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Abstract. The P(φ}2 interaction with the periodic boundary conditions is
considered. It is shown that the energy-momentum spectrum lies in the forward
light cone. As a consequence, this result implies that the P(φ)2 theory in the
infinite volume with the periodic boundary conditions is Lorentz invariant.

1. Introduction

In the present paper we prove the spectral condition for models with the P(φ)2

interaction with the periodic boundary conditions.
The paper [1] by Glimm and Jaffe was devoted to the investigation of the

energy-momentum spectrum. Their arguments were based on the uniqueness of the
vacuum for the Lorentz rotated Hamiltonian Hv(β) (= β0Hv + βPv) and on the fact
that the uniqueness of the vacuum and the translation invariance of the
Hamiltonian imply the translation invariance of the vacuum, that is, the vacuum
has the zero momentum.

Unfortunately, the semigroup of operators exp( — tHv(β)) does not preserve the
positivity even for the free Hamiltonian and so the uniqueness proof which is based
on the positivity preservation and the hypercontractivity does not work.

In our proof we do not prove the uniqueness of the vacuum, instead of this we
use, following Seller and Simon [2], the Osterwalder-Schrader positivity in the
spatial direction to show that the vacuum subspace of Hv(β) contains the vector
with the zero momentum. Thus, our arguments may be represented by the following
diagram.

OS positivity
in the spatial direction

ϊorH0>v(β),Pv

*)\Py\^ ^ ^ ^ ψ

Vacuum overlap for Hv(β)
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For the P(φ)2 theory the spectral condition in a periodic box V implies the
spectrum condition and the Lorentz invariance of the P(φ)2 theory in the infinite
volume with periodic boundary conditions [3-5]. In addition, following Glimm
and Jaffe [1], we state the uniform bounds on the vacuum expectation values of the
certain products of derivatives of field operators.

The same results may be obtained for the theory with exponential type
interaction [6] and for the Y2 interaction [7].

2. The Osterwalder-Schrader Positίvity in the Spatial Direction

Let H0 v be the free Hamiltonian and Pv be the momentum operator with the
periodic boundary conditions in a box of volume V. The operator H0 v commutes
strongly with Pv. Let HQ)V(β) = β0H0)V + βPv, where β2

0-β2 = l, β0>0.

For further use we need the Osterwalder-Schrader positivity in the spatial
direction for the theory with the operator H0 v(β) as the Hamiltonian and Pv as the
momentum.

+) be the operator algebra generated by the algebra Jt(Jt+} and by the
polynomials of the time zero fields φv(h) = $dxφv(x)h(x\ h(x)eC$([-V/29V/2])
(M*)eCo ([0, V/2])). Here J((Jf+) is the von Neumann algebra generated by the
spectral projection of the time zero fields φv(h), /ιeC^([— V/2, V/2])
(heC%([Q, V/2])). In addition, let ^+>coh be the operator algebra generated by the
bounded operators exp(ίφv(h)\ where h is real and /i(x)eC^([0, 7/2]).

We define 91 as a free commutative and associative algebra over the complex
field, which is generated by the set of 2- tuples (t, F), ίeIR, Fe^>, see [8]. Here IR is the
set of reals.

Let 91 +, 2ϊ + >coh be the subalgebras of 91 the generating sets of which are IR x ̂ +

and IRx^+ f C o h, respectively.

Let αe9ϊ, then q may be written in the form

* = Σ « * Π (ί Λ) (2.1)
k<=A jkeAk

for some finite sets A and Ak.
We set

S(a) = Σ «* (θo.v> f Π Fjk(tjk)Ω0ίV\ . (2.2)
keA \ jkeAk )

Here Tis the operation of the antichronological ordering over the (time) variables t
and F(t) = e~tH°'v(β)FetH^v(β\

Since exp(-τH0>v(β))fe@(φv(h)n) and 0>ΩQtVC®(φv(hγ)forτ>0 and for each
vector / e SFV ( = the Fock Hubert space for the box of volume V) and for each n and
ΛeC^([- V/2, V/2])9 so the expression for S(α) is well defined.

