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Abstract. We study the set of local fields φ describing the dynamics of a scalar,
massless particle. It turns out that these fields are relatively local to the free,
massless, scalar field A if the massless particle does not interact. This leads to a
simple algebraic characterisation of interacting fields in the above framework.

1. Problems and Results

An old problem in quantum field theory is to characterize all local fields leading to a
given S-matrix [1], [2 Chapter 4.6], [3 Chapter 19.5]. Our interest in this question
arose from a desire to have a local criterion distinguishing field theories with
interaction from non-interacting ones. For that purpose it would be sufficient to
know all fields leading to a trivial S-matrix. However, even this simpler problem has
not yet been solved.

In view of this situation we found it worth while putting the following analysis
on record although it applies only to a rather special case. We consider in this paper
the model of a scalar, massless particle which does not interact. It turns out that
there each interpolating field φ for the (trivial) S-matrix is an element of the
Borchers class [1] of the free, massless field A. All these elements are explicitly
known (see [4] and the Appendix) and this solves the inverse scattering problem for
this special model. Moreover, because the free, massless field commutes with itself
at timelike separations, one obtains a simple algebraic characterisation of
interacting fields in the above framework: a local field φ, describing the dynamics of
a scalar, massless particle leads to a non-trivial S-matrix if and only if the
commutator [_φ{x\φ(y)~\ does not vanish at timelike distances (x — y).

Our argument is based on the following reasoning: if the asymptotic fields
coincide, φin = φOλlt = A, they have the same TCP-operator as the interpolating
field φ; consequently, φ and A are weakly local with respect to each other [1].
Moreover, by Huyghens' principle [5] the commutator between φ(x) and A(y)
vanishes at timelike distances (x — y). Hence if B is any element of the Borchers class
of A the support of the vacuum expectation value

(1)
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is confined to the lightcone x2 = 0. It follows then from the spectrum condition and
temperateness that

K(x)= Σ c{m)inx^s(x0)δ^(x2), (2)
finite

where (m) is a multiindex and x{m) = x^°x1l1xψx^\ s i n c e t n e r i β n t n a n d s i d e of this
equation is a sum of homogeneous distributions we conclude that the unitary
operators D(λ), λ>0 which induce the dilations of the asymptotic field A act on φ
according to

D(λ)φ(λ-1x)D(λΓ1= t λdφd(x)9 (3)
d = 0

i.e. φ is a finite sum of fields carrying a dimension in particular φ0 = (Ω, φ(0)Ω) • 1
and φ1=A. Locality of φ then leads to recursive relations for φd which imply that
these fields are relatively local to A.

Admittedly, this method of proof is tailored to the massless case and cannot be
generalized to massive models. Nevertheless we hope that this contribution will
serve to stimulate further investigations of these problems.

2. Details

The assumption that we are dealing with a field φ which leads to a trivial S-matrix
can be expressed as follows: let A be the free, massless, scalar field acting in Fock-
space Jf. We identify A with the incoming field constructed from the real, local,
temperate field φ9 i.e. we require

a) φ transforms as a scalar field under the same unitary representation
[Λ, x)-> U(x) - U(A) of the Poincare group as A.

b) Pίφ(x)Ω = A(x)Ω where P1 is the projection onto the one-particle states
in #e.

c) D4(x),0(j;)]=O for {x-y)eV+ (Huyghens' principle [5]).

These assumptions characterize A unambiguously as the incoming field
constructed from φ1. If A were the outgoing field the only change would be in
relation c) where we would have to replace V+ by the backward cone V_. Hence, if
there is no scattering in the model, relation c) holds for (x — y)eV+uV_. An
alternative way of expressing the triviality of the S-matrix is [1]

d) φ is weakly local relative to A.
For completeness let us also specify the domains of A and φ. We suppose

that we may apply arbitrary smeared polynomials in A and φ to the vacuum
Ω. This rather strong assumption is not really necessary for the proof. However,
it will allow us to neglect intricate domain questions in what follows.

