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Abstract. We prove that the micro-local holonomic structure controls the local
monodromy structure of functions involved. This result plays an essential role
in investigating "hierarchical principle" in perturbation theory.

§1. Introduction

At the occasion of Kyoto symposium (MnΦ) in 1975, Sato [15] emphasized the
importance of holonomic systems of micro-differential equations1 in investigat-
ing the S-matrix and related functions. At least in the case of Feynman integrals this
point of view (i.e. the use of over-determined system of linear differential equations)
was also emphasized by Regge [12] as early as 1967.

In this approach, the first thing to do is to establish the fact that the S-matrix
and/or Feynman integrals satisfy some holonomic systems of (micro-)differential
equations. Partial results were given for Feynman integrals by Barucchi and
Ponzaro [1] and Sato [15] and for the S-matrix by Kawai and Stapp [5,6]. In this
direction a decisive result has recently been given for arbitrary Feynman integrals
by Kashiwara and Kawai [3,4].

Having this situation in mind, we show in this article how the holonomic
structure controls the local sheet structure of Feynman integrals. More precisely, we
show in Theorem 2 that our main result (Theorem 1) applied to Feynman integrals
entails that the local monodromy structure of the Feynman integral associated with
a Feynman diagram D controls that of the Feynman integral associated with the
"daughter" diagram D' of D under moderate conditions. Thus our results find an
intimate connection with the celebrated "hierarchical principle" proposed by

* Supported by National Science Foundation
** Supported by Miller Institute for Basic Research in Science
1 In Sato et al. [16], a holonomic system is called a maximally overdetermined system and a micro-
differential equation (operator, resp.) is called a pseudo-differential equation (operator, resp.). Here we
change our terminology according to the suggestion of Prof. Sato. We also use the terminology
"holonomicity of a function" to indicate the holonomic character of the function, i.e., the fact that the
function satisfies a holonomic system of (micro-)differential equations.
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Cambridge group (see e.g. Landshoff et al. [7]). In our formulation, "hierarchy"
should be assigned through the existence of a micro-differential operator Q
discovered by the authors. (See p. 22 of Sato [15]. Note that Regge [12] has also
conjectured the existence of an operator essentially the same as Q.) This will be one of
the most important steps when we try to achieve the charming program of Regge for
the systematic study of Feynman integrals. SeePham [9], Regge [12,13], Speer and
Westwater [18], Ponzano et al. [10,11], Regge et al. [14], and references cited there
for related topics.

§ 2. Micro-local Holonomic Character and Local Monodromy Structure

We begin our discussions by showing some lemmas on the analytic properties of
microfunction solutions of a holonomic system of micro-differential equations. In
applying our main theorem to the investigation of Feynman integrals, we can
bypass the use of these lemmas by using our basic result (Kashiwara and Kawai
[3,4]) on the existence of a holonomic system of linear differential equations that
a Feynman integrals should satisfy. However, in order to embody the fascinating
idea of Sato [15], i.e. the micro-local study of Feynman integrals and the S-matrix,
these lemmas (especially Lemma 3) are crucial in the sense that purely micro-local
information can control the behavior of the solutions involved in complex domain.

Before stating our results, we prepare some notations.
Let M be a real analytic manifold and letX be its complexification. Let x* be a

point in ]/— IS*M. We will choose a local coordinate system (ί,x1? ...,xπ) so that

x* = (0,0; ]/^ϊdίoo). We denote by F the projection from X to C" defined by
(f,x)f-»x. Accordingly a point in P*X will be denoted by (ί,x; τ,ξ) and a point in

J/^TS*M will be denoted by (ί,x; |/^ϊ(τ,ξ)).

Let y be a closed loop in X — Y for a hypersurface Y in X and /(ί, x) be a multi-
valued analytic function defined on X — Y (i.e. holomorphic on the universal
covering space X — Y of X — Y). Then we denote by Tyf the function obtained by
analytically continuing /(£, x) along y starting from a point on a specified sheet.

In order to simplify our notations, we shall use the following conventional
notations in the sequel.

(1) The point (ί,x) = (0,0) is denoted by 0.

(2) The projection from P*X(|/^Ts*M, resp.) to X(M, resp.) is denoted by π.

(3) For a topological space Z, Z denotes its universal covering space.

(4)

(5) β(x0,ε) = {xe<C";|x-x0|<β} for x0e(C"

(6) D(δ) = {te<C',\t\<δ}.

