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Abstract. Dimensional renormalization is defined in such a way that the
renormalized action principle holds. It is shown that this leads to a minimal,
additive renormalization. The derivation of Ward-Takahashi indentities and
Callan-Symanzik equations from the action principle is exemplified.

I. Introduction

Dimensional regularization [1, 2] has become an almost indispensable tool to
the perturbative treatment of non-abelian gauge theories. Nevertheless the first
complete proof of the so-called Slavnov-Taylor identities, guaranteeing the uni-
tarity of the S-matrix, has been given recently with help of the "Normal Product
Algorithm" (NPA) based on BPHZ renormalization [3]. The reason lies in the
validity of the renormalized action principle in that formalism. The action prin-
ciple specifies the change of the Green's functions under an infinitesimal variation
of fields or parameters entering the Lagrangian. In our opinion it provides a much
more efficient approach to the proof of Ward-Takahashi or Slavnov-Taylor
identities—or other structural properties—than the algebraic manipulations per-
formed on individual diagrams advocated by the pioneers in that field [4]. The
approach of Ref. [3] suffers, however, from the fact that the subtraction method
in the BPHZ renormalization is not compatible with the identities to be proved.
This is overcome by appropriately chosen asymmetric finite counterterms added
to the Lagrangian. Apart from the difficulty to prove that such counterterms can
really be found in all orders of perturbation theory the method appears much
too clumsy for practical calculation.

Therefore, it is only natural to make an effort to establish the renormalized
action principle in the framework of dimensional renormalization. This is one of
the main objectives of the present work. The second is to show that dimensional
renormalization meets the requirements of a minimal, additive renormalization
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in the sense of Hepp [5]. Although there exists already a proof for that by
E.R. Speer [6], who reduces dimensional renormalization to standard BPH
renormalization (= minimal Taylor series subtractions) performing a suitable
finite renormalization, we have included a direct proof without recourse to BPH
renormalization. In fact our subtractions differ by finite terms from those proposed
by Speer, which proves to be necessary to establish the renormalized action prin-
ciple and only the latter guarantees the validity of Ward identities etc.1

Our proof of the renormalized action principle proceeds in two steps:
i) We demonstrate its validity in the regularized theory. The essential prop-

erty to show is that the application of the kinetic differential operator to the
propagator corresponding to some line { in a Feynman graph (i.e. D+m2 for a
scalar line) is equivalent to the contraction of that line to a point.

ii) We prove that the subtractions corresponding to all renormalization parts
(= superficially divergent 1PI subgraphs) before and after contraction of the line
are identical, although the respective classes of renormalization parts are gen-
erally different.

We have decided to devote some space especially to the latter point, since
there does not seem to exist an adequate discussion of that problem in the litera-
ture2. As far as the treatment of covariants in the dimensionally regularized
theory is concerned, especially the notorious y5, we follow essentially tΉooft and
Veltman [1], with somewhat more emphasis on a consistent formalism. We try
to convince the reader that there is no better choice for the definition of γs.

In Appendix A we have collected all relevant definitions and properties con-
cerning Feynman graphs.

II. Dimensional Regularization

I I.I. Feynman Amplitudes

Assigning propagators A€ to lines { and vertex parts X{ to vertices V{ of some
Feynman graph G we may construct Feynman amplitudes ^~G as formal expres-
sions of the type 3 (Definitions are given in Appendix A)

^G(*I»» »XM)= Π *i Π Δ<( £ efixλ , x^R", n pos. integer (1)
ie-^G et£G \ίeV*G /

with

zε)}| t t=0. (2)

Zf(—id/du) are some constant coefficient diff. operators containing in general
covariant algebraic objects like y-matrices etc. and hX^X^ — id/dx^ are again
constant coeff. diff. operators like the Zf.

1 A related work by Collins [7] has recently appeared
2 The proof of Y. M. P. Lam Ref. [8] is not complete in our mind
3 The Xt and Δf have to be appropriately ordered, which is understood to be done whenever
necessary
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Taking the nxM- dimensional Fourier transform of ̂ G(
χ) and performing the

Gaussian integrations over xt we obtain4

ε->0 0 <?eJ§?G

Iε(£>U>ά) = d(a)~n/2 Y[ Xi(pi, — id/duj)

- Σ αX^-ίe

This expression is the starting point for the dimensional regularization. It is
achieved in two steps:

i) we interpret the parameter n appearing in (3) as a complex variable,
ii) we give a definition of the algebraic objects (like y-matrices, momentum

4-vectors etc.) appearing in (3) which makes no direct use of the concept of
dimension (see Sect. II.2).

