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Abstract. We show that the Wigner-Yanase-Dyson-Lieb concavity is a general
property of an interpolation theory which works between pairs of (hilbertian)
seminorms. As an application, the theory extends the relevant work of Lieb
and Araki to positive linear forms of arbitrary *-algebras. In this context a
“relative entropy” is defined for every pair of positive linear forms of a *-al-
gebra with identity. For this generalized relative entropy its joint convexity
and its decreasing under identity-preserving completely positive maps is
proved.

1. Introduction

In this note we establish a generalization of the important Wigner-Yanase-Dyson
conjecture that was proved by Lieb [1]. More precisely, we describe an interpola-
tion procedure having the WYDL-concavity property. Essentially, the WYDL-
concavity is the joint concavity in 4, B of

A, B-Tr(X*A'"'XB), O<t<l, (1)

whenever (1) is well defined. The derivation of (1) at the value t=0 leads to the
joint concavity of the expression

A, B>Tr (X*AX In B)—Tr (XX*A In A). 2)

This functional reduces up to the sighn for X =1 to the relative entropy of Lindblad
[2], see also Umegaki [3]. From the concavity of (2) there is a short way to prove
the strong subadditivity of entropy [4].

With the aid of the Tomita-Takesaki theory, Araki [5] was able to generalize
most of the known properties of (1) and of the relative entropy to pairs of faithful
normal states of W*-algebras. In Araki’s theory one has to rewrite (1) with the
help of the relative modular operator of the two positive functionals

Y->Tr(YA) and Y-Tr(YB) (3)
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or, more generally, of two positive faithful normal states. However, in doing so
and in deriving the desired inequalities one has to know deep results of the Tomita-
Takesaki theory and these results are not available for arbitrary *-algebras. We,
therefore, substitute this theory by a certain interpolation technique in such a way,
that (1) becomes the interpolation between the positive quadratic forms

Y, X>Tr(AXY*) and Y, X-Tr(BY*X). (4)

The generalized WYDL-inequalities will be expressed by the concavity in the
positive hermitian forms (4) or, more generally, by the joint concavity of the
interpolation with respect to a given pair of positive hermitian forms between
which the interpolation takes place.

In defining an interpolation with a general WYDL-concavity we heavily use
the notation and properties of the “geometrical mean” of Pusz and Woronowicz
[6]. In handling positive hermitian forms and in deriving the desired inequalities,
one may wonder wether there is not the possibility of extending some parts of
the Tomita-Takesaki theory to more general *-algebras by our interpolation
theory.

2. Quadratical Means, Scales, and Interpolations of Seminorms

Let us denote by .# a complex linear space. Given two seminorms p’ and p” on %,
we define their “quadratical mean” p as following: Denote by S the set of all
positive hermitian forms o« satisfying

i, VISP xX)p"(y) forall x,yelL. (5)
Then the quadratical mean p is defined by
p(x)=sup o(x, x)'/%. (6)

aeS

Being uniquely determined by p’ and p” we shall write

p=QM(’, p") 7)
to indicate that p is the quadratical mean of these two seminorms.

Remark 1. It has been proved in Ref. [6] that p is hilbertian for hilbertian p’, p”
and the positive hermitian form associated with p has been called “geometrical
mean” by Pusz and Woronowicz.

Let p,q be seminorms and A, u positive real numbers. Then

QM (p,q)=QM (g, p), A QM (p, q)=QM (A*p, i’q), (8)
QM (p,p)=p. 9)

Equation (8) are immediate consequences from the definition. If f is a linear form
and | f|<p, then the hermitian form x, y— f(x) f(y) can be used in the definition
of QM (p, p). By the Hahn-Banach theorem we thus get p < QM (p, p). The inverse
inequality is a special case of the more general

QM (p, 9)*(x) = p(x)q(x) - (10)
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If x=y in Equation (5), we find (10) as a consequence of (6).
The following proposition is evident.