(7) D(ί0,,5) = {ίe<C; ί-ί0|«5} for ί0E<C.
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Lemma 1. Let V be a Lagrangίan variety of P*X. Assume that

(8) 7nπ"1(0) = {Λoo}

holds. Then, for any positive integer ε, there exists a neighborhood U of 0 such that

(9) {(ί,x)et/;|ί|>ε|x|}cX-π(F).

Proof. If the conclusion were false, we could find ε >0 and a real analytic curve (t(λ\
xW)o<λ<ι in ^ which satisfies the following conditions:

(10) \t(λ)\^ε\x(λ)\9

(11) (ί(0),x(0)) = 0.

Since π\v: V-+ Y is a finite surjective map, we can lift up this curve on K We denote
the corresponding point on VC P*X by (t(μ), x(μ) p(μ)). Here p is by definition — ξ/τ,
the inhomogeneous coordinate in a neighborhood of Aoo in P*X. Note that
condition (8) implies that p(0) = 0. Since V is Lagrangian, the canonical 1-form ω
= dt — (p,dxy restricted to V is zero by the definition. Therefore

(12) dt(μ)/dμ = (p(μ\dx(μ)/dμy

holds along the curve (t(μ), x(μ) p(μ))0^μ^1 C K On the other hand, conditions (10)
and (11) imply that

(13) |f(0)|£e|x'(0)|.

Since p(μ) is analytic in μ and p(0) = 0, this contradicts (12).
This completes the proof of Lemma 1.

In the situation discussed by Lemma 1, we may assume that V is closed in the
inverse image by π of a small neighborhood U = D(δQ}xB(ε0) of 0 and that
Vnπ~1(U)-*U is a finite map. Then

(14) Y = π(F)n U is a closed hypersurface of U = D(δ0) x B(ε0).

Choosing ε0 sufficiently small, we may further assume

(15) F~l(B(£0))πY^B(ε0) is a finite map.

Now define H as the image of the points of Y where Y-»£(e0) is not locally
isomorphic. Then

F-1(J3(e0)-H)n(l/-Y)->B(60)-H

is locally topologically trivial. Further we may choose <50 and ε0 so that

(16) ε0«50

and

(17) {(t,x)εD(δ0)xB(ε0);\t\>\x\}cX-Y

hold.



124 M. Kashiwara and T. Kawai

Then we have the following

Lemma 2. Assume that conditions (14)-(17) are fulfilled. Then for any x in B(ε0) — H,
the canonical map

(18) πx(F- i(x)n(D(δ0) x B(80)-Y))-^π1(D(δ0) x B(ε0)- Y)

is surjective for sufficiently small ε0.

Proof. First recall the following well-known exact sequence due to Hurewicz-
Steenrod :

(19) πι(D(50) x B(s0)-Y)nF- ^x^π^D^) x B(e0)- Y-F~ ^H^π^s,)

-H).

Since F~ 1(H) is of real codimension 2 inX, the map fc from π1(D(δ0) x #(ε0) — Γ
-F~ !(#)) to π^D^o) x J3(ε0)- Y) is surjective.

We shall now show that

is surjective. For this purpose, it suffices to show that for any y in π t (B(ε0) — H) we
can find /eπι(D(<50)x B(ε0)- Y-F'^H)) so that j(/) = y and fc(/) = l hold,
because fe is surjective. By conditions (16) and (17), we may define / by {ίeC; t
= t0}xy with (50>|£0 |>ε0. It is clear that / is trivial in ̂ ({(ί, x)eD((50)x£(ε0); |ί|
>|x|}), and hence also trivial in πl(D(δ0) x B(ε0}— Y).

After these preparations, we obtain the following

Lemma 3. Let f ( t , x) be a hyperfunction on M which satisfies following conditions:

(20) S.S. /nπ~ HO) = {1/^1^00}.

(21) sp(f(t, x))2 satisfies a holonomic system ($l = S>/e/
3 of micro-differential

equations.

(22) The characteristic variety V of 9JI satisfies condition (8).

Let /(ί, x) be a holomorphic function whose boundary value α(/)2 is f. (Existence
of f is guaranteed by condition (20).) Then /(ί, x) can be analytically continued so that
it is multi-valued analytic on U — Y= U — π(V) for sufficiently small neighborhood U
o/O.