II.2. "n-Dίmensional" Lorentz Covarίants

For the validity of canonical Ward-Takahashi identities etc. for the dimensionally
regularized Feynman amplitudes resp. Green's functions it is essential to find an
extension of the Lorentz covariants (yμ, pμ, gμv etc.) which allows one to manip-
ulate these objects like in 4-dimensions. This will be achieved by treating them
as formal objects obeying certain algebraic identities. We shall make no use of the
fact that indices can assume values, but treat objects like γμ as just one entity
(i.e. we shall never use y2 etc.). The only place where one runs into troubles with
that prescription is where the εκA^v-tensor comes into play, since it is a genuine
4-dimensional object (like εijk is a 3-dimensional one). This is expressed by its
property that in 4 dimensions the value of an arbitrary Lorentz index is equal
to exactly one of the values of the indices of ε. Correspondingly there are identities
involving ε depending crucially on 4-dimensionality as

4

εμί...μA*vι...v<=- Σ s ignπΠ^vπ(ί) (4)
πeS4 i = l

and as a consequence

Σ sί8nπeμn(1)...μπ(4)0μn(5)V = 0. (5)
πeS5

4 Using the relation Q?t + e£ (— ί d/du^i] IE(g, u, α)=0 the vertex factors Xt(pf) can be included in the
factors Z,( — i d/du^)
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Two possibilities are to be considered:
i) no use is made of (4), i.e. there is no possibility to reduce a product of

several ε-tensors in the formal algebra,
ii) in addition to the "n-dimensionaΓ covariants also "(n-4)- dimensional" ones

(or equivalently 4-dimensional ones) are introduced.
Possibility ii) allows a further simplification of covariants containg a product

of several ε-tensors; as a consequence y\= — 1 can be proved.
Equation (5), however, has the disadvantage that it prevents one from finding

easily a unique normal form for the covariants (see below).
We use the usual symbols 5 #μv, pμ, γμ9 i, εκλμv which can be added, multiplied

etc. as usual, obeying the additional identities 6 (all symbols except yμ are assumed
to commute)

9μv9vλ ~ 9μλ 9 9μv = 9vμ>

P — p
μv°vρστ °μρ<rτ

(/-^(o)
V y v) = 7μΎv + 7v7μ = 20μVH > % = 7μ^ = 7μ >

Trl = 4.

In order to be able to formulate Equation (4) we introduce additional symbols
(as discussed above) gμv, pμ, yμ obeying the identities

9μvPv=Pv> 9μv7v = 7μl

4

7 τ - 9 μ ί V n i (40
πeS4 i = l

where S4 denotes the permutation group of 4 objects. From these assumptions
we can prove for example

= V,

Before we give a definition for y5, we will try to convince the reader, that there
is no better choice. In order to do so, we observe, that γ5 can be defined for n = 4
by its two properties

5 This list may be enlarged if necessary by other covariant objects
6 There are a lot of obvious rules to be observed, like: no index μ can appear more than twice in
one product etc., which we do not specify here
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which will be maintained and

ϋ) ίlWsHO

which has to be given up, because the two are not compatible for nΦ4. As an
alternative we might try to maintain ii), but this leads immediately to

n(π-2)(n-4)Tr(ys7μι...yJ = 0

and there is no smooth limit n-+4 which reproduces i). Nevertheless, this ap-
proach strongly supports the result that axial anomalies can always be avoided
except in matrix elements where i) becomes essential.

Let us define y5 = (4l)~ίεμί._μ4yμί...yμ4. With that definition we can prove

Proposition 1. {ya,y5} = {yΛ,ys} = '2>yΛys (9)

Using the abbreviations gμv = gμv-gμ^ yμ = yμ-yμ etc. we show first

Lemma 1. £ signπeΛe(1)...μn(4)gμw(5)β=0. (10)
πeS5

Proof.
πeS5

= —1/6
πeS5 "

Λ ~̂* A A ' A ' A Λ

~^aviV 2V3 2-ί β S|*π(l)ίt7r(5)θμ7 C(2)Vιθμ«(3)V2θμ7 Γ(4)V3 "

πeS5

since gμn(ΐ)μn(5) is symmetric under the exchange of 1 and 5.