Now let D{λ\ λ>0 be the dilation operators acting on A according to

D{λ)A(λ~ιx)D{λ)-1=λΆ{x). (4)

L It is of course a more delicate problem whether, given a φ, one can always construct an incoming
ΐeld A with properties specified above. This question has been answered affirmatively in the algebraic
Tamework of field theory [5]
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Since the Borchers class 23(̂ 4) of A contains only Wick-polynomials of A and its
derivatives (see the Appendix) each Be 93(̂ 4) can be decomposed into a finite sum of
fields Bde%$(A) with dimension de(0, N). We take any such Bd and analyse the
distribution

Kλ(x) = (Ω, [Bd(0l φλ(x)W) = λ~d(Ω, IBM Φiλ-'x)-]Ω), (5)

where φλ(x) = D(λ)φ(λ~ίx)D(λ)~ί. It follows from assumptions c) and d) that
(Ω, [Bd(0), φ(xJ]Ω) has support on the light cone x2 =0. The Fourier transform of
this distribution vanishes for p2 < 0 owing to the spectrum condition. We give the
most general form of such a distribution in the subsequent lemma.

Lemma 1. Let Se^'(IR 4) be a temperate distribution with supp SQ{x2=0} and
suppSQ{p2^0}. Then

S{x)= Σ c ( m ), nx ( w )ε(x 0)5 ( ϊ I )(x 2),
finite

where x{m) ̂ x^xΊ'xψx™3 with mfe(0, IN). δ{n\ ) denotes the n-th derivative of the δ-
function and ε( ) the sign-function.

Proof Since S has its support on the surface x2 = 0 and is temperate there exists a
minimal number Ne N such that (x2)NS(x) = 0, hence {-ξS(p) = 0. We divide the set
of distributions S into subsets corresponding to AT and prove the lemma by
induction in N: for JV=1 S(p) is a solution of the wave equation and can be
expressed by its (temperate) Cauchy data on the hyperplane po = 0. Because of the
fact that supp SQ {p2 ̂ 0}, these data are localized at p = 0 and therefore finite sums
of ^-functions and their derivatives. Taking into account that s(po)δ(p2) is a solution
of the wave equation with Cauchy data 0 and 2π-δ(p) it is then easy to verify that

S(p) = P^HpJδip2) + P2(d)doε(po)δ(p2),

where Pί9 P2 are certain polynomials and (δ0, S) are the derivatives with respect to
(po,p). This proves the statement for N = ί after Fourier transformation. To
complete the induction we must show that if x2S(x) is of the form given in the
lemma, i.e.

x2-S(x)= Σ c{m)inx^ε(x0)δ^(x2),
finite

then S(x) itself has this form. To this end we must divide the above equation by x2.
An obvious solution to this problem with the desired properties is

S 0 (x)=- Σ cimhnx™(n+iyh(x0ψ
n+1\x2).

finite

But the difference between S and So is a distribution AS with supp ASQ {p2 ̂ 0} and
x2 AS(x) = 0. We may therefore apply to AS the argument given above for N = 1
and conclude that S = S0 + AS has the form given in the lemma. D
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This lemma shows that the commutator function Kλ given in (5) has a finite
Laurent expansion at λ = 0,

Kλ(x)= £ λ%(x) with ίeZ. (6)
finite

In fact Kλ is even a polynomial in λ the degree of this polynomial is bounded by a
number n which depends on φ but not on Bd. To verify this we estimate

I f d*xd*yg(x)h(y)Kλ(x-y)\ ί \\φλ(g)Ω\\ -{\\Bd(h)Ω\\ + \\Bd(h)*Ω\\} (7)

with g, h real. Now (Ω, φ(0)φ(x)Ω) is the Fourier transform of a temperate measure
and therefore \\φλ(g)Ω\\ ^c g ( ί + λn) for some ne M Thus \Kλ(f)\ ^ c}(l + λn) and this
limits the exponents i in relation (6) to 0 ^ i ̂  n. Taking into account the spectrum
condition we conclude that for arbitrary Bde^S{A)