Proof. First note that condition (20) implies that /(f, x) is holomorphic in {(£,
x)ED(δ0) x B(ε0) Imί > |Imx|} for sufficiently small <50, ε0 >0. Let Pj(t, x, Dv Dx) (j
= 1,...,JV) be micro-differential operators which generates the ideal /. By
Weierstrass type theorem for micro-differential operators (Sato et al. [16], Chapter
II, §2.2), we may assume without loss of generality that Pj is a differential operator in
Dx. We may further assume that order P^—i. Then we can find a linear
differential operator Aj(t9 ί', x, Dx) in Dx with holomorphic coefficients in (ί, £', x)
near the orgin such that

(23) sp α j Aj(t, t', x, Dx) f ( t ' , x) df = P/ί, x, Dt, Dx) sp(α(/))

2 As for the definition of α(/) and 5/?(/), we refer to §1.5 of Sato et al. [16], Chapter I
3 $ denotes the sheaf of micro-differential operators of finite order
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holds for sufficiently small c (see Kashiwara and Kawai [2], §3). Hence we may
assume that Aj(t, t', x, Dx) is defined for (ί, ί', x)eD(δ0) x D(δQ) x B(ε0), ceD(ε0) with

ί
ImoO and that J ^-(ί, ί', x, DJ /(ί', x) d£' is defined and holomorphic if (ί,

1) x #(ε0) for δ0^>δ1 >0. Furthermore we may assume that ε0 and δQ satisfy
conditions (14)-(17) so that Lemma 2 is applicable. We shall take ε1 such that 0 <εl

= εv>δι
We now embark on the proof of the extensibility of /(ί, x). Fix a point x0 in B(εί)

— H and define W=B(x0;ρ)CB(ε1) — H for sufficiently small ρ>0. Note that
Yr\D(δί)xB(εl)nF~i(x) is given by {α1(x),...,αιn(x)} by holomorphic function
aj(x) in xεW. We next define G = D(δ1; x0, σ) by D^-fίeC; |ί-α7.(x0)|^σ,;
= 1, . . ., m} for a sufficiently small σ and denote its universal covering space by G. We
denote by w the projection from G to G.

We shall prove that /(ί, x) can be analytically continued all over G x W. First
define Ω as a maximal connected subset of G that satisfies the following property.

(24) f ( t , x) is analytically continued all over Ω x W.

We want to show Ω = G. For this purpose we define an auxiliary set Ωf as
follows :

ί
(25) Q! is a set of point p in Ω such that j Aj(t, t', x, D J /(tσϋ 1 (t')9 x)dt'(j=l,.. ., AT)

ίo

is holomorphic if teD^) and xe W. Here C/ is an open neighborhood of p such that
U-^w (17) is isomorphic and we denote by wv the restriction of w to 17, and ί0 = w(p).

Now we shall show ί2' = Ω. We first show Ω; φ 0. By choosing c' e D (δ 1 ) with Im d
c'

>ε1? j ,4y(f, ί', x, DJ f ( t ' , x) dί' is holomorphic if (ί, x)eD(^1) x B(εί\ because Aj(t, ί',
c ^

x, Dx) and /(ί', x) are holomorphic when teD(δ1\ xeB(εί) and t'εD(δ0), lmt!>εi.
t t c'

Therefore j Aj(t, t', x, Dx) f ( t ! , x) ̂ ί; = J ^-(ί, ίr, x, D J /(£', x) dί' - J Aj(t, t\ x, D J
c' c c

/(ί', x) dί' is holomorphic for (ί, x)GD((5x) x B(ε1). This implies that ί7φ0.
Secondly we shall show that Ω' is open. Let p be a point in Ωf. Take p' in ί/

ί
^sufficiently close to p. Then J Aj(t,t',x,Dx) /((wϋ^t'^xϊdt' = J .̂(t, ί', x, Dx)

w(p')
r

f(wΰl(t'\ x) dt'+ J -̂(ί, ί', x, £>J f(^ϋl(tf\ x) ̂  is clearly holomorphic for (ί,

51) x W Therefore Ω' is open.
Lastly we shall show that Ω' is closed in Ω. Let pQ be in Ω'nίλ Choose

ί
sufficiently close to p0 and define ίx by ΪΠ(PI). Since pίeΩ', § Aj(t,t',x,Dx)

ίl
ί'