Since & is a commutative and associative algebra, so S(<z) is a linear functional
on 9Ϊ.
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This proves the following lemma :

Lemma 2.1. The formula (2.2) defines the linear functional on the algebra 21.

Let us define on the algebra 21 the involution Θ. If a is given by (2.1), then

β(«)=Σ«? π c^n5'1)
keA JkeAk

where * denotes the complex (hermitian) conjugate and 5 is the unitary operator of
the space reflection, &φv(x)B~1 =φv( — x), in the Fock space 3FV.

Θ(-) is an antilinear operator on the algebra 21.

Theorem 2.2. S(Θ(a)b) is an hermitian positive bilinear form on 21 +, antilinear in the
first argument.

Proof of Theorem 2.2. The bilinearity of the S(Θ(a)b) follows from the linearity of the
S(-\ antilinearity of the Θ( ) and from the fact that 21 is an algebra.

To prove the hermiticity and the positivity, we first demonstrate that two-point
function (2.3) satisfies the Osterwalder-Schrader positivity condition in the spatial
direction.

The (anti-time-ordered) two-point function is defined by

r - « , v , v v 2 * , v f o r t^t

Let

= ί(Ω0)φ(x1)e-^-">H^V(x2)Ωo) for '1^2,
^tiiXi,t2,x2) \(Q^φ(X2}e-^-^HM)φ(^Ωo} for tι>t^

where φ(x), H0(β), Ω0 are the free field, the free Lorentz rotated Hamiltonian and
the free vacuum, respectively, in the full Fock space ̂ , that is, in the Fock space for
the free boundary conditions.

The functions Gβv, Gβ are translation invariant. We have
CO

Gβv(t1-t29x1-x2)= £ Gβ(t1-t2,xί-x2 + nV) (2.4)

and the series converges in the sense of distributions.
We note that

Gβ(tι - ί2, *ι - x2)
 = W2(iβ0\t1 - ί2|, iβ(tι - 12) + xι- x2)

where W2(t,x) is the two-point Wightman function for the free scalar field. The
Hall-Wightman Theorem [9] (or the explicit form of W2) implies that the two-point
function W2 is invariant under the complex Lorentz group. We use the complex
Lorentz rotation1 (t9x)-*(ίx9it) to obtain

= W2(ix-βt,β0\t\)=W2(ix-βt,β0ή.

for pointing out referee's suggestion to use the compleb Lorents invariance
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Let / l f 2eCS>(IRx [0, 7/2]), &(f(t,x)) = f(t, -x). Using the above equality and
the relation

for 0 ̂  xl9 x2 ̂  7/2, we obtain that the rc-th term of the sum (2.4) is the scalar product

<G/ϊ(ί1 - ί2, *! - x2 + n7), 5(/ι*)/2> = (0ι, 02)^

where g1 ? 2 are the vectors in the Fock space 3F,

Thus, the two-point function Gβ and, as the consequence, Gβv satisfies the
Osterwalder-Schrader positivity in the spatial direction.

Now a positive semide finite bilinear form is defined on C* (Rx 0, — . We

form a Hubert space «^Γ

G1 by dividing out by the vectors of norm 0 and completing.
Let 2FG be the symmetric Fock space over ̂ GV

Now we shall prove the hermiticity and the positivity of the bilinear form
S(θ(a)b).

First of all we assert that it is sufficient to prove the theorem for α, ί>,eSl+>coh.
Indeed, * algebra of bounded operators ^+>coh is strongly dense in the von

Neumann algebra Jί+. The Kaplansky density theorem [10, p. 46] implies that
each FeJί+ can be approximated strongly by F(m)e0*+tCOh, in such a way that

Moreover, on

( - ίm)n(exp(ίφv(h)/m) - 1)" - - - > φv(h)n

-

for real

If now a, fte9I+ and

"= Σ*k Π KM
keA jkeAh

then let

am= Σ«k Π (ί v
keA jkeAk

where Fjk(m) are defined in the following way. Fjke0>

+ and so

where G(lJk)εJ?+ and P(ljk) are the polynomials of the fields φv(h\ he C% (|0, —



Energy-Momentum Spectrum 165

Using Kaplansky's density theorem we replace each G(ljk) by G(/jk, m) with
and

and we replace each <pκ(/z) in the polynomials by

{ - im(exp(iφv(Reh)/m) - 1) + ra(exp(zφF(Im/z)/m) - 1)} .

