiable and nonvanishing in K if K excludes the point 0
(Note that <p(0) = 0). Thus we may choose g(p) = F(p)/φ(p)

7 If we go e.g. in (2.10) up to the second derivatives then the positivity demands that ρ(p), ρ f j (/>) are real,

( Q Qi\
Qi(p) purely imaginary and at every p the 4 x 4-matrix shall be positive. Stationary demands

\-Qj Qtj1

j==Q> Σ£H = O The latter two conditions are incompatible with positivity
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It also demands that

So far the argument is completely analoguous to the Fermi case. But there the
annihilators a(f) are bounded by the £(2)-norm of /and this implies immediately
that in the Fermi case c(p) = Q. In the Bose case we have to carry c(p) along.

The next argument shall show that if the state ω is an extremal stationary state
then the W(2n} for arbitrary n are determined by W(2\ In fact

w*2")(pι, . Λ,;j»Ί ιO= ΣΠΦWe(2)(p»Pί) (2 13)
where the sum runs over all partitions of the 2n arguments into clusters of one or
two arguments and for the latter we can pair only a primed with an unprimed
momentum. An extremal stationary state has the mean clustering property

1 τ

lim — J (ω(AaLt(B))-ω(A)ω(B)dt = 0.
r->oo £1 -T

Thus we should have, e.g.

lim ±= } (^>1,p2;/>'1,/2)-^2)(p1,/'Ί)Wχ2)(^/'2))
T-*oo ^-l -T

^i(e2"ltf)t/(Pi).../(P/2)d3P1...rf3p2=0. (2.14)

Due to the singular support of W(4) the integrand will, for suitable choice of the/,//
always contain a time independent term which violates (2. 14) unless the part of W(4\
having support at p2 — p'2=0 factors, and cancels the corresponding term in
P02)(p1? Pι)P02)(p2, p2) and the same holds for the part of W4 with support at p2 = 0,
p'2=0. Using the symmetry of W4 under interchange of pi with p2 one gets
expression (2.13) for W(4\

To get further restrictions on the function ρ(p) and the constants c, ct. . . we apply
the stability condition (1.1) to

h = a*(gJa*(g2)aWJa(g'2) A = a*(fl)a*(f2)a(fΰa(f2) .

The Condition (1.1) gives then with (2.8), (2.11), 2.13)

+fi2-e'i-e'2) = 0 (2.15)

and in addition either

Φ) = 0 (2.16)

or

{β(p2) (i + e(p'ι)) (i + έKp'a)) - (i + β(P2Mp'Mp'2)}
δ(ε2-ei-β'2)=0. (2.17)

Condition (2.15) implies that log - shall be a linear function of the energy. Thus
e

(2.18)
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The remaining condition gives the alternative between (2.16) (absence of the
"superfluid" part) and

φ)Φθ; α = 0. (2.19)

Remarks, i) The possibility (2.19) arises formally from the fact that in 3 (or more)
dimensions δ(s) = 0 since

if/ is finite at p = 0. In 2 dimensions a solution with c(p) φ 0 is not allowed. Also, the
superfluid state is not stable under perturbations involving a(f) for functions f(p)
which are singular at the origin like ε~ 1 / 2 though still square integrable.

ii) The "1 -point function" c(p) is the wave function of the macroscopically
occupied 1 -particle state. The conditions (2. 12) read in jc-space A c(x) = 0 which is the
Schroedinger equation for zero energy8. If one approaches the problem from a
finite system then the solutions where cf, ctj etc. are not zero correspond to
boundary conditions which increase as the box becomes larger. The superfluid
density increases in them as one moves away from the origin and one has a
circulating superfluid flow in this case.

iii) The expectation functional over 21 defined above can most simply be
summarized by saying that ω may be extended to a quasifree state over the Weyl
algebra generated by the unitaries expί(α*(/) + α(/)) with /eT>. The truncated 2-
point function is given by (2.11), (2.18), the 1 -point function by (2.9), (2.12). One
checks then that ω has the right analyticity properties for a KMS-state with respect
to the appropriate combination of time translations and gauge transformations
corresponding to the parameters α, β.