Proof of Proposition i. Using the above Lemma we get

μι...yμ4+yw...y(,17j Σ *
πeS4

+ (20β\)gm(yμι...γμ3+γμ3...γtll) Σ
πeS3

= 5 ! {?α, 75 } and hence {y^ y5}= {yα, y 5 }

where use is made of the fact that the permutation (54321) is even, whereas (321)
is odd. The second part of Equation (9) is trivial to prove.

From Proposition 1 one can immediately compute

Tr ({yα, γ5}yaγλγμγvγβ) = 8(n - 4)ελμvρ

which is important for the derivation of the Adler anomaly.
Similarly one may prove

Proposition 2. y 5 = - 1 . (11)

Remark. All the quantities appearing are treated as real, treating charges by
doubling the number of components.
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The following proposition can be proved :
The identities above can be used as simplification rules for syntactically

correct expressions, leading to a normal form (NF) which is unique insofar as (4)
is neglected — otherwise there remain further linear relations with w-independent
coefficients between expressions in NF derived from Equation (5).

As for the proof we execute the following transformations (simplifications)
leading to the NF:

(i) we eliminate y5 by its definition;
(ii) we eliminate Tr by applying {yμ,yv} = 20μv, Tryμ = 0, Tri = 4, ΊrAB =

ΎΐBA;
(iii) we antisymmetrize products of y's by {γμ, jv} = 2gμv\

[(iv) we eliminate ε-tensors by (4')]
(v) we eliminate gμv's (resp. #μv's) by gμvpv=pμ (resp. gμvpv = gμvpv=gμvpv=pμ)

etc.;
(vi) we replace pμqμ byp q (resp. pμqμ=pμqμ=pμqμ by p^q) etc. and use gμμ = n

It is easy to see, that [without (4')] any further application of any of the
identities (6) no longer changes the expression obtained after the application of
(i) to (vi).

Having given a meaning to the Lorentz covariants contained in Equation (3)
we can now come to the definition of the dimensionally regularized Feynman
amplitude corresponding to the formal expression (3):

This is done in two steps.

Step 1: Interprete the covariants contained in the X?s resp. Z/s (i.e. also uf

and d/duf) as elements of the algebra described above. The exponential function
defining Jε(p, u, α) is considered as a formal power series. Next execute all deriv-
atives d/dut and put z^ = 0. Reduce the expressions obtained to their NF. This
displays explicitly the n-dependence of the covariants and therefore can be used
for the definition of the counterterms (see Sect. III).

Step 2: Once the counterterms are determined, we interprete the covariants in
the NF as 4-dimensional (specifically we put all 0 = 0, i.e. gμv=Q, pμ=Q etc.) and
set all of the M — 1 momenta pi to zero which correspond to internal vertices.
After that the Feynman integrand can be considered as a distribution in the
remaining M' ' — 1 momenta over ^(IR4^'"1*) and depends parametrically on α
and n. Taking Reπ<^0 all α-integrals converge absolutely. For min{w^}=t=0 the
limit ε->0 exists in ^'(R4^'"1*) and defines a distribution 2ΓG(p, n) over ^(JR4M/)
[9]. ^~G,ε(P> n) can be continued analytically to the whole complex w-plane as a
meromorphic function, the singularities of which lie on the manifolds

ωH(n) = nhH-2LH+Σrs = k9 Λ=0,l,2,..., HcG
&H

where re is the degree of Zf [10]. For values of n not on any of these manifolds
and ε^O «^>e(p, n) is continuous in β. Therefore, 3~G(p, n) is again a meromorphic
function of n with singularities on the same manifolds.
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11.3. The Action Principle

Most of the equations characterizing the structural properties of a Lagrangian
QFT like equations of motion, Ward-Takahashi identities, Callan-Symanzik
equations etc. can be understood as a consequence of the "action principle" [11].
Let us consider a Lagrangian ^ = ̂ 0 = j£?int depending on a set of commuting
or anticommuting quantized fields genericly called φ(x), unquantized "external"
fields a(x) and space-time independent parameters L Then we may ask how the
Green's functions of the theory change under an infinitesimal variation of these
quantities. The answer, given by the quantum action principle, is most efficiently
expressed in terms of the generating functional Z(a,λ) for the Green's functions7

given by the Gell-Mann-Low series

Z(α, ̂ (exptfΓ1 j <3?int(£(x), α(x), A)dx>°+iC . (12)

Z(α, λ) is a well defined formal power series in h using dimensionally regu-
larized Feynman amplitudes corresponding to the graphical expansion of
<expίft~1 J jSfint>+>c. < >+ c designates the connected vacuum expectation value
of the time ordered product, evaluated in the free theory given by L0 = ̂ φDφ,
i.e. with propagator z'ftD"1. About D we make the assumption that it is a real,
second order differential operator with constant coefficients, i.e.