Proposition 1. Let £ be a subspace of & and denote by p,, qq the restrictions of the
seminorms p,q onto ¥ ,. Then we have

QM (po, 4o)x)Z QM (p, g)(x) forall xeZ,. (11)

Proposition 2. Let us consider six seminorms p, p1, P2, 4, 41> 42, and let s, s, be
non-negative real numbers. If we have

P2§S1(P1)2+52(P2)2 and q2351(‘11)2+52(‘h)2 (12)
it follows
QM (p, 9)*=5s; QM (py, q,)* +5, QM (p5, 4,)* . (13)

The importance of this proposition is in its “self-reproducing” character. The
proof can be given by a simple modification of the corresponding one in [6].
One can, however, prove a more general statement and this we are going to do.
Let us mention first, that we can restrict ourselves to the case s; =s, =1 by virtue
of Equation (8).

A real valued function ¢ defined on R”" is called a monotonous one if

o)zl for [&lzlnl, i=1,...n

Let ¢ be a monotonous seminorm on R" and assume p,, ..., p, to be seminorms
on &Z. Then ¢(py, ..., p,) is a seminorm on .%.

Proposition 3. Let p,,...,p. 415 ..., 4, be seminorms on the linear space L. Let
further ¢, v be two monotonous seminorms on R" with the property

POz | ). & (14)
for all &, ne R" Then from
PZPW@1 D)y AZW(G1s - ) (15)
it follows for the seminorms p, q the inequality
QM (p,9)*2) QM (p;, q)* - (16)

Proof. For all x, ye ¥ we substitute in (14)

¢i=pidx), nquj(y)'

We denote by S; the set of all positive hermitian forms « satisfying |o(x, )| < p(x)qy).

Equations (15) and (14) imply
P Z Y pAX)g (1) 21 (%, )l -
Therefore,

QM (p, Q)(x) = {3 ot x, x)}72 .

Taking the suprema over the sets S; we get (16).
Applying the Schwarz inequality to Proposition 3 one gets Proposition 2.
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Let us now consider some examples, the first of which is due to Woronowicz
and the others are consequences of the first.
Example 1. Let £ be a hilbert space with scalar product (., .). Assume 4 ;€ %, (<)
and A;4,=A,A,. Then the quadratical mean of the two seminorms x—(x, 4 jx)” 2
is equal to the seminorm x—(x, (4;4,)'/*x)!/? (see Ref. [6]).
Example 2. Let us calculate the quadratical mean of the seminorms associated
with the positive hermitian forms (4). Using the hilbert space of the Hilbert-
Schmidt operators with scalar product ¥, X—>Tr (Y*X), Example 1 immediately
allows the conclusion that their quadratical mean is given by the square root of
the right hand side of (1) with t=1/2. We mention that Proposition 2 gives the
Yanase-Wigner concavity.

Example 3. Let us return to Example 1 again and let us now treat the case
A;A,+A,A, but under the assumption of the existence of (4, +A4,)” ! in B(Z).
Then the quadratical mean is given by x—(x, Cx)'/* with C=0 and

CZ(A1 +A2)1/2(B1Bz)1/2(141 +A2)1/2 5 (17)
B;=(4, +A2)_1/2Aj(A1 +4,)7 1. (18)

This, indeed, is nothing but the calculation of Pusz and Woronowicz: B, and B,
commute and x— (4, +4,)"*x maps the hilbert space onto itself. The general
case can be obtained by a limiting procedure [6].

After these preliminarities we come to interpolation theory in the spirit of
Krein and Calderdn [7]. Indeed, we generalize some concepts of interpolation
theory as given in the exposition of Palais [8]. However, the concave dependence
on the “boundary data” of interpolations seemingly was not examined up to now.

Definition 1. Let t'<t” be two reals, possibly infinite, and let L be a complex-
linear space. A map

t—p,, te[t,t"] (19)

which associates to every real number of the given interval a seminorm of % is
called a “quadratical scale” on [t', t"] if for every xe % the function t—p,(x) is
continuous and if

p=QM(p,,p,,) forall 2t=t,+t, (20)
with t,, t,e[t', t"] is valid.

A bit more involved is the notation of quadratical interpolation, for here we
have to relaxe in a suitable way the continuity at the boundary of the interval in

question. Later on we shall only consider interpolations: To formulate the corre-
sponding results for scales is a simple rewriting.