III. Degree of Stability

Suppose ω is an extremal, stationary state satisfying (1.1) for local, bounded
perturbation h (i.e. fee 21). We may ask whether it will still satisfy (1.1) for extended
perturbations of the form (1.3). The left hand side is of the form

$(l + \x\Γ»φ(x,t)d*xdt (3.1)

where

</>(*, 0 = ω([αΛ>M]) (3.2)

and the jc-integration shall be performed first.
We know that if we integrate first over t then (3.1) will indeed vanish. If the

expression is absolutely integrable we can interchange the order of the x and t-
integration and hence get zero for (3.1). A very crude criterion for extended stability
is then obtained by the following power counting argument.

Introducing x/t and t was variables it is reasonable to assume that the
correlation function φ will depend smoothly on x/t and decrease fast for x/t->ao
(for fixed t). If

σ(x/t) = lim fφ (for fixed x/t) (3.3)

This significance of the Conditions (2.12) was pointed out to us by D. Ruelle
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is finite then (3.1) will be absolutely integrable as long as

n + r>4. (3.4)

Let us consider the example of the free Bose gas! Here one may compute the
function φ(x9 f) for bounded observables υ, A from the Weyl-algebra mentioned at
the end of Section II (Remark iii) when ω is taken as one of the equilibrium states
described. It turns out9 that the generic asymptotic behaviour of φ for large
arguments is the same as the one obtained when one takes for A and v the simplest
unbounded observables

A = a*(f)a(f); v = a*(g)a(g).

Then, for an equilibrium state ωρ c we get

with

φQ = J exp i{(p' - p)x - (ε' - ε)t}(ρ(pf) - ρ(p))f(p)f(p')g(pf)g(p)d*Pd*p'

φc = 2 Im f exp i{(p' - p)x - (ε' - e)ί}(c, f)f(p)g(p)g(p')c(pf)d*pd*p' .

Consider first the branch where ρ is given by (2.18) and αΦO, c = 0. Then the
asymptotic evaluation of φQ by the stationary phase method gives

φ = φρ-+Γ4F(x/ή i.e. r = 4.

The power 4 arises because the stationary point in both the p'- and the ̂ -integration
is at p = p' = x/t and the dominant contribution which would have a decrease like
ί~3 vanishes because of the factor (ρ(p) — Q(p')\ so one has to carry the stationary
phase approximation as in [2; Eq. (1.12)] up to terms of order ί~5/2. The lowest
non-vanishing term comes then from the cross terms which are or order ί~5/2.
r3'2 = r4.

Next consider the boundary point between the two branches where α = 0 and
still c = 0. Here the function ρ becomes singular like \p\~~2 at the origin so that now

i.e. r = 3.

Finally, when α = 0, CΦO the slowest decreasing part comes from φc and

Thus we have r = 4 in the normal case, indicating stability up to n = 0. At the
boundary of the two branches (α = 0, c = 0) r decreases to r = 3 and ultimately we
have r = 3/2 in the superfluid case.

IV. Discussion of the Stability Criterion (1.1)

A dynamical system possesses in general many different types of equilibrium states
(e.g. phase transition points, critical points). It is therefore desirable to separate as
far as possible the properties of the dynamical system as such (algebraic properties)

We are very much indebted to K. Fredenhagen for this observation
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from those of a particular state (e.g. behavior of correlation functions). One relevant
algebraic property for our purposes is the degree of asymptotic Abelianness in time
and space-time.

We shall proceed here from the assumption that \\\_A,αt(J5)]|| is an absolutely
integrable function of t if A and B lie in a domain D which is norm dense in 91, and
that the same holds for the perturbed dynamics α^ for sufficiently small λ when
fteD.

This assumption will be called fi(1 ^asymptotic Abelianness (see Note Added
in Proof, p. 224).