^ x ) O ) = O. (8)

But the linear span of {Bd(f)Ω:Bde&(A), de(0, K), / E ^ ( R 4 ) } is dense in J f 2 and
therefore

^τΦχ(x)Ω = 0- (9)

This establishes relation (3) on the vacuum. Now it follows from Huyghens'
principle that \_φλ(x\ A(y)~\ = 0 for (x - y)2 > 0 and all λ > 0. So relation (9) still holds
if we replace Ω by a vector ψ(A)Ω, where φ(^4) is any smeared polynomial in A. This
establishes relation (3) on the dense domain @0 = {($(A)Ω}.

In the second step of our argument we analyse the components φd in the
n

decomposition φλ= £ λdφd. Clearly the φd are scalar fields which are defined on
d = 0

90 moreover they satisfy \_φd{x\ A{y)~\ = 0 for (x - y)2 > 0. Keeping this in mind and
using assumption b) it is easy to see that φo = {Ω, φ(0)Ω) 1 and φγ — A [7]. In order
to show that φde9β(A) for d^2 we start from the relation ίφλ(x), φλ{yj] = 0 which
holds for (x — y)2 < 0 because of locality. Then we replace φλ by the expression given
above and arrive at the equations ( l^m^rc)

= 0 for (x-y)2<0, (10)

which hold in the sense of bilinear forms on @0 x Θo. But φί=A with Q4(y) = 0
and therefore (3 ̂  m ̂  n)

m-l

Σ ίΦM Oφm+ !_d(y)] for (x-y) 2 <0. (11)
d=2

This may be verified by direct computation or extracted from [6]
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Hence iϊφ2, ...φm_1e *&{A\ the right hand side of this equation vanishes and \3φm

must be an element of 23(/l). To complete the argument it suffices therefore to show
that Πφde%(A) implies φde&(A) for d^2.

Lemma 2. Let φd,d^2 be a temperate field with properties specified above. If
ΏφdeSΆ{A) then also φde%>{A).

Proof. Since Π\φdE$5{A) it can be represented in the form

d+2

Πφd(x)= ΣPk(di,:.dk):A(Xl)...A(xk):\Xι = _=Xk=x, (*)
k = 2

where Pk are symmetric polynomials in the derivatives dt = (dio, dt) with respect to
(xio, jcf). We shall see that each Pk(dv ...dk) contains a factor \3k = (dί + ...+ dk)

2. It is
then obvious that φd itself has the form (*) up to a term which is a solution of the
"homogeneous equation" \3φd{x) = 0. However, this equation has only trivial
solutions if d ̂  2 since then φd(x)Ω has no one-particle contribution and the vacuum
is separating for the operators φd.

The assertion concerning the polynomials Pk will be proved by induction. For
k = 2 the statement follows simply from Lorentz-invariance and the fact that Oφd

has dimension d + 2; so P2(dvd2) must be a homogeneous polynomial of degree
d^2 in the invariant (dί+d2)

2. (The invariants d\, d\ do not appear because of

Now if each Pfc(δ l5...δfc), 2^k^l— 1 contains a factor Dfe we may subtract in
relation (*) the corresponding contributions from Ώφd and assume that the sum

starts with Z^3. Then the expressions \d4x \Jφd(x)D^y)(χ) and Jd 4 x \3φd(x)D{x)

are well defined as bilinear forms on Θo x Q)o. (Here D denotes the zero mass Pauli-

Jordan commutator function and Dvadvj the retarded and advanced parts of D)
Moreover we have j d4x \3φd(x)D(x) = 0 on Q>0 x £^0 as expected from the Yang-
Feldman equations. To confirm this statement we consider the temperate
distribution

] d 4 x D ( x ) ( Ω , A ( X l ) . . . A{xk) Ώφd{x)A{xk + 1 ) . . . A(Xι)Ω). (**)