Dtj = atj + b% 8μ + cf/ dμ <9V with real coefficients ,

ay = ± α/i , bfj = + b l j i , c% = ± c$ the ± sign referring

to Bose resp. Fermi components of φ = (φ.). The constants α, b, c contain in
general algebraic objects like yμ,gμv etc. We assume, however, that D~l is the
same algebraic expression as in 4 dimensions, i.e. D( — i
— (D^ + w^), which can easily be proved for the standard representations like
— (D+m2), —iyμdμ + m etc., using the algebraic rules of Section Π.2.

The action principle for the respective kinds of variations takes the following
form:

i) variations of the quantized field φ(x)
δφ(x) = P(φ(x))δε(x) with some polynomial P leave Z(α, λ) invariant:

0- <(5^ exp/ft-1 j J*?int(x)ώc>° ,c (13)

where <5j£? is the linear part of £?(φ + δφ) — <&(φ) in δε. Neglecting ordering of
factors we may write

- dμ((δ^/δdμφ(x))P(φ(x))} δε(x)dx (13a)
resp.

δ^=lP(φ(x))((δ^/δφ(x))-dμ(δ^/δdμφ(x)))δε(x)dx (13 b)

ii) variations of external fields result in

- ihδZ/δa(x) = ((δ<e/δa(x)} exp ίh ~ 1 f £>[nt(x)dxy°+ %e (14)

7 We assume that J^nt contains a "source term" J J(x)φ(x)dx which allows to express Green's
functions as functional derivatives of Z
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iii) variations of parameters give

-ihdZ/dλ = <tf&/dβmpih-il&Mdxylte. (15)

In the following we try to show that Equations (13)-(15) hold in the sense of formal
power series in h in the dimensionally regularized theory corresponding to ££.

The only difficulty of the proof lies in the asymmetrical treatment of J£?0

 and
j£?int in the definition of Z via Feynman graphs: J5?0 determines the lines, J£?int

the vertices. We have to demonstrate how the variations in both constituents
conspire to give the simple result of Equations (13)-(15). Two kinds of properties
are responsible for this conspiracy:

i) algebraic properties of the Feynman integrands /(p, w, α),
ii) combinatorial properties of the graphical expansion of

We shall restrict ourselves to the discussion of point i), since ii) is straight-
forward and has nothing to do with dimensional regularization. This immediately
settles Equation (14), because we have assumed that there is no external field
dependence in ̂ 0 and therefore we may write Equation (14) in the form

-ίhδZ/δa(x) = ̂ δ^Jδa(x)) expΐ/r1 J &ini(x)dxy°+ tC (16)

the proof of which is essentially combinatorial.
Equation (13) needs somewhat more work. Splitting JS? into j^0 and J£?int we

may rewrite it as

(P(φ(x))Dφ(x) exptfr1 J <?int(x)dxy°+,c

= - <P(φ(X)) (δ&M/δφM) exp ih ~ 1 j (x)dxy°+ ,c . (17)

Reducing Equation (17) to Feynman graphs it boils down to the following prop-
erty: replacing Z€( — id/du^ in Equation (3) by D^( — id/duf)Z^( — id/du^ =

is equivalent to the contraction of line t to a point, which is achieved

by replacing Jdoc^ by - f dα,3/flα,, i.e. ̂ "G = «^G/^ where ?Γ'G is the Feynman
o o

amplitude for G with an additional factor D^( — id/due) included. Therefore, it is
sufficient to show

( ΏU( + mj- ίe)/β(p, ii, α) = i(d/fa<)Ie(p9 u, α) (18)

in the formal algebra of covariants. Up to trivial factors 8 Iε(p, u, α) has the form

(setting Π *. (Pι> ~ * S/du,) Π Z,( - ί d/du,} = Z(-ί d/du)) ,

8 Actually it is important that the only dependence of these factors on the number L of lines resp.
M of vertices is through the number of loops h = L — M +1, since the latter does not change by con-
tracting a line
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with

F(p,u,α) = (p+,ιι+)M-1(P) M=
\ t t /

Differentiation with respect to α, gives

i(mj-i&}}I£ (19)

whereas

-(O^ + m^-fcμ^iX-η^-W (20)

Using

2-1nd-1^/aα/ = 2-1wTr((δM/aα^)M-1)=-DMίF (21 a)

(here gμμ = n comes in !) and

δK/a^-fo+OM-^M/^^ (21 b)

we arrive at the desired equality (18).

