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Abstract. Dimensional renormalization is defined in such a way that the
renormalized action principle holds. It is shown that this leads to a minimal,
additive renormalization. The derivation of Ward-Takahashi indentities and
Callan-Symanzik equations from the action principle is exemplified.

I. Introduction

Dimensional regularization [1, 2] has become an almost indispensable tool to
the perturbative treatment of non-abelian gauge theories. Nevertheless the first
complete proof of the so-called Slavnov-Taylor identities, guaranteeing the uni-
tarity of the S-matrix, has been given recently with help of the "Normal Product
Algorithm" (NPA) based on BPHZ renormalization [3]. The reason lies in the
validity of the renormalized action principle in that formalism. The action prin-
ciple specifies the change of the Green's functions under an infinitesimal variation
of fields or parameters entering the Lagrangian. In our opinion it provides a much
more efficient approach to the proof of Ward-Takahashi or Slavnov-Taylor
identities—or other structural properties—than the algebraic manipulations per-
formed on individual diagrams advocated by the pioneers in that field [4]. The
approach of Ref. [3] suffers, however, from the fact that the subtraction method
in the BPHZ renormalization is not compatible with the identities to be proved.
This is overcome by appropriately chosen asymmetric finite counterterms added
to the Lagrangian. Apart from the difficulty to prove that such counterterms can
really be found in all orders of perturbation theory the method appears much
too clumsy for practical calculation.

Therefore, it is only natural to make an effort to establish the renormalized
action principle in the framework of dimensional renormalization. This is one of
the main objectives of the present work. The second is to show that dimensional
renormalization meets the requirements of a minimal, additive renormalization
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in the sense of Hepp [5]. Although there exists already a proof for that by
E.R. Speer [6], who reduces dimensional renormalization to standard BPH
renormalization (= minimal Taylor series subtractions) performing a suitable
finite renormalization, we have included a direct proof without recourse to BPH
renormalization. In fact our subtractions differ by finite terms from those proposed
by Speer, which proves to be necessary to establish the renormalized action prin-
ciple and only the latter guarantees the validity of Ward identities etc.1

Our proof of the renormalized action principle proceeds in two steps:
i) We demonstrate its validity in the regularized theory. The essential prop-

erty to show is that the application of the kinetic differential operator to the
propagator corresponding to some line { in a Feynman graph (i.e. D+m2 for a
scalar line) is equivalent to the contraction of that line to a point.

ii) We prove that the subtractions corresponding to all renormalization parts
(= superficially divergent 1PI subgraphs) before and after contraction of the line
are identical, although the respective classes of renormalization parts are gen-
erally different.

We have decided to devote some space especially to the latter point, since
there does not seem to exist an adequate discussion of that problem in the litera-
ture2. As far as the treatment of covariants in the dimensionally regularized
theory is concerned, especially the notorious y5, we follow essentially tΉooft and
Veltman [1], with somewhat more emphasis on a consistent formalism. We try
to convince the reader that there is no better choice for the definition of γs.

In Appendix A we have collected all relevant definitions and properties con-
cerning Feynman graphs.

II. Dimensional Regularization

I I.I. Feynman Amplitudes

Assigning propagators A€ to lines { and vertex parts X{ to vertices V{ of some
Feynman graph G we may construct Feynman amplitudes ^~G as formal expres-
sions of the type 3 (Definitions are given in Appendix A)

^G(*I»» »XM)= Π *i Π Δ<( £ efixλ , x^R", n pos. integer (1)
ie-^G et£G \ίeV*G /

with

zε)}| t t=0. (2)

Zf(—id/du) are some constant coefficient diff. operators containing in general
covariant algebraic objects like y-matrices etc. and hX^X^ — id/dx^ are again
constant coeff. diff. operators like the Zf.