/(tσ^ ί̂'), x) dί' is holomorphic for (ί, x)eD((51) x W. Further, J Aj(t, t', x, Dx)
to

f(wϋ 1(ί/)J x)dίr is holomorphic for (ί, x)e I>(^ι) x W^, because p0e Ω and because the
coefficients of ,4/s are holomorphic in (t9t

l

9x)ED(δί)xD(δί)xB(εί). There-

fore J AJt, t', x, Dx)f(wϋ \t'\ x)dt'= ] Aj(t, t', x, Dx)f(wϋ \t'\x}dt'+ f Aft, t', x, Dx)
t0 ίl ί0
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f(wΰl(t'\x)dt' is holomorphic for ( t , x ) e D ( δ ί ) x W. This complete the proof of the
claim that Ω = Ω'.

Now we shall show that Ω = G. Again, it is clear that Ω φ 0 and Ω is open. Hence
it suffices to show that Ω is closed. Let p0 be a point in dΩ. Choose a point p1

sufficiently close to p0 so that it belongs to U chosen in (25). Define tj by m(pj) (j = 0,
1). We may assume that

(26)

(27) lίo-ίj^,

and

(28) \tί\<δ1-κ

hold for some K > 0. Define Oc Xί by {(ί,x); t-tl\
2/c + \x-xl

 2<(ρ2-|x1 -x0|
2)/2}

for

(29) xίeW=B(x0,ρ) and 0<c<2κ; 2/fe 2-|xo-Xιl 2)

Clearly 0CtXίCD(tl9 x)x£(x0, ρ) and 0CίίXίCθC2fXί for 0<c1 <c2. We next define a
real hypersur face Sc>Xl by the boundary of Oc Xι. It is clear that for any xeJ3(x0, ρ) we
can find some c<κ2/(ρ2 — |x0 — xj2) so that (ί0, x)eSCjXι. Therefore it suffices to
show that

(30) /(tσ^1^),*) is holomorphic in Oc Xι

implies

(31) f(wΰ 1 (t), x) is holomorphic in Oc Xι .

On the other hand, the property (30) guarantees that it defines a well-defined
micro function μ on Sc Xι as its boundary value. Further Pj(t, x, Dx) μ is given by the

t '
boundary value of j 4/(£5 £'? *? ^J /(C 7c/1( i /X x) ^^ as ^onβ as anY complex

ίi

hyperplane {(ί, x) <x, ξ> = α} is not tangent to SCfXl (Theorem 3.6 of Kashiwara and
Kawai [2]). Note that SCtXί is tangent to {(ί,x); <x, O = fl} if and only if ί = ί1. This
fact guarantees us that we do not need to worry about such a point because

t
/(τ% : (ί)j ^) is holomorphic in a neighborhood of {ί:} x W. Since j .̂(ί, t', x, Dx)

ίi
f(wϋl(t'\ x) ^f/ ^s holomorphic for (ί, x)eD((51)x J5(x0, ρ) due to the way of
choosing p l 5 it is holomorphic in a neighborhood of Oc > X ι for any (c, x x) that satisfies
(29). In fact condition (28) guarantees that D(t^κ)CD(δl\ Therefore (31) follows
from the invertibility of elliptic micro-differential operators if Sc>Xl is not
characteristic with respect to $R. This assertion of non-characteristicness is obvious,
because SCίXί is disjoint from π(V)=Y. Therefore Ω is closed. Thus we have verified
that Ω = 6. _

Let wv be a projection from D(δ1) x ^(εj— Y to D ( δ ί ) x ^(βj— Y. Then, for
x0eB(ει) — H, tujf 1F~1(x0) is a universal covering of D^J — {a1(x0\ ...,αm(x0)} by
Lemma 2 and hence the union of the images of G x W is a neighborhood of
wϊ1F~1(x0). Since this holds for any x0, / can be prolonged to a holomorphic
function defined on w-1(D(δ1)xB(εi)-Y-F-1(H)).
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So far we have discussed the extensibility of/ outside H. We finally show that H
has nothing to do with us.

Let φ(t, x) be a defining function of the hypersurface Y. Note that 7 is a
hypersurface because V is of purely dimension n and F-»7 is a finite map.