Consider the automorphisms

βf^α-y. (4.1)

One has

i jt βϊh(A) = - λa~1 ([Λ, αf μ)]) (4.2)

i jt (#V l(A) = + λ(«?Γ '(Ά 0,04)]). (4.3)

In the case of £(1 ̂ asymptotic Abelianness the norm of the right hand side of (4.3) is
absolutely integrable provided h,Aeΐ) and the same holds for the r.h.s. of (4.2) if λ is
sufficiently small. This means that for /zel) the limits

β^= lim β? (4.4)
f-> + oo

exist and are automorphisms on 91 (compare [3]). In analogy to scattering theory
one may call βλ+ the "Mδller automorphisms".

Given a primary state ω which is stationary under αt we get then immediately
two primary states ωλ+ which are stationary under α^ namely

ωλ

±

h(A) = ω(βλ

±

h(A)). (4.5)

If we now require as the stability requirement for ω that

||ωiΛ-ω||=c±(λ)->0 as /l-»0 (4.6)

(norm continuity) then for sufficiently small λ, say λ<λQ (i.e. as soon as c±(λ)<2)
ω +h, ωift, and ω must all lie in the same folium1 °. But a primary folium can contain at
most one stationary state for the asymptotically Abelian dynamics α .̂ Therefore

ωλf = ωλh for any λ<λ0. (4.7)

From (4.3) we obtain
±00

ωλϊ(A)-ω(A) = iλ f ω?([Λ,α(μ)]dί. (4.8)
o

Hence by (4.7)

ϊ ωλ*([h,at(A)']dt + ] coy(\_h,at(A)-]dt=Q for 0<λ<A 0 . (4.9)
-oo 0

10 By the folium of ω we mean the set of states which correspond to density matrices in the Hubert
space representation of $1 arising by the GNS-construction from the state ω
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Then, if we choose ^4eD due to (4.6) and £(1)-asymptotic Abelianness we get

J ω(th,at(AJ]dt<M+c+(λ) + M_c_(λ) (4.10)
— 00

where M+, M_ are finite constants (depending on A and ft but not on λ) namely the
time integrals of the norms ||[ft, αf(τ4)]||. Since the left hand side of (4.10) is
independent of λ and the right hand side goes to zero as λ->Ό we have (1.1) for
A9heΐ>.

We shall sketch in the appendix how one gets from this result without additional
assumptions to the KMS-condition which implies also that (1.1) must hold for all
pairs ft, A and not only for those in the dense set D.

Let us now ask the converse question. Suppose ω is a primary, stationary state
which does not satisfy the stability Condition (1.1). How does the "instability" of ω
manifest itself? Such states exist for instance in the free Fermi gas. (More generally
one expects them if the dynamics in "non-ergodic" in some sense.) As an example we
may take in the case of the free Fermi gas any quasi free state over the algebra of
Fermi creation and destruction operators (CAR-algebra) with a 2-point function

p-p') (4.12)

where Q is no t o f the form ( 1 -f exp (α + βε)) " 1 . 1 f we take ρ direction dependent then
the stability Condition (1.1) is already violated for h and A of the form

A=ffl*(p)fl(p/)»(p,X)dW;
(4.13)

A = $a*(p)a(p')f(p,p')d3pd3p'.

The physical picture of the consequence of this violation emerges if we compute
ωλ+(A) up to the second order in λ. With

we have from (4.5), (4.4), (4.2)

ω^(A)= - J ω([α_ί2(ft), [α.Jft), ^]])Λ1Λ2 . (4.14)
oo>ί 2

>ίι>0

For ft, A as in (4.13) and ω having the 2-point function (4.12)

ω(?(A)= - I fe(Pι)-e(P2))0(Pι> P'ι)0(P'ι> Pi)
00 >Ϊ2>tl > 0

•f(p2,Pi)^e>1~Bi*2 + i(B'2~e'1* (4.15)

where * means the complex conjugate if ft and A are chosen self adjoint. We evaluate
this for an observable which is localized at a large distance from the origin i.e. from
the approximate localization region of ft. Thus we put ocx(A) instead of A in (4.14)
and consider the asymptotic region of large |jc|. This changes the integrand of (4.15)
by a factor el(pί~p>2)*. We may then use the method of stationary phase for the
integration over p± and p'2 and subsequently over ί l9 12. The stationary phase occurs
at