1 A related work by Collins [7] has recently appeared
2 The proof of Y. M. P. Lam Ref. [8] is not complete in our mind
3 The Xt and Δf have to be appropriately ordered, which is understood to be done whenever
necessary
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Taking the nxM- dimensional Fourier transform of ̂ G(
χ) and performing the

Gaussian integrations over xt we obtain4

ε->0 0 <?eJ§?G

Iε(£>U>ά) = d(a)~n/2 Y[ Xi(pi, — id/duj)

- Σ αX^-ίe

This expression is the starting point for the dimensional regularization. It is
achieved in two steps:

i) we interpret the parameter n appearing in (3) as a complex variable,
ii) we give a definition of the algebraic objects (like y-matrices, momentum

4-vectors etc.) appearing in (3) which makes no direct use of the concept of
dimension (see Sect. II.2).

II.2. "n-Dίmensional" Lorentz Covarίants

For the validity of canonical Ward-Takahashi identities etc. for the dimensionally
regularized Feynman amplitudes resp. Green's functions it is essential to find an
extension of the Lorentz covariants (yμ, pμ, gμv etc.) which allows one to manip-
ulate these objects like in 4-dimensions. This will be achieved by treating them
as formal objects obeying certain algebraic identities. We shall make no use of the
fact that indices can assume values, but treat objects like γμ as just one entity
(i.e. we shall never use y2 etc.). The only place where one runs into troubles with
that prescription is where the εκA^v-tensor comes into play, since it is a genuine
4-dimensional object (like εijk is a 3-dimensional one). This is expressed by its
property that in 4 dimensions the value of an arbitrary Lorentz index is equal
to exactly one of the values of the indices of ε. Correspondingly there are identities
involving ε depending crucially on 4-dimensionality as

4

εμί...μA*vι...v<=- Σ s ignπΠ^vπ(ί) (4)
πeS4 i = l

and as a consequence

Σ sί8nπeμn(1)...μπ(4)0μn(5)V = 0. (5)
πeS5

4 Using the relation Q?t + e£ (— ί d/du^i] IE(g, u, α)=0 the vertex factors Xt(pf) can be included in the
factors Z,( — i d/du^)
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Two possibilities are to be considered:
i) no use is made of (4), i.e. there is no possibility to reduce a product of

several ε-tensors in the formal algebra,
ii) in addition to the "n-dimensionaΓ covariants also "(n-4)- dimensional" ones

(or equivalently 4-dimensional ones) are introduced.
Possibility ii) allows a further simplification of covariants containg a product

of several ε-tensors; as a consequence y\= — 1 can be proved.
Equation (5), however, has the disadvantage that it prevents one from finding

easily a unique normal form for the covariants (see below).
We use the usual symbols 5 #μv, pμ, γμ9 i, εκλμv which can be added, multiplied

etc. as usual, obeying the additional identities 6 (all symbols except yμ are assumed
to commute)

9μv9vλ ~ 9μλ 9 9μv = 9vμ>

P — p
μv°vρστ °μρ<rτ

(/-^(o)
V y v) = 7μΎv + 7v7μ = 20μVH > % = 7μ^ = 7μ >

Trl = 4.

In order to be able to formulate Equation (4) we introduce additional symbols
(as discussed above) gμv, pμ, yμ obeying the identities

9μvPv=Pv> 9μv7v = 7μl

4

7 τ - 9 μ ί V n i (40
πeS4 i = l

where S4 denotes the permutation group of 4 objects. From these assumptions
we can prove for example

= V,

Before we give a definition for y5, we will try to convince the reader, that there
is no better choice. In order to do so, we observe, that γ5 can be defined for n = 4
by its two properties

5 This list may be enlarged if necessary by other covariant objects
6 There are a lot of obvious rules to be observed, like: no index μ can appear more than twice in
one product etc., which we do not specify here
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which will be maintained and

ϋ) ίlWsHO

which has to be given up, because the two are not compatible for nΦ4. As an
alternative we might try to maintain ii), but this leads immediately to

n(π-2)(n-4)Tr(ys7μι...yJ = 0

and there is no smooth limit n-+4 which reproduces i). Nevertheless, this ap-
proach strongly supports the result that axial anomalies can always be avoided
except in matrix elements where i) becomes essential.