Taking into account the support properties of D^dy) r> = D ( r e t ) — D ( a d v ) and the
timelike commutation relations between φd and A it follows3 that (**) coincides
with

j d4xD{ret\x) (Q, D0d(xM(x!)... A(Xι)Ω)

- μ4xD^\x) (Ω, A(Xl)... A(Xι) aφd(x)Ω),

provided xί,...xkeV_ and x k + 1 , . . .x / 6F+. But

J d4xD{ret\x) Oφd(x)Ω = J d4xD(ady\x) Πφd(x)Ω = φd(0)Ω

if d ̂  2 and using the timelike commutation relations once more it becomes clear
that (**) vanishes for the special configurations xv...xι mentioned above. On the

/ret \

Our argument is not completely rigorous in view of the distribution character of D^ady' and D.
However, it can be straightened out if one approximates these distributions by suitable testfunctions

/ret\

D\adv', Dn and takes limits afterwards
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other hand (**) is the boundary value of a function which is analytic in a tube
because of the spectrum condition. We may therefore apply the "edge of the wedge"
theorem [2] and conclude that (**) vanishes identically. If we insert now into (**)
the expression given for Π\φd in relation (*) we get after a simple calculation

I It I \2\ / / \ I I \

ί Π d4Pjδ+(pj)δ(\ Σ sjPj) )ε[Σ sjPjo)mPι(isiPί^"isιPι)Gχp[i Σ S / P Λ ) = O

where Sj= —1 for j^k and Sj=ί forj^fc+l. Since the measure

π 4 2 ίίv \2\
j=i Pj +Pj \\j=iSjPj) I

I ι \2

has support on the manifold Σ sjPj = 0, p? = 0, p J o ^ 0,7 = 1,... / if 1 ̂  fc ̂  / — 1
and ί^3, it follows from the above equation thatP^is^^. . . is^)vanishes at these
points. Thus Pι(ip1,...ipι) vanishes in particular in an open neighbourhood of a
regular point on the manifold

Each polynomial with this property is of the form

Σ Pj) β(Pi> Pz)+ Σ (Pi) 'Rj(Pi> ~Pι)
V/=l / J = l

where Q,Rj are also polynomials (see the Appendix). Again the terms containing
/ I \2

pl,...pf do not contribute and therefore Pι(ipί,...ίpι) contains a factor Σ Pj

This finishes the proof of the lemma. Π

Collecting the results in this chapter we arrive at the

Theorem. Let φ be a real, local, temperate field with properties a) to d) given above.
Thenφe<B(A).

An immediate consequence of this theorem is the

Corollary. Let φ be a real, local, temperate field with properties a) to c) given above.
Then φ leads to a trivial S-matrix if and only if

lΦ(x),Φ(y)]=0 far (x-y)2>0.

Appendix

a) The Borchers Class of A

For the convenience of the reader we recall here some facts about the Borchers class
93(4) of the free, massless, scalar field A: a temperate field B is said to be an element
of 93(̂ 4) if it has the following properties:
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a) B(f), / G ^ ( R 4 ) is defined on the dense set of vectors 90 = {^{A)Ω} where
?β(A) are the smeared polynomials in A.

b) B transforms under the same unitary representation x-+U{x) of the
translations as A.

c) [A(x), B(y)~] = 0 for (x — y)2 < 0 in the sense of bilinear forms on WQ x ® 0 .

