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Correlation Inequalities and Equilibrium States
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Abstract. For an infinite dynamical system, idealized as a von Neumann algebra
acted upon by a time translation implemented by a Hamiltonian H, we
characterize equilibrium states (KMS) by stationarity, a Bogoliubov-type
inequality and continuous spectrum of H, except at zero.

§ 1. Introduction

The equilibrium states of a finite volume system in statistical mechanics is usually
given by the Gibbs-ensembles.

To describe bona fide physical phenomena it is well known that one has to take
the so-called thermodynamic limit i.e. the volume tending to infinity, of any of the
Gibbs ensembles. These "limit Gibbs' states" have an interesting property, they
satisfy the so-called KMS-condition [1, 2].

In [3] Roepstorff derived a stronger version of the Bogoliubov inequality [4]
for Gibbs states (for KMS-states see [5]).

Let C}βH denote the thermal average with respect to the Hamiltonian H and the
inverse temperature β= 1/kT. For any pair of observables x, y the scalar product
(.,.)^ is defined by:

(x, yh = i f dλ<exp(λ£0χ* exp( - λH)y)βH

P o

(see also [6]). In [3] the following inequality is derived

βH/<<x*xyβH. (1)

Of course we have not to insist on the importance of the Bogoliubov inequality
and its stronger version in statistical mechanics (see e.g. [7]).
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In this note we want to add an other argument in favor of the importance of the
inequality (1). We prove that a basic concept like that of an equilibrium state is
determined by the following three properties:

(i) Stationarity,
(ii) inequality (1),

(iii) spectral condition.

For the benefit of the reader we sketch here the argument for states on
We prove that (i) and (ii) imply the KMS-condition.

Let H be the Hamiltonian, as operator on Cw with spectral resolution

sp (Ei) spectral family of H.
We suppose that ω is a state on ^(Cn) satisfying conditions (i) and (ii). From (i)

ω{x) = Trρx xe

where ρ is a density matrix of the form

where

O^RiύEi for all i.

Let ^ be the set partial isometries V of rank one such that

then from (ii) with x = V one gets

exp(εί - Sj) -1 ω(FF*)/ω(F* V) - 1

x—1
From the strict monotonicity of the function f(x)= one gets

exp(ε; - Sj) S ω(FF*)/ω(F* F)

substituting F by F* yields

exp(ε7. - e£) ̂  ω(F*

Hence

ω(F* V)/ω(VV*) =

Hence

TrJR ιF*F_exp-ε ί

exp-ε/
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As this is true for any V in # : there exists a constant α such that:

TrRiV*V=ocexp(-εi)

and so

From normalization: ρ = exp( — iί)/Trexp( — H).

Remark that the original Bogoliubov inequality

(x, x)^S l/2{ω(xx*) + ω(x*x)} (2)

is not sufficient for determining the KMS-property.

This can be checked on M 2 . Take

For α between

the inequality is always satisfied, and the state need not to be KMS.

Therefore using the results of [3] and [5] we proved the equivalence of on the
one hand the KMS-condition and on the other hand conditions (i) and (ii) i.e.
stationarity and the inequality, which is an upper bound for the Duhamel two-point
function.

We thank Professor E. Lieb for pointing out to us Ref. [8], where a different upper bound for the
Duhamel two point function can be found. However it is unclear if this upper bound implies also the
KMS-condition.

§2. The Main Theorem

Let SDΪ be a von Neumann-algebra on a Hubert space Jt and (α f) ίdR such that at(x)
= exp(itH) x exρ( — itH) where H is a self-adjoint operator on jtf. Let Ω be a cyclic
vector of #P for 2R and let ω be the corresponding vector state i.e. ω(x) = (Ω, xΩ);
xeWl. Furthermore suppose that 3PΪΏ belongs to the domain ^(exp(-ί#/2)) of
exp(-£#/2) for all ίe[0,1]. Then the following scalar product (.,.)-:

1

(x, y)^ = J Λ(exp( - tH/2)xΩ, exp( - tHβ)yΩ)
o

is well defined on 30Ϊ.

Lemma 2.1. Suppose Ω cyclic and for all

Then Ω is separating.
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Proof. Suppose x*Ω = 0 then ω(xx*) = 0. Suppose xΩφO then ω(x*x) + 0 and the
right hand side of ( + ) vanishes; hence (x,xL =0.

As the integrand (expί—-—JxΩ, expl—-—JxΩ) is continuous and positive

f

-——\xΩ = 0

for all te [0,1]. For t = 0 this yields xΩ = 0. Hence x*Ω = 0 implies xΩ = 0. Therefore
for all

or (xy*)*Ω = 0 implies xy*Ω = 0.
As Ω is cyclic for 9JΪ, this implies that x = 0. Q.E.D.

Lemma 2.2. Let (i) Ω cyclic and separating for 501.