Let us define y5 = (4l)~ίεμί._μ4yμί...yμ4. With that definition we can prove

Proposition 1. {ya,y5} = {yΛ,ys} = '2>yΛys (9)

Using the abbreviations gμv = gμv-gμ^ yμ = yμ-yμ etc. we show first

Lemma 1. £ signπeΛe(1)...μn(4)gμw(5)β=0. (10)
πeS5

Proof.
πeS5

= —1/6
πeS5 "

Λ ~̂* A A ' A ' A Λ

~^aviV 2V3 2-ί β S|*π(l)ίt7r(5)θμ7 C(2)Vιθμ«(3)V2θμ7 Γ(4)V3 "

πeS5

since gμn(ΐ)μn(5) is symmetric under the exchange of 1 and 5.

Proof of Proposition i. Using the above Lemma we get

μι...yμ4+yw...y(,17j Σ *
πeS4

+ (20β\)gm(yμι...γμ3+γμ3...γtll) Σ
πeS3

= 5 ! {?α, 75 } and hence {y^ y5}= {yα, y 5 }

where use is made of the fact that the permutation (54321) is even, whereas (321)
is odd. The second part of Equation (9) is trivial to prove.

From Proposition 1 one can immediately compute

Tr ({yα, γ5}yaγλγμγvγβ) = 8(n - 4)ελμvρ

which is important for the derivation of the Adler anomaly.
Similarly one may prove

Proposition 2. y 5 = - 1 . (11)

Remark. All the quantities appearing are treated as real, treating charges by
doubling the number of components.
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The following proposition can be proved :
The identities above can be used as simplification rules for syntactically

correct expressions, leading to a normal form (NF) which is unique insofar as (4)
is neglected — otherwise there remain further linear relations with w-independent
coefficients between expressions in NF derived from Equation (5).

As for the proof we execute the following transformations (simplifications)
leading to the NF:

(i) we eliminate y5 by its definition;
(ii) we eliminate Tr by applying {yμ,yv} = 20μv, Tryμ = 0, Tri = 4, ΊrAB =

ΎΐBA;
(iii) we antisymmetrize products of y's by {γμ, jv} = 2gμv\

[(iv) we eliminate ε-tensors by (4')]
(v) we eliminate gμv's (resp. #μv's) by gμvpv=pμ (resp. gμvpv = gμvpv=gμvpv=pμ)

etc.;
(vi) we replace pμqμ byp q (resp. pμqμ=pμqμ=pμqμ by p^q) etc. and use gμμ = n

It is easy to see, that [without (4')] any further application of any of the
identities (6) no longer changes the expression obtained after the application of
(i) to (vi).

Having given a meaning to the Lorentz covariants contained in Equation (3)
we can now come to the definition of the dimensionally regularized Feynman
amplitude corresponding to the formal expression (3):

This is done in two steps.

Step 1: Interprete the covariants contained in the X?s resp. Z/s (i.e. also uf

and d/duf) as elements of the algebra described above. The exponential function
defining Jε(p, u, α) is considered as a formal power series. Next execute all deriv-
atives d/dut and put z^ = 0. Reduce the expressions obtained to their NF. This
displays explicitly the n-dependence of the covariants and therefore can be used
for the definition of the counterterms (see Sect. III).

Step 2: Once the counterterms are determined, we interprete the covariants in
the NF as 4-dimensional (specifically we put all 0 = 0, i.e. gμv=Q, pμ=Q etc.) and
set all of the M — 1 momenta pi to zero which correspond to internal vertices.
After that the Feynman integrand can be considered as a distribution in the
remaining M' ' — 1 momenta over ^(IR4^'"1*) and depends parametrically on α
and n. Taking Reπ<^0 all α-integrals converge absolutely. For min{w^}=t=0 the
limit ε->0 exists in ^'(R4^'"1*) and defines a distribution 2ΓG(p, n) over ^(JR4M/)
[9]. ^~G,ε(P> n) can be continued analytically to the whole complex w-plane as a
meromorphic function, the singularities of which lie on the manifolds

ωH(n) = nhH-2LH+Σrs = k9 Λ=0,l,2,..., HcG
&H

where re is the degree of Zf [10]. For values of n not on any of these manifolds
and ε^O «^>e(p, n) is continuous in β. Therefore, 3~G(p, n) is again a meromorphic
function of n with singularities on the same manifolds.
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11.3. The Action Principle