We define bm in the same way.
Now the operator equality

A1...An-B1...Bn = (A1-Bί)A2...An+...+A1...An_1(An-Bn)

and simple arguments imply that

Hence it is sufficient to prove the theorem for α, be<Ά+>coh.
Now let α, fee9I+jCOh.We shall show that

where N is a normal ordering, i.e., N'M+tCOh-^^G is the linear mapping from the
subalgebra 9ί+ coh into ̂ G.

Ifαe2I + j C θ h , then

Λ = Σ α k Π ί ί j f c ' Σ *(Jk>
keA jkeAk ^ reR(jk)

for some finite sets ^4, ^4fcJ and
We define

JV(«)=Σ«k Σ
keA

Σ ΛΛ i Γ (

i Σ C'A.ru,,®^
\ Jke^k

where ̂  = 5( — ί) is the translated (S-function and ̂ fc is the set of all functions from

Ak to (J A(jk) with the following properties, if r( )e^Λ, then r(jk)eA(jk).
JksAk

And we denote by Exp(i/) a coherent vector in the space 2PG

Exp(i/)=10 0-^-/(xl5ί1)®s/(x2,ί2)®5...(x)s/(^,g.
n = 1 "!

Now it is easy to see that N(-) is a linear mapping from 2l+jCOhinto J^G.
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Let us calculate (N(a\N(b))^G for α,

(N(a\N(b))r0=Σ Σ Σ Σ
keA 1<=B r(')e&

ikeylk

Π Wί. si//))) exp/ ί dx'dx-dt'dt"
16B, / \

Σ ^xωί-

• exp - I dx'dx"dt'dt"

Σ .̂̂ (̂ (̂ -
• Gβv(t' - 1", x' - x")* Σ kj.MύWWtj,

\JιeBι

• exp (- 1 ί dx'dx"dfdf
^ ΛeB,

'-ί",x'-x") Σ .̂

ΣΣ Σ Σ
keA le

«?/»« Π «feKU
\ike^k

Π β(Jι, *(/,))) exp - ί dx'dx"dt'dt"
J*B, / V ^

- Σ hikΛίk}(-χ'mk-t')
ike^k

Σ hjιMύ(x')δ(th-t')]Gβv(t'-t",x'-x")
JieBi I

- Σ hik,r(ίk,(-x")δ(tik-t")
ike^k

Σ ^so z)(^(^-ol

We take into account that

Gβv(t,x)* = GβV(t,-x).

Now we shall calculate S(Θ(a)b).
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Since

<?evp(ϊφ v (h,)(t,) . . . Qxp(ΐφv(hn))(tn)>
'

- Σ j dx'dx"ht(x')Gβv(tt - tp x' -x")hj(x")

• exP ( - 2 Σ ί dx'dx-hMG^Q, x' - x")hj(x")},

so

ΣΣ Σ Σ

αjf/J, Π x ( i k , r ( i k ) ) * ) ( Y l β ( j , , S ( j , ) )
\ikeAk I \JιeBι

exp ( - \ I dx'dx-dt'dt" I - Σ Vr<w(

-ΣAkhik,ra-x"Wtίk-n

Here we use the fact that Gβv(t, x) = Gβv( — t, —x) and transform the sum

Hence,

Since ( , )^G is the scalar product in the Hubert space 3F G and N is a linear
operator, it follows that Theorem 2.2 is proved.

