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Abstract. Technically simple proofs are given of the HVZ theorem on the
bottom of the essential spectrum of multiparticle systems and of Combes' result
on completeness below the lowest three body threshold. The first proof is a
variant of a proof of Enss and a decendent of Zhislin's original proof. Finally, we
apply our methods to the bound state spectrum.

§ 1. Introduction

This is the second of a series of papers that attempts to develop the basic spectral
and scattering properties of multiparticle nonrelativistic Schrδdinger operators
without the use of resolvent equations. The first paper in the series, written jointly
with P. Deift, [15], showed how to reduce the completeness of the scattering theory
to the existence of certain time-dependent operators (which remain to be
controlled). In that paper an important element was the idea of using the geometry
of configuration space to separate channels. This idea is basic to the present paper
indeed it is the central character in the drama with various technical results playing
merely supporting roles.

My paper with Deift was not the first one to suggest the use of time-dependent
methods in studying the completeness of multichannel multiparticle systems. In
1967, J. M. Combes [9] published an extremely deep paper on completeness of JV-
particle systems below the lowest energy necessary for breakup into three or more
clusters. This paper has been largely ignored, probably in part because it is
technically somewhat complex. My original motivation in the present work was a
desire to use the insights of [15] to find a simpler proof of Combes' result. I expected
(correctly so) that the idea of Pearson [29] of systematically exploiting the "two
Hubert space" operator

Ω±(A) B;J) = 5-lim eίAtJ e~iBtEac(B) (1.1)
ί-* + 00
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would be important. Combes' result is proven in § 3. In finding this proof, I had to
overcome a technical problem [Step (1) in the scheme of § 3] whose solution led to a
remarkably simple proof of the HVZ theorem, i.e. the result of Hunziker [22], Van
Winter [46] and Zhislin [49] on the location of the bottom of the essential
spectrum. This proof is clearly a decendent of the original proof of Zhislin, a
method systematically developed by Jδrgens [24] and Jorgens-Weidmann [25], but
I feel it is technically more transparent. I also remark that the "easy" half of the
Hunziker's proof is "geometric". After the completion of this phase of my work, I
learned from J. Frohlich of a beautiful preprint of V. Enss [18] who also presents a
decendent of the Zhislin proof which is technically quite transparent in fact, the
proof in §2 should be regarded as a relatively minor variant of his. Given Enss'
work, I have included a proof of the HVZ theorem for two reasons: first given what
I need to prove for § 3 and § 4, it is essentially a remark that the HVZ theorem has
been proven. Secondly, I wish to present what seems to be the "proper" form of the
theorem with symmetries (Theorem 2.6) and to emphasize an elementary approxi-
mation result (Proposition 2.2) whose import for the HVZ problem (Theorem 2.3)
appears to have escaped notice.

As already stated, § 3 presents a proof of Combes' result on completeness of the
scattering below the lowest three body threshold for sufficiently short range
potentials. I emphasize that most of my steps are essentially in Combes and that, in
particular steps (2) and (4) are explicitly in his paper. What I have succeeded in doing
is eliminating a certain amount of excess baggage from his proof.

In §4, we turn to the question of when multiparticle systems have finitely many
bound states below the essential spectrum. The bulk of the results have been
obtained already using resolvent equation by Yafeev [47,48] and Sigal [36], but
only with some considerable effort. My approach has considerable overlap with a
method Combes outlined to me in a letter [11] in the fall of 1972 for some reason,
he has chosen to never publish any details. A theorem of the genre of Theorem 4.1
occurs in his work but with more technical preliminaries. In addition, Thirring [45]
has not unrelated methods.

I should like to emphasize that the fundamental ideas used below are already in
the work of Zhislin and Combes and that Enss' beautiful paper provides a
conceptual similar and technical simple proof of the HVZ theorem. However, it
seems to me that there is some point in seeing the sweep of results presented here
obtained by geometric methods and without the pernicious influence of resolvent
equations. Not that these equations do not have their usefulness but it seems to me
that they have overly dominated our thinking. I will regard this paper as a success if
it helps strike a balance in the reader's mind even better, I would hope to convey the
excitement of the geometric ideas.

The basic idea in the whole paper is that in regions of configuration space where
clusters Cί and C2 are far apart, the total Hamiltonian H of the system should "look
like" the Hamiltonian Ha of the system with the potentials between Cί and C2

removed. It will be useful to have a very strong notion of "look like" by proving that
functions of H and ίfα are close to one another in operator norm. The following
elementary result is thus at the heart of the technical details:
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Theorem 1.1. Let H^ and H2 be two self-adjoint operators on a Hubert space, ̂  both

bounded from below. Let An be a sequence of bounded operators with sup \\An\\ < oo.