Definition 2. Let p’, p” be two seminorms of the complex-linear space . A “qua-
dratical interpolation” from p' to p” is a quadratical scale t—p, on [0, 1] with the
following three properties:

Pi=QM(p,p"), (1)
P2=QMI(p,p), te[0,1], (22)
Pa+02=QM (" p), te[0,1]. (23)
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Proposition 4. For a given pair p’, p" of seminorms there exists at most one qua-
dratical interpolation from p' to p".

The proof of this uniqueness theorem is typical for the proofs of the following
assertions too. Let T be the set of reals ¢ for which all interpolations from p’ to p”
coincide. Because of the continuity of scales (Definition 1) the set T is closed.
(21) tells us 1/2e T. (22) and (23) show that with te T also t/2e T and (1+1)/2e T.
Hence Oc T and 1e T for T is closed. Equation (20) indicates (¢, +t,)/2€ T, when-
ever t;,t,e T. A closed set with this property is a convex one. Such a set, con-
taining t=0, 1, contains the whole interval [0, 1]. Therefore, all quadratical inter-
polations from p’ to p” coincide.

Notation. By virtue of Proposition 4 the quadratical interpolation, if it exists,
is defined by p’ and p” uniquely. We write

p.=QL (', p") (24)

if t—p, is the quadratical interpolation from p’ to p”. In writing (24) we implicitely
assume the existence of the interpolation.

Proposition 5. If for xe & fixed and for one t,e[0, 1] we have QI, (p’, p")(x)=0,
then QI, (p', p")(x)=0 for all te [0, 1].

Proof. Using Equation (10) we find with the argument of the proof of Proposi-
tion 4 the validity of Proposition 5. Namely, the set of all t for which QI, (p’, p”)(x)=0
is a closed convex set. This set is either empty or it contains t=0 and t=1.

Proposition 6. Suppose p,=QI, (p', p”). Then for all numbers ti, ..., tn Sis.er S
te [0, 1] with sy + ... +s,,=1 we have

Disits+ oo+ sputm) = n (p;j)sj, (25)
j=1

(@) P (26)

Proof. To prove (25) we may (according to Proposition 5) assume p,(x)+0. The
function t— f(t)=1In p,(x) is continuous. Now, p, is a scale and we may apply
Equation (10) to show f(t,/2+1t,/2)<1/2f(t;)+1/2f(t;). By continuity, f is a
convex function, therefore. Hence f satisfies the inequality of Jensen and thus (25)
is valid. To prove (26), we find firstly the set T of all ¢t for which (20) is true to
be closed. Applying (10) we easily find T convex, containing with ¢ also ¢/2 and
(141)/2 and, last not least, the number t=1/2. Therefore, T=[0, 1].

The Proposition 6 is in its form a standart one in interpolation theory. More
important for us is, however, the consequences of Proposition 2 for the quadratical
interpolation. Before writing down this consequence we should mention a notable
inequality.

Proposition 7. ( Monotonicity).
QL (¥, p")2zQL¢.q") if p'2q and p"zq". (27)

Proof. From the very definition of the quadratical mean we see the validity of (27)
if we replace QI, by the functor QM. With the help of this we conclude by our
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standart argument that (27) should be valid for a closed convex set of numbers ¢
including t=0 and t=1 and hence the whole interval [0, 1].

Proposition 8. (Lieb Concavity). Assume p', p”, q', q", v, ¥" to be seminorms on the
complex-linear space L. If for a number s with 0<s< 1 the inequalities

() Zs(')* + (1 -9)q)*
(P zs(p") +(1~s)q")*

are valid, then for all te [0, 1] it is

QL (', 1" Zs QL (¢, p") +(1—5) QL (¢, 4")*. (29)

Proof. Here we consider the closed set of all ¢ for which (29) is valid. By Proposi-
tion 2 this set T is convex, for a quadratical interpolation is a scale. Applying
Proposition 2 to the Equations (21)+(23) one sees T =[0, 1].