Pi=P'2 = \Pi\x/\x\ (4 16)

f 2 = ίι="tt/IP'ιl (4 17)
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and we obtain up to a numerical factor

>, P')\2(Q(P) - Q(pW (4-18)

with

P = \P'\x/\x\. (4.19)

This is the (first order) expression for the effect produced by the difference between
the number of particles scattered per unit time from an arbitrary momentum p to p'
and that of the inverse process. In the stable case, where Q(P) = Q(P') on the energy

shell (4.18) vanishes and ω(2\ux(A)) decreases faster than— -j with the distance. If we
perform the same calculation with

describing two-body interparticle forces we get as the dominant term proportional

to — y an expression similar to (4.18) with ρ(p) — ρ(p') replaced by the 2-particle
\x\

collision factor

which vanishes (on the energy shell) if and only if ρ is a Fermi distribution. Thus, a
primary, stationary state which does not satisfy the stability Condition (1.1) will
change under a local perturbation h into a stationary state ωλ+ which has a steady
radial flux, asymptotically constant in each solid angle. In ωiΛ this flux has the
opposite sign. In a stable state ω + =ω_ and the perturbation does not produce an
outward flux. Its effect is then absorbed essentially in a finite region.

Appendix

We sketch here how one obtains the KMS-condition from (1.1) without additional
clustering assumptions for the correlation functions if the dynamics is fi(1)-
asymptotically Abelian and ω is primary. Noting that the domain D is by definition
invariant under time translation and closed under the product operation we may, as
in [1] put in (1.1)

h = Λ1ατ(Λ2) .A = A&τ(A2)

and obtain

0= f ωdh^h^^A^^
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We consider the limit τ->oo of (A.I). The norms of II and III are bounded by
functions of t which are independent of τ. Thus we can interchange the τ-limit with
the ί-integration and obtain due to the clustering of a primary state

lim f ω(Π + IΠ)Λ=

+

(A.2)

with

F^athfύAβ; Gί = ω(vt(A^

Next one shows that lim |ω(I)= lim Jω(VI)ίZt=0. One has
τ->oo τ->oo

I I I I I ^ I I M \A2\\ \\\h2>*t-M3\\\
Since this is an £(1)- function and since ω satisfies (1.1) we can choose an arbitrarily
small ε > 0 and find a T large enough so that

j ω(ΐ)dt<s and also
| ί-t|>Γ

(A.3)

Then
ί -τ=Γ

lim |jω(I)Λ|<ε+ lim J
τ->oo

The second term is

r
lim j

ε->oo —

Since the f'-integration is over a finite range we can perform the τ-limit under the
integral and obtain for it11

(A.4)

Thus by (A.3)

lim

for any ε > 0. The corresponding estimate can be made with IV and we obtain finally
by (A.1), (A.2)

(A.5)

11 The integrand becomes lim ω([/ι2,αf,(^1)]α_t(/z1)αί,+τ(^l2)) and, since ω is primary and

α_τ(/ι1)αί, + τ(^2) moves into the center this equals lim ω([/ι2,αί,(^!1)]) ω(cί_τ(h^ at,+τ(A2))
τ-* oo

= ω[h2,at,(A1)']ω(h1)ω(A2)
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From (A.5) to the KMS-condition one may follow essentially the arguments of [1]
using again the technique described above for the derivation of the triple relation
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Note Added in Proof: The first part of the assumption called fi(1 ^asymptotic Abelianness (see p. 220),
i.e., the absolute integrability of \\[A, <%,(£)] || for A, B in a dense set D is known to hold for systems of
noninteracting particles and may be expected to hold a forteriori if there is a repulsive interaction
between the particles. It is not clear how much attraction may be tolerated before this property breaks
down. The second part (insensitivity of the integrability property for sufficiently small perturbations)
may also be open to doubt. However, we feel that it is closely related to the question as to whether an
arbitrarily weak potential within a certain class can cause the formation of a bound state (compare [3]).
In 3-dimensional space one knows for a wide class of potentials that bound state formation does not
occur for arbitrarily small λ.