Suppose that

lim \\An[(H^zΓl-(H2-zΓ^\\^ (1.2)

for z in some open set of (— oo,c)C/? where c= min [infσ(/fV)]. Then
ί=l,2

limμι,(/(/ί1)-/(fl2))||=0 (1.3)
n->oo

for any bounded continuous function on R going to zero at oo.

Proof. This is a simple modification of the proof in [30] of the continuity of the
functional calculus (Theorem VIII.20 of [30]). The operators on the left side of (1.2)
are uniformly bounded in n and z as z runs though compact subsets of C\[c, oo), so
by the Vitali convergence theorem, (1.2) holds for all such z and the convergence is
uniform on compact subsets of C\[c, oo). In particular, by Cauchy's formula the
derivatives converge in norm so that

\\Ant(Hl-c + lΓm-(H2-c+lΓml\\^ (1.4)

for any m. By the Stone- Weierstrass theorem, given ε, we can find a polynomial
Pε(X) so that

(1.5)

(1.3) follows from (1.5) and (1.4). D

It is a pleasure to thank J. Avron, P. Deift, and I. Herbst for valuable comments and encouragement,
E. Lieb for a valuable remark, J. Frohlich for telling me of the work of V. Enss, and P. Deift and R.
Kadison for valuable correspondence concerning the material in Appendix A.

§2. The HVZ Theorem

Consider the Hamilton, H, of a system of TV m-dimensional particles with center of
mass motion removed. Let α = 1,..., K = 2N~ l — 1 be a labelling of all the ways of
breaking {1,..., JV} into two non-empty disjoint subsets C(?\ C(%\ Let Ha be H — /α

where Jα is the sum of all interactions involving some particles from each cluster.
The HVZ theorem is the assertion that

σw(H) = IΣ, αo) Σ=M(mϊσ(HJ) (2.1)
α

under suitable hypotheses. (See [30] for definition of essential spectrum, etc.) Here,
we wish to consider only the case of local pair potentials although it is clear that the
method extends to multiparticle local potentials and a variety of nonlocal
potentials, presumably as general as those in [25]. At the conclusion of the section,
we make a few remarks about including magnetic fields.

We begin with two elementary functional analytic results which we first learned
about from a paper of Glimm and Jaffe [20]. Although they appear essentially as
Theorems XIII.77 and XIII.78 of [33], we give their simple proofs:
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Proposition 2.1. Let Hbea self-adjoint operator. An open subset ΩcRίs disjoint from
σess(ff) if and only iff(H) is compact for every continuous function f of compact support
with supp fcΩ.

Proof. Suppose that σ(H)nΩCσdisc(H). Then, for any KcΩ, the spectral projection
EK(H) is finite rank and so compact. Let supp/=X be compact and in Ω. Then
\f(H)\2 ?g 11/11 ̂ EK(H) sof(H) is compact. Conversely, if every such/(#) is compact
and K C Ω is compact, find such an / with χκ :g f where χκ is the characteristic
function of K. Then Eκ(H)^f(H\ so EK(H) is compact and so finite rank. D

This proposition is the replacement of Weyl-type criteria used in earlier
geometric proofs of the HVZ theorem [29, 25, 18].

Proposition 2.2. Let Hn, H be self-adjoint operators with \\ (Hn - z) ~ ί - (H - z) ~ 1 1| ->0
for each fixed zeC\R as n-+co. Suppose σess(Hn) = [Γn, oo). Then Σn-+Σ (which may
be ±00 ) as n-+ oo and σess(H) = [Σ, oo).

Proof. Pass to a subsequence so that Σn converges to some Σ. If we prove that σess(ίf )
= [Σ, oo) we will have that Σ is independent of subsequence so that the original limit
converges. Let a>Σ. If aφσ(H), then, for all large enough n, aφσ(Hn) (see [30],
Theorem VIII.23) which is impossible since a>Σn for n large enough. Thus
[Γ, oo) c σ(H). On the other hand, let a < b < Σ. Let / be a continuous function with
support in (α, b). By the continuity of the functional calculus (see [30], Theorem
VIII.20), f(Hn)-+f(H) in norm. Since b < Σn for n large, f(Hn) is compact for n large
by Proposition 2.1, f(H) is compact, so again by Proposition 2.1,

(H). D

Theorem 2.3. If the HVZ theorem, (2.1), is proven for two body potentials in C$(Rm), it
holds for two body potentials in Lp(Rm) + L£(Rm) with p = lifm=l,p>lifm =
p = m/2for m^3.