3. Vacuum Overlap and the Energy-Momentum Spectrum

In the connection with Theorem 2.2 we shall define lost states [2]. Since HQ v ̂  Py,
the vector valued distribution φv(xι)...φv(xn)ΩotV is the boundary value of a
vector- valued function (i.e., Jost state), analytic in the region Imz1? Im(z2 — zj, ...,
Im(zn — zn_ι)eV+9 where V+ is the forward light cone. By cyclicity of the vacuum,
the set of linear combinations of Jost states is clearly dense in ̂ v. We call a Jost
state β Euclidean iff each zj is Zj = (Xj + iβtj9 iβ0tj) with xj9 tj real, j80 = (l +β2)112

and, moreover, the ί; 's are non-coincident.
We call a vector a β "good" Jost state if it is an integral over space variables x of

β Euclidean Jost states with a function

/;(*;)£ C?([-F/2,F/2])
i = l

and tl9t1 — t2,t2 — t3,...9tn — tn_ί are all positive.
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We say the state is supported in (a, b) x (c, d) if supp^c(#, b) and c<ti<d.

Lemma 3.1. Fix α, b, c, d with — V/2 <a<b< F/2, 0 < c < d. The linear combination
of β good Jost states with support in (α, b) x (c, d) are dense in Fock space 3FV.

Proof. The proof is the same as the one of Lemma 5.2 [2]. Suppose, η is orthogonal
to all β good Jost states with the support property. By taking the smearing functions
to delta functions, η is orthogonal to all β Euclidean Jost states with the support
property. By analyticity, it is then orthogonal to all Jost states and hence is zero. The
lemma is proved.

Now let HIV be the interaction Hamiltonian of the P(φ)2 theory with the
periodic boundary conditions in the box of volume V. Let

Ev = in f spectrum (HQ v + HΣ v) ,

The operator (3.1) is essentially self-adjoint on the domain
& = @(H0tV)n@(HItV) [11]. The operator Hv commutes strongly with Pv.

With the help of spectral theorem we introduce the following self-adjoint
operator

Here dE(λ) is the common spectral measure of operators Hv and Pv and
β0=(β2+i)1/2.
Lemma 3.2. The operator Hv(β) is bounded below, has a discrete spectrum and

Proof of Lemma 3.2. Since Hv is essentially self-adjoint on 2 and sH0 v-\-Hj v is
bounded below for ε>0, so

for sufficiently large positive φ).
Then the spectral theorem and the commutativity of Hv and Pv imply that

Thus, the operator β j λ^dEψ) is bounded relatively to the operator β0Hv with
the relative bound smaller than (β% - l)1/2/?o *(1 ~ε)~ 1 < 1 fc>r sufficiently small ε.
Then, by the Rellich theorem [12, p. 287],

Moreover,

Hv(β) + ]80c(ε) ̂  ((1 - Wo ~(βo ~ l)1/2)# O,F >

so the discreteness of the spectrum of H0 >v and the Rellich theorem [13, p. 386] lead
to the discreteness of the spectrum of the Lorentz rotated Hamiltonian Hv(β).
Lemma 3.2 is proved.

Theorem 3.3. The Fock vacuum Ω0 v overlaps the vacuum for Hv(β).
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Proof of Theorem 3.3. The idea of the proof is the same as in the proof of Theorem
5.3 in [2]. We apply the Osterwalder-Schrader positivity in the spatial direction to
the expression

(η,exp(-tHv(β))η)

for the appropriate η.
For this purpose, we shall approximate exp( — tHv(β)) by some expression and

then we shall use Theorem 2.2.
Let

W+= J dxHItV(x)
[0,F/2]

W_ = \ dxHj v(x)
[-F/2,0]

then

and W±eLp for some p>2 [11].
Let

\ for |H

for \W+\>n

then W+(n)e^ + . Since FF+eLp, so W+(w) ——>W+ in any Lq norm with g<P

(Lemma 3.5 [2]). Let W_(n) = exp(-iV/2Pv)W+(n)exp(iV/2Pv) and W(n) = W+(n)

Since ||exp( — ft^X))!^ is bounded uniformly in n for each ί, so the Corollary
2.14 [11, p. 133] implies that

uniformly in n.
Since W(ri)-*W in any Lq norm with q<p and p>2, so on the domain

Fn@(H0tV)9 where F is the set of vectors with finite number of particles,

Since the domain Fn^(HO F) is a core for β0Hv [11, Theorem 4.2d], and
hence, for βQHv + βPv, so the corollary and the theorem [12, pp. 429, 502] imply
that

exp( - t(β0(H0}V + W(n) - Ev) + βPv)) ̂ U exp( - t(β,Hv + βPv}) .