We consider the map (£', x7, y)~^(t, x) by solving the equations

. = xf.-\-φ(t x)φ(t x)y (φ denotes a complex conjugate of

and consider a hyperfunction

Then, /7(ί7, x7, y) is a hyperfunction on (ί7, x7, y)-space and its singularity spectrum is

contained in ]/— Idt'co over t' = x' = y' = Q. Moreover, /7(ί7,x7,y) satisfies the
holonomic system of the micro-differential equations with characteristic variety V'.
Hence we can apply the previous argument to /7(ί7, x7, y). Note also that the image
77 of V is

{(ί7, x7, y) (ί, x)e 7} = {(ί7, x7,3,) (ί7, x7)e 7} .

because φfox) = 0 on 7
Let X' — Y(X —Y, resp.) be the universal covering space of {(ί7, x7, y); \t'\ <δ, \xf\

<ε, \y\<ε, (ί7, x')φY} ( { ( t , x ) ; \ t \ < δ 9 \x\ <ε, (ί, x)£7}, resp.) and let w'(w", resp.) be the
projection fromX 7 — Y(X— Y, resp.) to (ί7, x7, y)-space ((£, x)-space, resp.). Then we
have a canonical map ip: Xf — Y^X — Y

The previous argument shows that /7(ί7, x7, y) = f ( t , x) is analytically continued
to a function defined on w"~1 ({(ί7, x7, y) x'φH}). We shall show that /(£, x) can be
prolonged all over X— Y. For any point p in X— Y— w~^(Ϋr\F~l(H}) (7 is a
complex conjugate of 7), we can find p' inlC^Y such that ψ(p') = p and w'(p'} is
outside {(ί7, x7, y) x'eH}. In fact, for any (£, x) outside 7u ΪJ we can find (ί7, x7, y) over
(ί, x) with x7££f for a suitable sufficiently small y, because φjjt, x) <p(t, x)Φθ.
Therefore /(ί, x) can be prolonged to a function onX — Y— w~1 (7nF~x (H)). Since
t f j ~ 1 (7nF~x (H)) is of complex codimension 2, it is a removable singularity of/ and
hence / can be analytically continued all over X— Y. Q.E.D.

Now we state our main result.

Theorem 1. Let F\ (ί, x) and F2 (ί, x) be micro functions defined in a neighborhood of (0
/

|/ — 1 dtoo). Assume that Fj(j =1,2) satisfies a holonomic system SOΐj = $1 /$(j — 1,2,
resp.) of micro-differential equations defined in a neighborhood of (0; dtco) whose
characteristic variety F/ (/—1,2, resp.) satisfies condition (8) in Lemma 1. Assume
further that there exists a micro-differential oprator β(ί, x, Dv Dx) defined in a

neighborhood of (0; ]/— Idtco) which satisfies

Then there exists a multi-valued analytic function F2(t, x) (F1 (ί, x), resp.) defined
outside Y=π(Vi) whose boundary value attains F2(ί, x) (F1 (ί, x), resp.), and they enjoy
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the following property for a sufficiently small neighborhood ω of the origin

N

(33) // Σ aιTy Fί(ί, x) (fl/eC) is holomorphic in ω for closed loops γt inω—Y, then
1= 1

N

Σ aιTy F2(t, x) is also holomorphic in ω.

Proof. First note that the existence of F^ and F2 follows from Proposition 1.5.4 of
Sato et al. [16], Chapter I combined with Lemma 3.

Condition (8) asserts that we can find generators PJ.(ί, x, Dv Dx) (/= 1, ...Jo) °f </
so that the common zero of their principal symbols intersects π~ 1 (0) only at {dtoo}.
Therefore, by making use of Spath-type division theorem for micro-differential
operators (Theorem 2.2.1 of Sato et al. [16], Chapter II), we can rewrite Q(ί, x, Dv

Dx) in the form
Jo

Σ Ώ (+ -v T} \ nα i X"1 T (+ ~v r\ n \ P it v n n ^iVyU, X, LJt )Uv-\- > ί , (Γ, X, xΛ, l/ v) / ί ( Γ , X, XΛ, L> )y. v " " I/ x / j J ^ ~ " X' J ^ " X'
\a\=m j=l
Λj = 0

for micro-differential operators Ra and 7}. Since Pβ = 1,...J0) annihilates Fί (ί, x),

we may assume from the first that Q has the form Σ RΛ(t, *> Dt) Dχ> an<^ hence it
has the following form: 'α

αl|^

(34) β(ί, x, Dt, Dx) = Qd(t, x, Dt, Dx) + βm(ί, x, Dt, DJ

= βd(ί,x,/>,,/>,)+ Σ QΛ(t,x,Dt)lTχ9

where βd(ί, x, Dv Dx) is a linear differential operator and βα(ί, x, Dt) is a micro-
differential operator of order less than zero which does not contain Dx.