Proof. Note the following abstract result (see Theorem VIII.25 of [30]) : If H0 is a
fixed positive self-adjoint operation, if Vn are quadratic forms with Q(H0) C Q(V) and

for some fixed α< 1 and c>0 and if

with αn->0 as n-> oo, then (#0 + Vn-z)~l -+(H0 + V- z)~ 1 for all ze C\R. From this
fact, the standard Sobolev and Strichartz type estimates (see e.g. Theorem X.21 of
[31]), the density of C™ in Lp + L™ and Proposition 2.2, we conclude the proof. D

The point of this result and its generalization to other cases where
Proposition 2.2 is applicable (e.g. the situation of [25]) is that extensions of the HVZ
theorem are easy. For example, Simon [37] need not have developed the factorized
Weinberg-van Winter machinery for his proof of the HVZ theorem with Rollnik
potentials and Jorgens-Weidmann were being overly critical of their work when
they said ([25], p. 5) : "Our results contain all earlier results besides the result given
by Simon this is actually not comparable with our result."

We will therefore give our proof below for potentials in C^, although as we
remark and as we will need later, the proof works for general potentials. For any
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x = (xl9 ...9xN)eRNm, define

i<7

Both |x| and |x|α are independent of the center of mass coordinate, so we can define
them on R(N~ 1)m after removing the center of mass motion. The following geometric
fact is critical :

Lemma 2.4. For any x, there is some αe{l, ...,K} so that \x\Λ^.dN\x\ where dN

= |/2ΛΓ1/2(JV-1Γ3'2.

Proof. Given, x pick ij so that \xi — x7 | is maximal. Then ,R = |x.— x7 | ^]/2\x\N~1/2

(JV-1)~1/2. Pick coordinates in Rn so that x^O and xi = (R,0, ...,0). Consider
the (AT — 1) regions:

I = 1, . . . , N — 1 where x(1) is the 1st coordinate of x. Since there are only N — 2 points
other than i and 7 some Rl must contain no points. Pick α so that C(^ contains those
particles fc, with xj^ ^R(N-\Γ\l-l) and C£2) those with x(

k

ί)^R(N-l)~1l
Clearly \x\Λ^R(N- 1)"1. D

Now pick functions yα on R(N~^m which are C°° away from 0, homogeneous of
degree zero [i.e. ja(x) =jΛ(x/\x\Ji so that 0^yα^l and

By the lemma, such functions exist. Notice, that by the homogeneity, Fjα = 0(l/|x|) at
infinity.

Warning. While they play a somewhat similar role, theyα are different from the Jα of
[15] not only quantitatively but qualitatively: ja lives in the region where the
clusters C£1} and C^2) are not close to each other while Jα lives in the region where, in
addition, the particles in each cluster are close to one another.

Pick a fixed function, φ, in C% (R(N~ 1)n) which is 1 if |x| ̂  1 and 0 if |x| ^2. Let

The equation we will use again and again is the following identity :

ά^^. (2-2)

Theorem 2.5. The HVZ equality, (2.1), holds when all potentials are in C$.

Proof. We will only concern ourselves with the "hard" direction
σ(JEί)π(— oo,Σ)Cσdiβc(JΪ). One can actually prove the easy direction from an
equation like (2.2); We note that Hunziker's proof of the easy direction is also
geometric. Since the potentials have compact support, we can find R0 so that
Vtj(y) = 0 if yeR" with \y\^R0. It follows that /β(x) = 0 if |x|α^#0

 so that> bY
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construction of jα, IJ(XJ^n = Q if n^2d^lRQ. For such n:

which goes to zero in norm as /t->oo since the commutator [(H-z)~1j'αJ^J is
bounded by C(\\ J^P/J „ + || PJ^J) = 0(1/4 Thus, by Theorem 1.1, the last term in
(2.2) goes to zero in norm as rc->oo for any / which is continuous with compact
support in ( — oo, Σ). By definition, of I1, for such/, each/(fία) = 0 so the second term
is zero. Finally

f(H)J^n = U(H)(H + 1)][(H + 1)- '(Ho + l)]K#o + *Γ ' J* J

is compact since the first two factors are bounded and the last is compact. It follows
that f(H) is compact, so σdisc(H)D(- oo, Σ) by Proposition 2.1. D

Now consider the situation where H has a "symmetry", i.e. there is a projection P
reducing H. Then since 2^0,/(0) = 0 so that f(HP) = Pf(H\ Looking at the
analysis of (2.2), we see that the first and third term can be treated as before, so we
only need the middle term to be zero. Let P£O) be the smallest projection reducing Ha

and containing P. Then Pf(HΛ) = PP(^f(H0ί)= P/(P<0)lfα). Thus, we have:

Theorem 2.6. Let P be a projection reducing H and let Pα be any projection reducing
Ha with Ran Pα 3 Ran P. Let ΣP = mm{infσ(#αPα)}. Then

It will be seen that this theorem contains the "hard" part of all previous
"symmetry" theorems [50, 51, 54, 38, 4, 25].