(iii) ft linear, self-adjoint subspace of $01 such that ftΩ is dense in
(iv) There exists a constant C ^ 1 such that for all

C- Hexp( - fί/2)α*β, exp( - H/2)x*Ω) ^ (xΩ, xΩ)

S C(exp( - H/2)x*Ω, exp( - tf/2):x*Ω)

(*) extends to all j/eSDl.

Proo/ Define the operator T on exp( — H/2)RΩ by

T(exp( - H/2)x*Ω) = xΩ x e 5\.

By (*) T is bounded by ]/C.
Now we prove the result by proving that there exists a closable extension foϊT.

Define f on exp( - H/2)WIΩ by

T(exp( - H/2)x*Ω) = xΩ,

t is well defined [exp( - H/2)x*Ω = 0 implies x*Ω = 0 and by (i) xΩ = 0] on a dense
set exp( - if/2)9ϊlΩ, as exp( - HJ2) is invertible.

We prove that the adjoint Γ* of f is densily defined. First we prove that WΩ
Q@(Gxp(H/2)), where W is the commutant of 9M.

As exp( - H/2) is a self-adjoint invertible operator, exp( - H/2)RΩ is dense in J^
and for all yeSK1 and xeft using (*):

|(yΩ,exp(if/2)exp(-/ί/2)xΩ)|2

Hence
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Define the operator f+ on WΩ [dense in jf, because of (i) by]:

T+(yΏ) = exp(tf/2)/*Ω, / e W.

f+ is well defined because Ω is cyclic for SDt.

Now T* is an extension of T+, because for all XGSOΪ and y'eW:

(T+yΏ,Qxp(-H/2)xΩ)

= (exp(H/2)/*Ω, Qxp(-H/2)xΩ)

= (y'*Ω, xΩ) = (x*Ω, y'Ω) = ( f exp( - H/2)xΩ, y'Ω).

Therefore the second inequality (*) extends to all xeSPΪ. Analogously for the other
inequality. Q.E.D.

Theorem 2.3. Let ω and αf be as above, if ω satisfies :
(i) ω is at-invariant (stationnary state).
(ii) for all xem:

(x, x)^ ^ [ω(x:x*) — ω(x*xj]/\nω(xx*)/ω(x*x).

(iii) the spectrum of H is continuous except for the point zero.
Then ω satisfies the KMS-condition for the evolution αf at β = l, i.e. V

(exp(-#/2)j/Ω, cxp(-H/2)xΩ) = (x*Ω, y*Ω).

Proof Suppose Eesp(H)QR and δ>0,

such that zero is not an endpoint of A.
Let H = \λdF(λ) be the spectral resolution of H with spectral family

A

Take any element ye$Jl such that

then

1

, exp( - tH/2)yΩ)
o

^ J dΛ exp( - ί(E + δ)) (yΩ, yΩ)
o

= [(exp( - (E + δ)) -1)/ - (E+δ)lω(y*y) •

By(ii):

By the monotonicity of the function
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this yields

Also:

(exp( - H/2)yΩ, exp( - H/2)yΩ) ̂  exp(<3 - E)ω(y*y).

Hence

exp( - 2δ) (exp( - H/2)yΩ, exp( - Hβ)yΩ) ^ ω(yx). (1)

Analogously, remarking that y*ΩeFA — J f yields

ω(yy *) ̂  (exp( - iϊ/2) j>Ω, exp( - #/2)j;ί2 exp(2<5). (2)

From (1) and (2):

exp( - 2δ) (exp( - H/2)yΩ, exp( - H/2)yΩ) g ω(w*)

^ (exp( - fί/2)j,Ω, exp( - H/2)yΩ) exp(2<5). (3)

Let {Al/keZ} be a partition of the real line such that

Γ2fe-1 2* + l\

for neN.

Let

and ft" be the linear span of the ft£ for all keZ. We prove that ft"Ω is dense in

Take any ψeFΔγJί?9 for any ε>0, there exists an element xeSQl such that

Take

support of the Fourier transform/of/in A\, then x(f)ΩeFΔnj

Because of condition (iii), it is furthermore possible to choose / such that

Then

||V>-*ωΩ|| S l lφ-ί '^ΩII + \\FΔnkaΩ-x(f)Ω\\ <2ε

proving that ft"Ω is dense in J-f.
The inequalities (3) are easily extended to ft". Take

N

χ = Σ χk>χkE&k
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then

exp( - ί/n) (exp( - H/2)xΩ, exp( - H/2)xΩ)

= exp( - ί/n) Σ (exp( - H/2)xkΩ, exp( - H/2)xkΩ)

and analogously for the second inequality.
Now we are in a position to use Lemma 2.2 yielding (3) for all xeSOΐ. As this is

true for all n we get for all xe$Jl:

(exp( - H/ϊ)xΩ, exp( - H/2)xΩ) = (x*β, x*ί2).

By polarization, for all x and ye9W, we get

(exp( - H/2)yΩ, exp( - H/2)xΩ) = (x*Ω, y*Ω)

which is a particular form of the KMS-equation. Q.E.D.
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