Following an argument of Epstein [4] we sketch the proof that 9304) consists of
all Wick polynomials of A and its derivatives. For this purpose we consider the n-
fold commutator function

(β, lA(Xl)9 lA(x2l... lA(xn\ 5(0)].. .

which is a solution of the wave equation in each of its arguments. This expression is
symmetric in x l 5...xn (because A has onumber commutation relations) and
therefore vanishes if any one of its arguments xt becomes spacelike. Hence if we
express the commutator function by its Cauchy data at time xίo = ... = xno = 0 we
realize that it is of the form

where Pn is some symmetric polynomial in the derivatives dt = (dio, dt) and D is the
zero mass Pauli-Jordan commutator function. We get therefore in the sense of
bilinear forms on @0 x QJQ:

But this series must terminate at some finite n because B is a temperate field.

b) Structure of the Polynomials Pt

In this Appendix we want to show that a polynomial P(p 1 ?... Pj), I ̂  3 which vanishes
in a real neighbourhood of a regular point on the manifold pl = ...=pf

= Σ Pj) = 0 is of the form

•Q(Pi,-Pι) +

with polynomials Q and Rj. Unfortunately, we have not been able to give an
elementary proof of this statement. We shall heavily rely on results of the theory of
polynomial rings, as expounded e.g. in [8] and [9].

To begin with we mention that a polynomial P with properties given above,
/ I \2

automatically vanishes on the whole complex manifold pi =... = pf = £ p =0.

W /
This may be seen either by function theoretical techniques or from the fact that this
manifold is algebraically irreducible. (It is of course crucial here that P vanishes in a
whole neighbourhood of a regular point on this manifold.)
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In a second step we show that P has the desired form up to a factor. To this end
we introduce an auxiliary variable λ and study the polynomial
= P(λ-p1,p2,...Pι). P' v a n i s h e s if 'pl = ...=pf = O a n d

Σ (P

Hence if m is the degree of F in the variable λ it follows that

is a polynomial which vanishes if p\ =... = pf = 0. A straightforward application of
the Euclidean division algorithm then gives

R'{pl9...Pι)= Σ

with polynomials Rf

jm Since P'(λ = 1) = P it is also obvious that P-R'\

can be divided by £ (PjPfc). Therefore we get

7 = 1

with polynomials β, ^., and JV=
J

The last (and non-trivial) step in our analysis consists of showing that we may
choose the polynomials Q and Rj in the above expression in such a way that they can
be divided by N. For this purpose we introduce some algebraic notions.

Let/ l 5 ...fk be fixed polynomials. We call the set of all polynomials of the form
{9 I /i + + 9k fkX 9i being arbitrary polynomials, the ideal 3 = (fγ,... fk) generated
by / l 5 ...fk 3 is called primary if/ # e 3 a n d / φ 3 implies g m e 3 for some me M It is
one of the fundamental results in the theory of polynomial rings that each ideal 3 is

m

a finite intersection of primary ideals, 3 = f] 3 f . Such a representation is of course

not unique. Let us pick a representation in which one cannot omit any 3/ and
consider the varieties of the primary ideals 3;, i.e. the set of all common zeros of the
polynomials in 3 . It turns out that these varieties are uniquely determined by 3. So
let us call them associated varieties. Now it is crucial for our argument that if/ is a
polynomial, which does not identically vanish on any of these varieties and if/ ge 3
then g must be an element of 3 [8, Chapter 16].

So in our case we have only to show that N does not identically vanish on any of
/ / I \2\

the associated varieties of the ideal 3 0 = \p\,... p\, ]Γ p A .To this end we must
\ y=i / /

determine them. First of all we realize that the associated varieties of 3 0 are subsets

ί ί ι V )
Df the variety of 3 0 , i.e. the manifold 950 = < P i = . . . = p f = Σ Pπ =®\> therefore

I V/=i / J
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their dimensions must be less or equal to (3/— 1). But then Macaulay's theorem [9,
Theorem 26] tells us that each of these varieties has dimension (3/— 1), because 3 0 is
generated by 41 — (31 — 1) functions. Bearing in mind that the manifold 23 0 is
algebraically irreducible we conclude that the associated varieties of 3 0 coincide
with 93O. Now we come back to relation (*): since N Pe30 and N does not
identically vanish on 33 0 if I ̂  3, P must be an element of 3 0 . This, finally, proves the
statement.

Acknowledgement. We acknowledge discussions with Dr. R. Berndt and Dr. H. Bruckner on polynomial

rings.
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