We close this section with four remarks :
(1) The only place we used the fact that the F's had compact support was

in estimating [(H — z)"1 — (HΛ — z)"1]. It is clearly sufficient that
\\(HΛ-z)~1IJaJ^n(H-z)~1 1| go to zero as n->od. This will happen if the potentials
lie in Lp + Lf where p is as in Theorem 2.3 so that Theorem 2.3 plays no direct role —
we quoted it merely for its "historical" significance. In §§ 3 and 4, we will use freely
the fact that the last term in (2.2) goes to zero as n-> oo in this more general setting

(2) The method easily accomodates external magnetic fields which by their
nature do not contribute to Jα. In the estimates, it is useful to have the result of
Avron et al. [3] that if V is —Δ -bounded, it is — Σ(dj — iα,-)2 -bounded with the
same or smaller relative bound for any a^L\QC It follows that the HVZ theorem
extends to the case of such α/s and the precise potentials of Theorem 2.3.

(3) The present method is not only physical transparent but yields some results
in a stronger form than does the resolvent equation approach. It's main drawback
as presented is its reliance on the self-adjointness of H. This makes it unsuitable for
certain applications such as that needed in the analysis of dilation analytic
potentials [5, 39]. This defect can probably be remedied.

(4) [This answers a question raised by Hill (private communication)] : The
method easily accomodates severe local singularities such as occur with hard cores
or Lenard- Jones potentials. The key observation is that in
(Hα-z)-1/α[(H-z)-1JαJ^J, the term (Hα-z)-1/α(H-z)~1 can be controlled by
writing it as (Hα - z)~ 1 - (H - z)~ l.
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§ 3. Completeness in the Two Body Region

In the notation of the last section, each breadup, α, into two clusters induces a tensor
decomposition of L2(Rm(N~ 1}) corresponding to coordinates (xα, j;α) where ^αelRm is
the difference of the center of mass of the clusters and xa = (x(^\x(^) is "internal"
coordinates for C^\ C(^\ To distinguish the different discompositions as α varies,
we will write operators as A®aB. Then

where TΛ is the kinetic energy of the clusters. Let

By the HVZ theorem, Σ3 is the lowest energy for breakup into three clusters.
It will often happen that Σ2 < Σ3 in which case scattering in [Γ2, Σ3] will consist

of two body rearrangements. In that case, let pα be the projection into all the
eigenfunctions of hΛ with energy e<Σ3 and Pα = pα(x)αl.

Under fairly general conditions, the wave operators Ω^ = Ω±(H,H0) exist (see
Reed-Simon [32] for a general discussion including detailed historical references)
and the operators

have orthogonal ranges.

Warning. Pα and Ω^ are slightly different from those in [15] but they are the same in
the energy range under consideration.

The following result is essentially due to Combes [9] :

Theorem 3.1. Suppose that each two body potential Vtj obeys

(1 + \y\ψl2m+ε%(y)eLp(JRm) + L^(Wl) (3.1)

where p Ξ> 2, p > m/2. Then

. (3.2)

Remarks. 1. (3.1) say essentially that V(y) = Q(\y\~m~ε) at infinity. This is the well-
known borderline for applicability of the trace class theory [32].

2. In terms of the EBFM wave operators [32], (3.2) says that
Ran E(_ ^ Σ3)(H)Ω+ = Ran E(_ ^ Σs}(H)Ω~ and yields unitary of the S-matrix in the
energy region (Σ2,ΣJ.

3. We will suppose that each Ran pα is finite dimensional. Since we are allowing
m= 1 and because of the possibility of the Effimov effect [17,47], this can fail to be
true. In that case, we just replace Σ3 by Z3 — ε in the definition of Pα whence the new
Pα's are finite-dimensional and the proof below yields (3.2) with E(_ ^ >ΣZ) replaced by
£(_oo 23-e) Taking ε to zero, (3.2) results.

The proof depends on 5 steps :
(1) Let P be the projection onto the span of the Pα and let Q = 1 — P. We show

that QE^_ 00tΣ3-ε) (H) is compact by using the basic equation (2.2). It will follow that
Qe~ίtHE->0 strongly.
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(2) P^Pβ is compact. This is due to Combes [10].
(3) P — ΣPΛ is compact. This will follow from step (2) and a general result

appearing in Appendix A.
(4) Ω±(HΛ9 H Pα) exists. This will follow from the general Kato-Birman theory

and the fact that £/(/ία)(jfίαPα - P^E^H) is trace class for any bounded interval /.
(5) We will put it all together using ideas from [15].

Step 1

Lemma 3.2. QE(_^^Σ^_ε}}(H} is compact for any ε>0.