As Example 5 below shows, Proposition 8 is a generalization of the Wigner-
Yanase-Dyson-Lieb concavity not using the concept of trace nor of relative
modular operator.

Lastly, we consider two complex-linear spaces & and ¢’ and a linear map @
from %’ into #. Denoting by @* the adjoint mapping, every seminorm p gives rise
to a seminorm p'=® " p of £’ by the definition p'(x")=p(Px’) with x'e #’. Every
inequality of the form |a(x, y)|=p(x)g(y) on ¥ implies the corresponding in-
equality on %’ by the substitution x=@x’, y=@y'. Therefore, QM (p’, ¢')(x’) can-
not be less than QM (p, g)(Px"). This proves

QM (p, ) @x)SQM (&7 p, ¥ g)(x'), xeZ’. (30)

(28)

Now we can play our standart game and replace QM by QI,, provided, as usual,
the interpolations exist. Thus we get

Proposition 9. Let @ be a linear map from & into £'. For every pair of seminorms
p, q on % and for all te[0, 1] it holds the inequality

QL (p, g)(@x)=QL (¢7p, 27 g)x), x'eL’. (31)
Note that in (31) we have to assume the existence of both interpolations.
Remark 2. a) Every quadratical interpolation is a quadratical scale. b) Let t—p,
be a scale. Replacing t by a linear transformation of ¢t we get a new scale. c) The
restriction onto a subintervall of a quadratical scale is a quadratical scale again.

d) Applying these trivial statements, the Propositions 4-9 can be converted into
properties of scales.

Remark 3. If we have ¥ =.¢" in Proposition 9 and furthermore

Ptqsq, P'p=p (32)
we may combine (31) with Proposition 7. The obvious result
QL (p, 9)(@x)=QIL (p, g)(x), 0=t=1, (33)

is an interpolation theorem a la Riesz-Thorin [9].
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Remark 4. The Equations (8) and (9) imply QI, (p, 9)=QI, . (4, p), QL (p, P)=p,
and QL (2p, ug)=2"""w'QL (p. q) .

Example 4. Assuming the same situation as in Example 1, the quadratical inter-
polation from x—(x, 4;x)"/* to x—(x, 4,x)*/? is given by

pdx)=(x, A" Ayx)"* for 0=t=1, (34)

po and p; are given by the limits t—0 and t—1 in Equation (34). As an important
consequence, (p,)*(x) can be extended analytically to an holomorphic function .
in the strip 0<Re t<1 and to a continuous function in 0<Re t<1.

Example 5. Consider again Example 2. With respect to the scalar product
X, Y- Tr (X*Y) the mappings Y —>AY and Y — Y B with positive 4, B are positive
mappings which commute. Hence the formula of Example 4 can be used to com-
pute the quadratical interpolation between the positive hermitian forms (4). A
simple calculation shows that the interpolation is given by the seminorms as-
sociated with (1). Therefore, from Proposition 8 the WYDL inequalities follow.

Example 6. In the situation of Example 3 the corresponding quadratical inter-
polation is given by

x=px)=(x,Cx)"*, 0<t<1, (35a)
with
Co=(4,+4,)'?B; "'By(4, + 4)'?, (35b)

where B,, B, is defined by Equation (18). Going in (35a) to the limits t—0, 1 one
obtains the complete interpolation. Proposition 8 shows that for all 0<t<1 the
map

A, A,—C, (36)

is jointly operator concave in A,, A,. This is an apparently stronger statement
than the operator concavity of A— A" for 0<t<1, see [10].

In the case of the bounded existence of A7 it is possible to rewrite (35) in
the following form

Ci=A,(A;+A,)"?DH(A, + A)"?, (37a)
D=(A;+A)"H (A1) H(A)A; +4,)" 12, (37b)

One easily sees D=D*=0. The representation indicates some connections with
the theory of semigroups: t—(4,)” !C, can be defined naturally for 0<t<co and
is a semigroup. Under this circumstances, t—p, is a scale on (0, o) and p;<—A4,.

3. Interpolation of Positive Hermitian Forms

We are now in the position to state the existence of the quadratical interpolation
in the case of hermitian seminorms.