Before discussing the procedure of analytic continuation, we note that Lemma 2
claims that y ;(/ = l3 ..., N) can be chosen so that it defines an element in
π1(F"1(x)n(ω—7)) for sufficiently small ω with xφH (see Lemma 2 for the
definition of H). N N

It is clear that Σ αι^y Qd^\ is holomorphic, if Σ αι^y ^i ^s holomorphic.
1=1 l N ^ 1=1

Hence it suffices to show that Σ αι^y Qm^i ^ holomorphic. Since βα(ί, x, Dt) is a
ι= i l

micro-differential operator of order less than zero, we can find holomorphic
function qΛ(t, ί', x) defined near (ί, ί', x) = (0, 0, 0) so that βα(ί, x, Dt) DΛ

xF^(t, x) is
equal to a boundary value of holomorphic function defined by

c

at (0, y — Idtco) for sufficiently small c with ImoO. (Kashiwara and Kawai [2],

§3.) Note that J qx(t, ί', x) DΛ

XF1 (t', x) dt' is also a multi-valued function onX — Y, and
c

hence the singularity spectrum at (ί, x) = (0,0) of this boundary value is contained in

3. Therefore, F2(t, x)— Σ ί #<*& *'> χ) ̂ ί^iί^ x) ̂ ' ^s holomorphic in a
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neighborhood of (t, x) = (0, 0), because its boundary value has no singularity
spectrum.

Making use of this concrete expression of Qα(ί, x, Dt) DXF1 (ί, x), we shall show
that

(36) F(t, x) = Σ a{Γ Σ J <l*(t> ϊ> x) D^ι (ί', x)dt'
1=1 v. c

N t

- Σ aι Σ ί ftΛ *'> *) ̂  Γ* ̂ i (^ *)Λ/

1=1 α c

is holomorphic in a neighborhood of the origin.
If this is the case, then the proof will be complete. In fact, the first term is equal to

N N t

Σ βιTy F2 modulo holomorphic function and Σ aι Σ f^αfo t',x)DχTyιFl(t',x)dt'
1=1 1=1 a c

is holomorphic in a neighborhood of the origin, because
N

Σ n T F (tf v^Ul1γl

r 1\L ' Λ /
1= 1

is holomorphic in a neighborhood of the origin by the assumption.

Now we shall calculate F(ί, x). First Tyι J qa(t, t', x) Da

xF1 (f, x) dt' is an integral of
^ c

qΛ(t, t', x) DxFl(t\ x) dt' along the path in Figure la. There yz(ί) signifies the point

over t on the sheet relevalent to yz. Secondly j qa(t, t', x) DxTγ F^(t\ x) dt' is an
c

I m t x A

(a)
Retx

(b)

Fig.l

I m t x A

Ret'
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integral of qΛ(t, £', x) Da

xFv(t', x} at' along the path from yz(c) to y^t). Therefore, as
seen in Figure Ib

j q,(t,t',x)D*xFl(t',x)dt'
C

"

is an integral of qa(t, t\ x) Da

xF^(t\ x) at' along the path from t' = c to t' = yt(c).
Therefore, F(ί, x) is analytic as long as this contour is not trapped between the

singularities of the integrand, i.e., as long as xφH. This means that F(ί, x) is analytic
except possibly at x<=H.

On the other hand,

φ(t,x)= Σ ί qa(t,t',x)D«xF1(t',x)dt'-F2(t,x)
y. c jV

is a holomorphic function defined near the origin as seen before. Therefore Σ aι^Ί
t ^ I N \ 1=1

Σ j qa(t, t', x) Da

xFl(t', x) dt' — Σ aι] ψ(t> x) should satisfy 9J12, hence it must be
α c V = l /

analytic outside π(72). Since φ is holomorphic in a neighborhood of the origin, and
that the second term in (36) is holomorphic, F(t, x) must be holomorphic in a
neighborhood of the origin.

This completes the proof of the theorem.