Proof. It suffices to prove that Qf(H) is compact for any continuous function /with
support in ( — oo, Z3). By the basic equation (2.2) and its analysis in § 2, this follows if
we show that β/(#α) = 0. But β(l-Pα) = β since PPα = Pα, and (l-Pα)/(#α)
= /((!- Pα)#α) = 0 since by definition of Pα, σ(# f (1 - P^} C [Σ3, oo). D

In his paper, Combes proves the result that QHQ has purely discrete spectrum in
(— oo, Σ3). This is a strictly weaker than Lemma 3.2; see Appendix B.

Step 2. In terms of the tensor decomposition described in the definition of Pα, we
have Pα =pα(χ)αl. Explicitly, let XΛ be a choice of internal coordinates for the cluster
C*,l) and let ya be the difference of the centers of mass. Then this tensor product is
described by: φ®aψ = φ(xa)ψ(y0). In [10], Combes proved a general result that if
A = aΛ®aί and B = bβ®β\. and if αΦβ, αα and bβ are Hubert-Schmidt, then AB is
Hubert-Schmidt. One can avoid the proof of this general result by using some
special properties of the system under consideration :

Lemma 3.3. 7/αΦjS, then PaPβ is compact.

Proof. Let yx be the center of mass coordinate for α and let qol = h/id/dyol be the
conjugate momentum. Then j;α and qa commute with Pα so :

The first factor is compact since (1 + y2)~ 1(1 +#«)" 1 = l®αc with c compact, so we
need only show that the second factor is bounded. Now since α φ /?, ya = xa + xβ9 for
suitable coordinates, xα and xβ internal to α and β. Similarly q(X = l(X + lβ for internal.
Thus we only need show that PJ^φeL2 for any discrete eigenfunction φ of hΛ.
That this is so is a consequence of a general theorem on exponential falloff of bound
state wave functions [28, 12]. (Actually all these authors prove that φ falls
exponentially. But then, so does Hφ and so H0φ. It follows that \l\2φ are φ
are analytic in tubes with L2 cross-sections so that ξφ has this property (see [40]
for arguments of this genre.)

Step 3 is discussed in Appendix A.

Step 4

Lemma 3.4. Ej(H^PΛIaEJ(H) is trace class.

Proof. The proof is similar to that of Lemma 3.3. First note that we need only
consider a single Vtj term in 7α and a case where pα is one dimensional since the
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general case is & finite sum of these cases. Then Pα reduces Ha and P(XHΛ = Pΰl(e+TΆ)
= (e+Tα)Pα for suitable e so that £J(Hβ)Pβ(/+ΓJ1/2w+β = A is bounded. Thus:

[Pα(l +yαT/2+% (# o + 1)-

By (3.1), D(H) = D(H0\ so the last factor is bounded. The second factor is clearly
trace class, so we only need show that the third factor is bounded. But
yα = c(xt — Xj) + xα so this is bounded as in Lemma 3.3. D

Step 5

Proof of Theorem B.i.By Pearson's form [29] of Birman's theorem and Lemma 3.4,
the operators

W* = 5-lim eίtH«Pae-itHEac(H)
t-> + co

exist, since HJ>αL-PΛH = PαL(HΛ-H)= -PJΛ. Let φeRanEΆC(H)E(_^Σ3_ε}(H).
Then by Lemma 3. l,Qe IίHφ-»Oasί-> ±00 soβe ίίHE-»0 strongly. By Lemma 3.3

and Theorem A.I (in the first Appendix) P — £Pα is compact, so

(P - X P> ' /ίfl£->0 strongly.
Thus for φ C Ran E and ί-> + oo :

for since W^ exist and e~ίtHcc is unitary,

\PΛe-iiH*W*φ-PΛe-*Eφ]-+Q as ί

so that

This shows that φeφ Ran Ω* . D
We remark that (3. 1) only need hold for the Fs in an 7α with Pα Φ 0. In particular,

there could be Coulomb forces inside a cluster. Even if some long range forces are
present below Σ39 one can prove completeness below the lowest energy where long
range force occur. With these methods, it should be possible to discuss scattering of
an electron off a neutral atom below Σ3.

§ 4. On the Infinitude or Finiteness of the Number of Bound States of an N-Body
Quantum System II.

This section should be viewed as a sequel to a paper of mine [38] with the same title,
Part I. In that paper, various conjectures were made which are proven here.
Hunziker [23] obtained a partial result related to those conjectures. Moreover,
Combes [11] described a method to the author several years ago which he said
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would also prove these conjectures : there is some overlap between our methods and
Combes. There is also some overlap with ideas of Thirring [45]. The basic result is :

Theorem 4.1. For each α, let Pα be a reducing subspace for HΆ ({0} is not a priori
forbidden) and let

Let Σ = minΣ0[ and Σ' = mmΣ'0ί and suppose thatQ^Σ'>Σ. Let P be the projection
a. α

onto the span of the Pα and letQ = l — P. Then for any δ<(Σ' — Σ) there isannδ(<co)
with

for all a-^Σ where

Hδ = PHP -δ~ \PHQH P) . (4. Ib)