Most of the equations characterizing the structural properties of a Lagrangian
QFT like equations of motion, Ward-Takahashi identities, Callan-Symanzik
equations etc. can be understood as a consequence of the "action principle" [11].
Let us consider a Lagrangian ^ = ̂ 0 = j£?int depending on a set of commuting
or anticommuting quantized fields genericly called φ(x), unquantized "external"
fields a(x) and space-time independent parameters L Then we may ask how the
Green's functions of the theory change under an infinitesimal variation of these
quantities. The answer, given by the quantum action principle, is most efficiently
expressed in terms of the generating functional Z(a,λ) for the Green's functions7

given by the Gell-Mann-Low series

Z(α, ̂ (exptfΓ1 j <3?int(£(x), α(x), A)dx>°+iC . (12)

Z(α, λ) is a well defined formal power series in h using dimensionally regu-
larized Feynman amplitudes corresponding to the graphical expansion of
<expίft~1 J jSfint>+>c. < >+ c designates the connected vacuum expectation value
of the time ordered product, evaluated in the free theory given by L0 = ̂ φDφ,
i.e. with propagator z'ftD"1. About D we make the assumption that it is a real,
second order differential operator with constant coefficients, i.e.

Dtj = atj + b% 8μ + cf/ dμ <9V with real coefficients ,

ay = ± α/i , bfj = + b l j i , c% = ± c$ the ± sign referring

to Bose resp. Fermi components of φ = (φ.). The constants α, b, c contain in
general algebraic objects like yμ,gμv etc. We assume, however, that D~l is the
same algebraic expression as in 4 dimensions, i.e. D( — i
— (D^ + w^), which can easily be proved for the standard representations like
— (D+m2), —iyμdμ + m etc., using the algebraic rules of Section Π.2.

The action principle for the respective kinds of variations takes the following
form:

i) variations of the quantized field φ(x)
δφ(x) = P(φ(x))δε(x) with some polynomial P leave Z(α, λ) invariant:

0- <(5^ exp/ft-1 j J*?int(x)ώc>° ,c (13)

where <5j£? is the linear part of £?(φ + δφ) — <&(φ) in δε. Neglecting ordering of
factors we may write

- dμ((δ^/δdμφ(x))P(φ(x))} δε(x)dx (13a)
resp.

δ^=lP(φ(x))((δ^/δφ(x))-dμ(δ^/δdμφ(x)))δε(x)dx (13 b)

ii) variations of external fields result in

- ihδZ/δa(x) = ((δ<e/δa(x)} exp ίh ~ 1 f £>[nt(x)dxy°+ %e (14)

7 We assume that J^nt contains a "source term" J J(x)φ(x)dx which allows to express Green's
functions as functional derivatives of Z
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iii) variations of parameters give

-ihdZ/dλ = <tf&/dβmpih-il&Mdxylte. (15)

In the following we try to show that Equations (13)-(15) hold in the sense of formal
power series in h in the dimensionally regularized theory corresponding to ££.

The only difficulty of the proof lies in the asymmetrical treatment of J£?0

 and
j£?int in the definition of Z via Feynman graphs: J5?0 determines the lines, J£?int

the vertices. We have to demonstrate how the variations in both constituents
conspire to give the simple result of Equations (13)-(15). Two kinds of properties
are responsible for this conspiracy:

i) algebraic properties of the Feynman integrands /(p, w, α),
ii) combinatorial properties of the graphical expansion of

We shall restrict ourselves to the discussion of point i), since ii) is straight-
forward and has nothing to do with dimensional regularization. This immediately
settles Equation (14), because we have assumed that there is no external field
dependence in ̂ 0 and therefore we may write Equation (14) in the form

-ίhδZ/δa(x) = ̂ δ^Jδa(x)) expΐ/r1 J &ini(x)dxy°+ tC (16)

the proof of which is essentially combinatorial.
Equation (13) needs somewhat more work. Splitting JS? into j^0 and J£?int we

may rewrite it as

(P(φ(x))Dφ(x) exptfr1 J <?int(x)dxy°+,c

= - <P(φ(X)) (δ&M/δφM) exp ih ~ 1 j (x)dxy°+ ,c . (17)