§ 3. An Application to Feynman Integrals

In this section we show how the results in §2 can be applied to analyze the
"hierarchy" of Feynman integrals. In order to avoid technical difficulties related to
renormalization procedure, we restrict our investigation to the simplest case in this
paper.

In this section we use the same notations as in Nakanishi [8], Speer [17],
Kashiwara and Kawai [3, 4], and Kawai and Stapp [5, 6] and do not repeat their
definitions.

In the sequel we exclusively consider Feynman integral FD(p) associated with a
Feynman diagram D which is external in the sense that at least one external line is
attached to each vertex; of D. Then we may assume without lose of generality that
exactly one external line is coming into each vertex, since we discuss off-shell
amplitudes in this article.

We also assume that all the relevalent particles are massive and spinless.
We first consider generalized Feynman integral FD(p λ) formally defined below

(37) FD(p;λ)= J
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We denote generalized Feynman amplitude by fD(p λ\ that is,/D(p λ) is defined
ί n } I n \

on M=\pE]R4n; £ Pj = θ[ and satisfies FD(p;λ) = δ4( £ ̂  /D(p A). A com-
/ = ι

ί " 1
plexification X of M is defined by <peC4"; Σ P/ = Of

I 7 = 1 J
It is known (Kashiwara and Kawai [4]) that FD(p, λ) can be considered as an

integral over (PfΊR4))^, and that it satisfies a holonomic system of linear differential
equations for generic λ. Furthermore, the characteristic variety of 9WA is contained
in the extended Landau variety &(D) defined below (Kashiwara and Kawai [4],
Theorem 2).

j^(D) = {(p,M)6T*(C4")); there exist a sequence of scalars cjm) and α|m) (/
= 1, . . . , N) and four- vectors pf\ u(™} (j = 1, . . . , n) and k\m} (/=!,...,#) which satisfy
the following relation (38)}

(38)

Σ

X Q i/J^ + α^/cΠc^-^O /=1, . . . ,ΛΓ
=ι / /

α(«)(fe(«)2_m2)_,0 / = 1 , . . . , J V

c[m) is bounded /=1,. . . ,JV

c{m)fe|m) is bounded / = 1, . . . , N

Denote by &(D}^ the sub variety of J^(D) defined by the same equations as (38)
with the additional condition

(39) c\m) -+Q for some /.

Note that ^(D)^ corresponds to the so-called (mixed) second-type singularities.
Note also that the Equation (38) reduces to the following Equation (40)
[((ordinary)Landau(-Nakanishi)equations] if(p,u)e^(D) — ^(D)00. Here we have
used the externality condition on the diagram D.

(40) ^(D)-j(p,t/)eP*(C4");p.+ £ [/:/]£, = () {j=l,...,n)9
1=1

Σ Ό Quj
j = ι

/ = 1,...,]V) and α / o Φθ for some / 0 > .

For the sake of simplicity of notations, we define ^^D) by (p, w)eP*(C4n); ̂

Z = l

*2-mf = 0 and αz
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ί N

We similarly define &0(D) by Up,ι/)eP*(C4n); PJ+ Σ [/:0^ = 0 (/=!, ...,n),
I / = !

n

Σ [/:']wj + αΛ = 0 (ί=l, ~ 9N\ kf — mf=0 and α z Φθ (ί=l,... J
7=1

We denote by D' the diagram obtained by contracting out exactly one internal
line of D, say the first internal line. The Feynman integral FD,(p\ λ) is given by

/ N \ / IV N \

Y[ δ4(p + Σ D''• 0^ M^4 I P + + Pj- + Σ \J+ '•^\kl-\- Σ D'~ Ό^ N
f [ j : l ] = 0 \ 1 = 2 I \ f = 2 1 = 2 / Γ~Γ J4J-ί π^*,.

Here j± denotes the (unique) number that satisfies [j± : 1] = + 1.

We define &0(D') as follows: &Q(D') = j(p, w)eP*(C4") PJ + Σ Q': /] fcz = 0 for j
( 1 = 2

N N

with [/:1] = 0, PJ++PJ-+ Σ C/+ : ']^/+ Σ [/~ :']^~Oj kf — mf = 0 and α z φO

7=1

Using these notations our theorem is stated as follows :

Theorem 2. Let p0 e IR4n belong to π(J2?0(D)n JSf 0(D')). Assume further that there exists
a complex neighborhood ω0 of p0 which satisfies the following :

ί " }(41) π 1(ω0)n=έ?(D)00 = <(p, t/);/?eω0, Σ Pj = ΰ and Uj = a for some aε<C4>.
I 7=1 J

(42) // (p, M) belongs toπ~ 1(ω0)n<^f (D), ίften corresponding (α, fe) should satisfy (40).