Proof. As in the proof of Lemma 3.2, QE(_ ̂  Σ, _e) is compact for any ε > 0. It follows
from general principles (see Theorem B.I), that σess(QHQ) C (Σr, oo). In particular,

(4.2)

Now, by the operator inequality

A*B + B*A ̂  A* A + B*B

with A = δ~ίl2QHP and B= -Qδί/2

so that

H ̂  Q(H - δ)Q + P[PHP -δ

(4.1) now follows from (4.2) and the orthogonality of P and Q. D
Further developements now depend on the form of P. The simplest case occurs

when, there is exactly one α with ΣQί = Σ and when the corresponding ha has a simple
discrete eigenvalue at the bottom of its spectrum. We will call this case where the
bottom of the continuum is simple two body. This will be the generic situation for
strong coupling in systems without any symmetry among particles. In this case, Pα is
one dimensional holpol = paΣ and P = Pα. Thus RanPα^L2(Rm) and, since

W2 + δ-ίW2 (4.3)

where m~ 1 = I £ μλ~ x + / £ μΛ~ 1 with μt = mass of particle i,

(4.4)

(4.5)

where η is the eigen function of hΛ.
From this computation follows a number of explicit results. For example :
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Theorem 4.2. Let m^3 and suppose that P^eL2nL3/2 (m = 3) or Lm/2 (m > 3) for each
i, j in different clusters for some breakup α. // mΞ>3, suppose moreover that
V^e L1 + Z/, p < m/m — 2 all ij. Suppose that the bottom of the continuum is simple two
body corresponding to the two body breakup α. Then H has finite spectrum below Σ.

Proof. We begin by recalling two facts : under the hypothesis on Vip the Fourier
transform of Vij9 the eigenfimction η obeys

W*J^Cexp(-D|xβ|) (4.6)

for some C, D > 0 (see, e.g. [40]). Secondly, if We Lm/2(lRm), m ̂  3, then - A + VP has
only finitely many negative eigenvalues (this follows from the Birman-Schwinger
principle [6, 35] and a SoboleV estimate).

By the estimate (4.6) any partial integral of |f/(xα)|2 is in L1nL°°, so by Young's
inequality and the fact that ^Vij^xi — xj)\η(x0)\2dxa is a convolution of Vtj and a
partial integral of \η\2, the functions W± and W2 lie in Lm/2(Rm). Thus -(Im)'^
+ Wί—δ~]-W2 has finitely many negative eigenvalues. D

Remarks. 1. Yafeev [48] has proven related results. In a recent paper, Sigal [36] has
proven that many JV-body systems with short range forces have only finitely many
bound states. He does not need to assume that the bottom of the continuum is
simple two body but he needs to assume a condition [called condition (A)] which,
while it holds for generic coupling constants, does not seen especially easy to check
in any situation such as that envisaged above. For three body systems, our result is
implied by results of Combescure-Moulin and Ginibre [13, 19].

2. The most serious defect in the above result is that it is nonexplicit, i.e. while it
does show dimj^.^ J} is finite, it does not estimate it. Using available bounds
(reviewed, e.g. in [41], see Remark 3 below), it is easy to estimate dimE^^ 0)

(-Δ + W) and thus the contribution of PHP-δ~lPHQHP. Unfortunately, the
proof that άimE(_^ Σ}(Q(H — δ)Q) is finite is sufficiently indirect that it seems
difficult to estimate it.

3. Not only is dimE(_oΰ>0)(-A + W)<oo if WeLm/2(m^3); it is bounded by a
multiple of $\W(x)\m/2dx by' recent deep results [14, 27, 34].

4. One can also prove results in dimensions m — 1 and 2 but not with only Lp

hypotheses on V. For example using the bound [7]

and (4.3), one can prove an m= 1 case of Theorem 4.2 if one supposes

5. One can easily weaken the condition on the Vtj at infinite very slightly, e.g. if
Vtj can be written as an Lm/2 function plus a weak — Lm/2 function of arbitrarily
small norm, the result remains true.

In cases where the bottom of the continuum is simple two body, Theorem 4.1 is
able to handle quite sensitive situations. For example, consider the following model
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inL2(IR3Λr-3)
N N+l

ΣN\XlΓ
1

with μ<m. This is almost the Hamiltonian of a positive ion, but we have artifically
made one "electron" light to assure that the botton of the continuum is simple two
body. We ignore statistics among the remaining electrons and take infinite nuclear
mass, but see the remarks following the following theorem.

Theorem 4.3. The Hamiltonian H of (4.1) has finitely many bound states below the
continuum limit, Σ.