Since W(n) are bounded functions, so

= s-lim (exp (- 1 fl0§F(/θ) exp (- ̂  »Γ(n)jj*.
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Let now η be a linear combination of β good lost states supported in the domain
(ί,x) = [l,2]x[7/8,7/4].Then

m , e x p - P^>) ίfc/m, exp - ^_(n) (3.2)
fc=ι\ \ m jl\ \ m // I

where we have used the same notation for η as the element of the Fock space 3FV and
as the element of the algebra 91.

Here the operations ( )t, ( ) are given by the following expressions :

at=Σ*k Π (ίfc + ̂ fc)
keΛ. ίke^4k

5=Σ«f Π (-ίfc-F

and where α is given by (2.1).
Thus, we have

(3.2) = s(θ (θ(ηηt) f] (tk/m, exp - P +̂ (n)

fc=ι

and Theorem 2.2 implies that this expression is bounded by

k = l

\v2

' θ(ηηt)

k=ι \ \ m

t
> «P -

m 1/2

t \ I tR \\m \1/2

• Ω0>F exp - - fl0ι^ exp - - W(n) Ω0,F

where jy' is some state supported in the domain [1, 2] x [- V/4, - F/8] u [7/8,
F/4]} and ?/' does not depend on n, m.
Then, taking m-» oo, n-»oo we obtain

(η,
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This inequality, Lemma 3.1 and Lemma 5.1 [2] prove Theorem 2.3.
In other words, the vacuum subspace of Hv(β) has a vector with a zero

momentum.

Theorem 3.4. The joint spectrum of Hv and Pv is contained in the forward light cone.
That is,

inf spectrum Hv(β) = 0 , π(j8) = π(j8 = 0) .

Here π(β) denotes the projection onto the vacuum subspace of Hv(β).

Proof of Theorem 3.4. By Lemma 5.1 [2] and by the inequality (3.2)

inf spectrum Hv(β)= - lim - ln(£20 F, exp( — tHv(β))Ω0 >v)
t-»oo t

= -lim -ln(ί2OF,
f->oo t

Hence,

The commutativity of Hv and Pv implies the commutativity of π(β) and Pv.
Thus,

hence

Hvπ(β) = Q, Hv(β)π(β = Q) = 0

and so

Furthermore, the commutativity of Hv and Pv implies that

and so, by limits as /?—>oo,

This completes the proof of the theorem.

Corollary 3.5. For the P(φ)2 theory in a periodic box we have

b) 0£Hv + βϊ1βPv±(πv(f)-βό1βrφv(f))+^\\f\β

c) ForuεC*(Hv)

\\Hj

vnv(f}u\\ + \\H*vVφv(f)u\\^\)
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The Schwartz space norms \ \j are independent of the box cutoff V and they are
independent of the polynomial P and mass ra0 which define Hv.

d) There is a Schwartz space norm \ - \n defined on ̂  (IR2"), such that for /e
we have

*, t)(Ωv, ΦVί(xl9 tj... ΦVn(χn, tn)

where each Φv is a πv or a Vφv, and \ - \n is independent of P, w0, V.
Here Vφv(f)= -J φv(χ)Ff(x)dx, π v ( f ) = J πv(x)f(x)dχ, and πv(x) is the con-

jugate time zero field and f(x) is a smooth function on V with periodic boundary
condition.

Proof. These statements can be proved in the same way as given in the paper [1] by
Glimm and Jaffe.

Corollary 3.6. The P(φ)2 theory with the periodic boundary conditions in the infinite
volume satisfies the spectral condition and is Lorentz invariant. Furthermore, the
corresponding estimates of Corollary 3.5 are valid.

Proof. Proof of the spectral condition and of the estimates for the infinite volume is
given in [3] and the proof of Lorentz invariance is given in [4, 5].
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