Proposition 10. Let £ be a complex-linear space. For every pair of positive hermitian
forms ¢, B there exists one and only one function

z-7y,, O0=ZRez=1, (38)
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with values in the set of sesquilinear forms on £ with the following properties:

(i) The function z—v,(x,y) is continuous in 0=<Re z=1 and holomorphic in
O<Rez<l forall x, ye L.

(ii) v, is a positive hermitian form for 0t =<1 and

t—p, with Pt(x)=%(x,x)”2 (39)

is the quadratical interpolation from x—o(x, x)1/? to x— B(x, x)*/2.

(i) It is

V=72 (40)
and with Re z=(t, +1t,)/2 one has

7:0%, VI = P, ()P, () - (41)

(iv) For every 0<t=<1 the map

%, B, (42)

is jointly concave in o and f5.

Proof. We construct the hilbert space associated canonically with the positive
hermitian form «+ f. This transfers the problem to the situation described by
Examples 4 and 1.

Example 4 explicitely shows the existence of the quadratical interpolation
ii) and the existence of the analytic continuation i). From the explicit expression
(34) we easily find iii). iv) is a reformulation of Proposition 8. The uniqueness of
the construction is to be seen from Proposition 4.

Remark 5. In the sense of the functional calculus of forms introduced by Woro-
nowicz and Pusz [6] one can write with the aid of their symbolic notation

=)' () if O<i<l1.
We prefer, however, another notation.
Notation. In the situation described by Proposition 10 we write
7:=QF.( f). (43)

Especially, if p, g denote the seminorms defined by the positive hermitian forms
o, f we have for te [0, 1]

QL (p, 9)*(x)=QF (2, B)(x, x).

4. The Relative Entropy Functional

In the following we restrict ourselves to hermitian seminorms, though the general
case of pairs of seminorms can be handled as well.

Definition 3. For every pair a, f of positive hermitian forms on the complex-linear
space £ and for all xe ¥ we define the functional

S(ot; f):x—S(t; B)(x) (44)



Interpolation Theory and WYDL-Concavity 29

by

S(ot; )(x)= — lim inf 2F+ % P X)=alx, x) 45)

t—+0 t
S(a; p) is called “relative entropy functional of the pair o, 8.
Proposition 11. (Convexity). The relative entropy functional is jointly convex in
the pair o, f.

Proof. Proposition 10 guarantees the joint concavity of «, f—QF, (&, f)—a. The
lower limit of concave functions is concave again. Because of the minus sighn, (45)
defines a convex function of the pair o, f5.

Proposition 12.( Peierls-Bogoliubov Inequality).
S(a; B)x) Z alx, x){In o(x, x) —In f(x, x)} . (46)

Proof. Remembering all the definitions, the inequality is an estimate of (45) with
the help of Proposition 6, Equation (26).
Applying Klein’s inequality to the right hand side of (46) one gets

(5 f)x) Z edx, x) = f(x, x) - (47)

Proposition 13. Let @ be a linear map from &' into & and denote ® the transposed
map (pa)(x', y)=a(Px', Py’). For every pair o, f§ of positive hermitian forms defined
on & we have for all x'e &’

S(ez; (@)= S(Po; BP)(x') . 48)

Proof. Due to (45) this inequality is an immediate consequence of Proposition 9,
Equation (31).

Applying (48) to the situation of a subspace ¥ ,C.% and to the imbedding map
Lo— &, we get the important

Proposition 14.( Monotonicity). Let o,  be a pair of positive hermitian forms on &
and denote by o, B, their restrictions onto the subspace L, of £. Then for all
xXo€ %

S5 B)x0)Z S(eto5 Bo(Xo) - (49)

Next we mention a consequence of Proposition 7. For fixed o the functor QF,
is monotonous in f§ if ¢ is in the unit interval. Using this in the defining Equation (45)
we obtain

Proposition 15. Give three positive hermitian forms o, B, ' on &, one has
Sl; f)=S(; ) if p=p. (50)

Remark 6. If with some positive numbers A, u we have la < < po one can express
the relative entropy functional with the help of the Woronowicz-Pusz functional
calculus (see Remark 5) by the symbolic formula

S(e; f)=c(lnx—1In f).
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5. Quadratical Interpolations in *-Algebras

Let o/ be an arbitrary *-algebra with unit element e. If @ is a positive linear func-
tional on <, we define for all a, be < the positive hermitian forms

wXa, b)=w(a*h)

o®(a, b)=w(ba*). (51)

Remark 7. If we assume in Equation (3) A, B to be trace class operators, then (3)
defines two normal positive linear functional w and v of the *-algebra of all
bounded operators of a certain hilbert space. Now we can identify the two positive
hermitian forms (4) with o® and v%.