Proof. It suffices to prove that W1 and W2 given by (4.1-2) are in L3/2(/?3). Since the
ground state η is spherically and permutation symmetric, we have :

^lOO — Nlyr+AΓί^

which is 0(e~φl) by (4.3) and so in L3/2. To control the W2 term, write
|x| ~ * = A(x) + B(x) with A supported in |x| ̂  1 and B in \x\ ̂  1. If we can show that
the A2 and B2 contributions to W2 are in L3/2, then W2 is in L3/2 since the AB terms
can be controlled by the Schwarz inequality. The A2 term can be shown to give a
contribution in L3/2 as in the proof of Theorem 4.2. Thus we are left with the term
W2 given by (4.5) with

Γa=-NB(xN+ί) + ΣB(χt
ί = ι

Now, the bound

holds since the 16\x\ term controls the case \y\ ^2|x|, \y\^2, the 2(\x\ + 1)2 term the
case 2|x| ̂  \y\ and the 18 term the region \y\ ̂  2. Thus, by (4.3), | W2(y)\ <> C(\y\ + 1)~ 4 is
in L3/2. D

Remarks. 1. A finite nuclear mass is trivially accomadated in the above. With two
additional remarks, one can accomadate the case where one imposes Fermi
statistics on the electrons of mass m. First the eigenvalue of hΛ may be degenerate
which requires some small modifications. Secondly, η may not be spherically
symmetric but by parity in variance, the total charge distributor of the "electrons"
and nucleus seen by the "test" charge N+ί will be one without any dipole moment
so that W^(y) will certainly be at worst 0(y~3).

2. This theorem will not remain true if the single nuclear charge N\x\~l is
m m

replaced by Σ zjx — xj" 1 with Σ zί = N> zί>®> F°r> tne ground state of the HΛ
i = l i = l

system will have a charge distribution which when combined with the nuclear
charge distribution has no net charge but in general a non-zero dipole moment. If
this dipole moment is large, there results on r~ 2 potential with an infinity of bound
states. Lieb (private communication) has remarked that one can get such a moment
if N= 1, Z1 = 1/3, Z2 =2/3, \x1 -x2\ large. The electron will "stick" to the second
charge.
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3. For other results on bound states of positive ionic Coulomb systems see [1, 2,
48, 52, 53, 54].

Finally, we consider how quickly dimJ^.^ α) grows as a-+Σ in cases where
άimE^^ Σ} = oo. We rely on results on the analogous two-body problem due to
Brownell-Clark [8] and McLeod [55] in the following form:

Lemma 4.4. Letm^l and let V=Vί + V2 where V1 eLm/2(lRw) and V2 is bounded and
obeys as x->oo

k
V2(x)=-Cx~β+ £ dpc-^ + OCx'2-') (4.8)

for some /?e(0,2) and some C>0 and q{>Q. Let

N(α) = dim E(_ ̂  _α)( - (2μΓ 1A + V)

and let

(4.9a)

(4.9b)

(4.9c)
LO

with τm the volume of the unit ball in IRm. Then

Proof. Follows from Theorem XIII.82 of [33] as extended in Problem 132 of
Chapter XIII of [33].

Remark. The integral in (4.9c) is doable in terms of JΓ functions. The function g(α) is
just the volume in R2w of the region of phase space where (2μ)~ 1p2 — Cx~β < — α
Lemma 4.4 is just an expression that the small α region is quasiclassical.

Theorem 4.5. Let H be the Hamiltonian of an N body system of m-dimensional
particles, m^3. Suppose that the bottom of the continuum is simple two body. Let
a = (C(

a

1\C(

(

2)) for the cluster determining Σ. Suppose that, for each ieC(^\ 7'eC«2),
YIJ = V^ } + V^ with V^} obeying the hypothesis of Theorem 4.2 and with V(2] obeying
(4.8) with the following provisos: (a) β is independent ofίj and is in (0, 2). (b) CVj need
not be positive or even non-zero but CΞΞ^C^O. (c) q may be ij dependent, (d) The
0(x~2"ε) term has a Fourier transform in Ll +LP with p<m/m — 2. Then

as αj,0, where μ is the reduced mass of the clusters in α.

Proof. By Theorem 4.1 and the elementary variational principle result [28]

TO β)(H) for α<0, we need only prove that

This follows from Lemma 4.4 and the type of estimates developed so far. D

This result is not comparable to that of Hunziker [23] who obtains information
on a limited fraction of the eigenvalues rather than just dimensions.

We end this section by noting that it should be easy to extend our method to the
case where a single two-body cluster decomposition determines the bottom of the
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spectrum but the eigenvalues are not simple — this can happen only when H is
restricted to some symmetry subspace. It should also be possible to discuss H~ with
infinite nuclear mass since the Pα's in that case commute. The interesting open
problem concerns non-orthogonal Pα's.