Reducing Equation (17) to Feynman graphs it boils down to the following prop-
erty: replacing Z€( — id/du^ in Equation (3) by D^( — id/duf)Z^( — id/du^ =

is equivalent to the contraction of line t to a point, which is achieved

by replacing Jdoc^ by - f dα,3/flα,, i.e. ̂ "G = «^G/^ where ?Γ'G is the Feynman
o o

amplitude for G with an additional factor D^( — id/due) included. Therefore, it is
sufficient to show

( ΏU( + mj- ίe)/β(p, ii, α) = i(d/fa<)Ie(p9 u, α) (18)

in the formal algebra of covariants. Up to trivial factors 8 Iε(p, u, α) has the form

(setting Π *. (Pι> ~ * S/du,) Π Z,( - ί d/du,} = Z(-ί d/du)) ,

8 Actually it is important that the only dependence of these factors on the number L of lines resp.
M of vertices is through the number of loops h = L — M +1, since the latter does not change by con-
tracting a line
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with

F(p,u,α) = (p+,ιι+)M-1(P) M=
\ t t /

Differentiation with respect to α, gives

i(mj-i&}}I£ (19)

whereas

-(O^ + m^-fcμ^iX-η^-W (20)

Using

2-1nd-1^/aα/ = 2-1wTr((δM/aα^)M-1)=-DMίF (21 a)

(here gμμ = n comes in !) and

δK/a^-fo+OM-^M/^^ (21 b)

we arrive at the desired equality (18).

Now we go over to the corresponding dimensionally regularized Feynman
amplitude of both sides of Equation (18) as described above and obtain 3~G(p> n) =
<^G//(J?> n} f°r Rew<^0. Analytic continuation and combinatorics will complete the
proof of (13).

It remains to prove Equation (15)9. Again reducing it to the language of graphs
it means

-idrG/dmt = Pί (22)

where G' is obtained from G by insertion of the 2-vertex with vertex part
into line t of G.

From

we get

resp. ( OU + mj) dZ^

00 00

Using Equation (18) and Jrfα^/G(p, u, α)= — Jdα^3/G/Sα^. we get10 for suf-
o o

ficiently small n
00

G(p, u, α)^|M=0

J (ia,t(dlfag)(dZfldmt)Zj l -2^mtf)IGd^\u==0 (24)
o

o
9 The only "nontrivial" case is, when JS?0 depends on A. We consider only the case where λ is a mass,
but the other possibilities can be treated in a similar way
10 Correct ordering of the Z-factors is understood here
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On the other hand

0
(25)

0

using

oo oo

J dcc1 dvL2 /(«ι + α2)
= ί α^α/(α)

o o

Analytic continuation and some combinatorial considerations complete the proof
of Equation (15).

IIA. Ward Identities, etc.

Choosing the infinitesimal transformations of some Lie-group as variations we
may derive Ward identities from the action principle, Equation (13):

with real, antihermitean matrices ί? . We get from Equation (13 a)

^ dμφj(x)

(27)

with the definition

Isolating the source term in j£?=j^ + ^J(x)φ(x)dx we obtain from Equation (13)
the Ward identity

«d*J'μ(x)-δa&(x)- JKxίίf^X^expft-1 J ̂ int(x)dx>«,c=0. (28)

The generalization of this derivation to Lagrangians including gauge fields is
straightforward11. Using the so-called Slavnov transformation introduced in [3]
one may in the same manner derive Slavnov-Taylor identities for non-abelian
gauge theories.

A word of caution, however, has to be said about Lagrangians resp. variations
involving γs. Since y5 does not anticommute with yμ (see Propl.l) certain simpli-
fications usually performed in the evaluation of δa& may not be possible in n
dimensions. This can lead to anomalies in the process of renormalization. A typical
example for that is the axial vector current in theories with fermions.

The same difficulty occurs for Ward identities in super symmetric theories
which depend on the identity y5ψ(ψy5ψ) + ψ(ψψ) = Q for a Majorana field. For
n=4 this follows from Fierz symmetry, a typical 4-dimensional property derived

We want to recall, however, that we excluded theories with massless particles