(43) π(JSf 1(D))nω0 /zαs ί/ie /orm 8^82 with non-singular hyper surf ace S± and S2 in
X which touch mutually tangentially along Slr^S2, which is non-singular and
codimension 1 in Sί and S2

Then there exist a neighborhood ω of p0 and a multi-valued analytic function fD(p)
(fD>(p\resp.) defined on ωnX — π^^D)) (ωnX — π(^0(D')\resp.) whose boundary
value attains the Feynman amplitude fD(p) (fD,(p\ resp.), and they enjoy the following
property :

m

// Σ aιTγl/D(p)(alE(C) is holomorphic in ωr^X for closed loops yl in
1 = 1

m

π(JSf !(£))), then Σ atTy fD>(p) is also holomorphic in ωr\X.

Proof. It suffices to show that conditions required in Theorem 1 are fulfilled in this
case.

In view of conditions (41) and (42), Theorem 2.1.1 of Sato et al. [16] entails that

S.S/βCp λ) is confined to jSf (D)n j/^^M in π~ HGUQ). Note that jSf (D) naturally
defines a subvariety of P*X under the usual convention that (p,u) = (p',uf) if and
only if p = p' and Uj — ufj = a (/=!> ...,w) for some αeC4.
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Furthermore, taking account of the + zΌ character of the propagator, one can
easily verify that S.S./D(p, λ) is really contained in the positive-α Landau(-Nakanishi)

variety, i.e., S.S/D(jM)C{(p, ]/- lw)e ]/-lS*M; p, + £ D':/]feϊ = 0 (/= !,•••,«),
n ί= 1

£ [ / l O M j + αjfc^O (/=!,...,AT), α I (fcf-wf) = 0 (/-I, ...,7V), α^O} (cf. Sato et al.

[16], Chapter I, §2). Moreover FD(p,A) considered as a micro function depends
holomorphically on /leCN in π~1(ω0) by condition (41). Therefore FD(p; !,...,!)
is well-defined as a micro function and is equal to

N

Π

1=1

Hence fD(p\ 1, ..., l) = fD(p) Then one of our results on the relationship between
FD(p) and FD{p) claims that there exists a micro-differential operator Q(p,Dp)
defined in a neighborhood of (p0,w0)eJS?0(D)n«£?0(I)') such that

holds there (see Sato [15], p. 22). _
Furthermore in a neighborhood of (p0, w0)e^f0(D)n^f0(D/)/ί)(p) satisfies a

holonomic system of micro-differential equations whose characteristic variety is
confined to g t(D). This fact follows from conditions (41) and (42) combined with
Theorem 2 of Kashiwara and Kawai [4]. One can also verify this results under
conditions (41) and (42) by the immediate application of Theorems 3.5.3 and 3.5.5
to fD(p) (cf. Sato [15])4.

Thus we find that all the conditions required by Theorem 1 are fulfilled in our
case, if we choose a local coordinate system (ί, x) on M in a neighborhood of p0 so

that Sl has the form {£ = 0} and that S.S./J)(p)nπ~1(0) = {|/r^ϊdίoo}. Condition
(43) guarantees that such a choice of a local coordinate system is possible. Note that
3? ^(ΰ)r\π~ 1(ω0) is a conormal set of Sί u52 under condition (43). Therefore we find
the required relationship between fD(p) and fD,(p). Q.E.D.

Remark 1. Though we have restricted ourselves to the case where exactly one simple
internal line is contracted out, we can equally deal with the case where multiple lines
are contracted out. However, since the proof of the existence of micro-differential
operator Q(p, Dp] in this case requires a detailed argument on renormalization, we
will discuss this case in a separate paper.

Remark 2. Theorems 1 and 2 might be regarded as a micro-local version of the
celebrated "hierarchical principle" in perturbation theory (see Landshoff et al. [7]).
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4 This is because there is no "w = 0 point" for off-shell amplitude except possibly where the points at
infinity with respect to k are relevalent, if D is supposed to be external. See Kawai and Stapp [5,6] for
this point
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