Appendix A. Almost Mutually Orthogonal Projections

Theorem A.I. Let {Pα}£= ± be a family of orthogonal projections on a Hilbert space and
^ and let P be the projection onto the span of the Ran Pα. Suppose that PaPβ is

N

compact for each aή=β. Then P— £ Pα is compact.
α = l

Remark. R. Kadison and P. Deift (private communications) have remarked
independently that this theorem has a true converse essentially by the following
argument: P1+P2^(ZPα-P) + P. Thus since P1PP1=P1 we have that
PίP2Pi^Pί(ΣPΛ-P)P1. Thus, if (ΣPΛ-P) is compact, so is P1P2Pί since it is
positive. As a result \P2Pι\ = C^i ̂ ^i)^2 *s compact, and thus, so is P2P\ Deift has
also given a slightly more complicated proof showing that if P — ΣPaeJ*p, then
each PaPβ is in J^p also

Proof. Suppose first that we have the theorem for N = 2 and for N = n — 1. Given n
projections, let P\ be the projection on the span of P1? . . ., Pn_ λ and let P2 = Pn. By
the theorem for N = n — 1, P\ — Pί . . . Pn __ x is compact so that P\P'2 is compact. Thus
by the result for N = 2, P — P\ — P'2 is compact proving the result for N = n. It
follows by induction that we need only consider the case N = 2.

Suppose that N = 2. Since P1P2P1 is compact, we can find an orthonormal basis
for RanPx of eigen functions for P1P2P1. Organize these in three sets {<pjf=1 (N
may be infinite), {φ$y= ^N' <ao)9 {φ"}?^ (N" may be infinite), so that

<Pi==<Pi> i e φ|eRanP1nRanP2 and
^1. Similarly pick a basis {φjuίφίj'uίφί'}

for RanP2 with φί = φί and φί = αί~
1/2P2φί; it is easy to check that these t/ 's are

orthonormal. Now let

where nΓ 2 ^2 + 2αl

1/2, (^~2 = 2~2^2. Then {φ^^iφ'ί^Wl^ίη^ίyi} is a
basis for Ran P. On these 5 sets, P — P1 — P2 has eigenvalues, 1,0,0, — α*/2, α//2. Since
N'<oo and α^O, P-PX -P2 is compact. D

Remark. 1. Notice, that α// 2 are the eigenvalues of (P1P2P1)
1/2 = \P^P2\9 so we have

that P - ZPα is in some trace ideal, ,/p, [16, 21, 42] if each PαP^ is in that trace ideal.
2. Two different proofs of this result have been provided by P. Deift and R.

Kadison.

Appendix B. Compactness of QE(H) and σess QHQ

Let H be an arbitrary self-adjoint operator which is bounded from below. For any
arbitrary orthogonal projection β, one can define a "self-adjoint" operator QHQ
we say "self-adjoint", since it may not have a dense domain — such objects have been
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considered recently [26, 43, 44]. Let αrgO. We want to consider the pair of
statements :

(1) ζλE(-oo,α-ε)(Ή) is compact for each ε>0.

(2) σess(β#0C|>,cx)).

For Schrodinger operators, H, results of type (2) come from resolvent equation
methods [9] results of type (1) are proven in the text. Here we want to show that on
an abstract level (1) implies (2) but not conversely.

Theorem B.I. Under the above considerations, (1) implies (2).

Proof. Fixε>0. Write

Then Bε^a — ε while Aε is compact if (1) holds. It follows that
σess(^£ + ̂ ε)^[α~ε> °°) f°r any £>0 on account of WeyΓs theorem (see Section
XIII.4 of [33]). D

Example. Let J^ = /2(0, oo), i.e. sequences (α1? 02, . . .). Let (Ha)n = [1 + 2( - l)"]αn i.e.
H(al9 02, ...) = ( — α1? 3α2? — #3, . . .)• Let Q be the projection onto vectors with α2 = α1,
α4 = α3, etc. Then, for 0<ε<l,

so (2) is true for α = 0, but (1) is not.
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Notes added in proof.

1. Results similar to Lemma 2.4 occur in the Haag-Ruelle theory.
2. The considerations of §2 can be extended to handle non-self-adjoint H's such as occur in

dilation analytic theory; this will be discussed in a forthcoming ETH Preprint by the author and others,
to be submitted to Trans. Am. Math. Soc.

3. The considerations of §3 have been extended by the author to central potentials Od cΓ1"*) at
infinity and to electron scattering from neutral atoms; see a Weizmann Institute Preprint submitted
to Commun. Math. Phys.

4. Zhislin has kindly informed the author that he and S. A. Vulgal'ter (Theo. Mat. Fiz. 32 (1977)
No. 1) have found "the most general results of discrete spectrum finiteness... in the case where the
bottom of the continuum is two body" including the results of §4.