The remark above and Example 5 again show that the WYDL-concavity
is contained in the following statement.

Proposition 16. For every ae o/ and all 0=t =<1 the map
@, v—>QF, (&", v")(a, a) (52)
is jointly concave in w, v.

It is clear that this proposition is a rewriting of Proposition 8 or 10. We do
not reformulate the other relevant propositions in terms of positive linear forms.
It is completely evident how to do this. We add the connection with the relative
entropy.

Definition 4. Let w,v be two positive linear functionals of the *-algebra &/ with
unit element e. Their relative entropy S(w/v) is defined by
S(@/v)=S(@"; v*)e). (53)

Again we find it unnecessary to write down explicitly the direct implications of
Propositions 11-15.

However, there is a non-trivial point concerning completely positive maps.
We do not need the full content [11] of this concept. That is to be seen below.

Proposition 17. Let o/, # be two *-algebras and @ a linear map from < into %

satisfying
Pa*)=D(a)*, ac o, (54)
P(a)*D(a)< P(a*a). (55)

If w is a positive linear form of %, then w,, defined by
wd(a)=w(Pa) (56)

is a positive linear form of . For any two positive linear forms w, v of 8 we have
the inequalities, 0<t <1,

QF, (0", v")(®a, a) < QF, (wg, v3)(a, a). (57)

Remark 8. (54) and (55) imply the positivity of ¢ and hence (56) defines a positive
linear form of .&/. On the other hand it is well known for C*-algebras that com-
plete positivity and ez = ¢(e,,) imply (55).
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Proof. Write
p(b)=w(bb*)'?,  q(b)=v(b*b)"?
and
pla)=p(Pa), §(a)=q(Pa)
with ae «/and be %. According to (31) we have

QF, (@, o")(®Pa, Pa)=Q], (p, g)(Pa)* = QL (, 3)a)* . (58)
Next we have according to (54) and (55)

wp(a, a)=we(aa*)=w(@(aa*))Z o((@a)Pa)*)=pa)’ . (59a)
The same reasoning gives

vi(a, a)Zg(Pa)’ =g(a)® . (59b)
If we now combine the inequalities (59) with Proposition 7 we obtain

QL (5. 4)a)* < QF, (w5, v5)(a, a) . (60)

Putting together (58) and (60) we obtain (57).

It follows from the proof that we can replace in (57) the letter “L” by the letter
“R” (for example) and the inequality remains true.

To derive from Proposition 17 an entropy inequality, one has to insure

wR(De, De)=wE(e, e). (61)
This is true if ¢ maps the unit of .27 on the unit of 4, i.e.:

Proposition 18. If under the same assumption as in Proposition 17 we have ®e_ ,=ez,
where e, and ey denote the unit elements of o/ and % respectively, then

S(w/v)Z S(we/ve) - (62)

This generalize a theorem of Lindblad [2].

Let us consider a further question. Let us replace in (52) the form vF by vX.
Going to the GNS-representation of w+v we meet the situation of Examples 1
and 4 with 4, 4, in the weak commutator of this representation. If the weak
commutator is a von Neumann algebra, then it contains 4}~ ‘4% and the corre-
sponding positive hermitian form equals u® with a certain positive linear form .
This is already the proof of

Proposition 19. Let w, v be two positive linear forms of the *-algebra <. If the weak
commutator of the GNS-representation of w+v is a von Neumann algebra, then
there exists a map

tou, O<t<l, (63)
into the positive linear functionals of A such that
()" = QF, (", v). (64)
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