Now we go over to the corresponding dimensionally regularized Feynman
amplitude of both sides of Equation (18) as described above and obtain 3~G(p> n) =
<^G//(J?> n} f°r Rew<^0. Analytic continuation and combinatorics will complete the
proof of (13).

It remains to prove Equation (15)9. Again reducing it to the language of graphs
it means

-idrG/dmt = Pί (22)

where G' is obtained from G by insertion of the 2-vertex with vertex part
into line t of G.

From

we get

resp. ( OU + mj) dZ^

00 00

Using Equation (18) and Jrfα^/G(p, u, α)= — Jdα^3/G/Sα^. we get10 for suf-
o o

ficiently small n
00

G(p, u, α)^|M=0

J (ia,t(dlfag)(dZfldmt)Zj l -2^mtf)IGd^\u==0 (24)
o

o
9 The only "nontrivial" case is, when JS?0 depends on A. We consider only the case where λ is a mass,
but the other possibilities can be treated in a similar way
10 Correct ordering of the Z-factors is understood here
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On the other hand

0
(25)

0

using

oo oo

J dcc1 dvL2 /(«ι + α2)
= ί α^α/(α)

o o

Analytic continuation and some combinatorial considerations complete the proof
of Equation (15).

IIA. Ward Identities, etc.

Choosing the infinitesimal transformations of some Lie-group as variations we
may derive Ward identities from the action principle, Equation (13):

with real, antihermitean matrices ί? . We get from Equation (13 a)

^ dμφj(x)

(27)

with the definition

Isolating the source term in j£?=j^ + ^J(x)φ(x)dx we obtain from Equation (13)
the Ward identity

«d*J'μ(x)-δa&(x)- JKxίίf^X^expft-1 J ̂ int(x)dx>«,c=0. (28)

The generalization of this derivation to Lagrangians including gauge fields is
straightforward11. Using the so-called Slavnov transformation introduced in [3]
one may in the same manner derive Slavnov-Taylor identities for non-abelian
gauge theories.

A word of caution, however, has to be said about Lagrangians resp. variations
involving γs. Since y5 does not anticommute with yμ (see Propl.l) certain simpli-
fications usually performed in the evaluation of δa& may not be possible in n
dimensions. This can lead to anomalies in the process of renormalization. A typical
example for that is the axial vector current in theories with fermions.

The same difficulty occurs for Ward identities in super symmetric theories
which depend on the identity y5ψ(ψy5ψ) + ψ(ψψ) = Q for a Majorana field. For
n=4 this follows from Fierz symmetry, a typical 4-dimensional property derived

We want to recall, however, that we excluded theories with massless particles
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from the completeness relation for the y-algebra, which cannot directly be gen-
eralized to rcφ4 and, therefore, may give rise to anomalies.

A similar situation arises in the derivation of trace identities from the varia-
tion δφ(x) = (dφ + xμd

l)φ(x). If the dimensions dφ are chosen such that δ&0(x) is
a divergence, <5j£?int will contain (apart from mass terms) a contribution propor-
tional to n — 4, which again will lead to anomalies in the process of renormaliza-
tion. The problem of these anomalies is discussed in Section III.3.

As a second application of the action principle let us derive the renormal-
ization group — resp. Callan Symanzik equation in the φ4-theory. Our discussion
follows closely Ref. [11].

We take the Lagrangian

JS?(x)=((l +b)/2)dμφ&>φ-((m2 -a)/2)φ2 -((g-c)/4 \)φ* (29)

where α, ft, and c are chosen such that the following normalization conditions
are fulfilled (ΓN denotes the 1PI vertex functions with N arguments)

Γ2(p2 = m2HO, (30a)

Γ2(p2 = μ2) = ί(μ2-m2), (30b)

Γ4(s.p.)= — ig, s.p. = symmetry point: pipj = (4δij—l)μ2/3, ij= 1,...,4 . (30 c)

Applying the action principle Equation (15) we find

dΓN/dm2 =((da/dm2 - l)Aί+(db/dm2)A2 + (dc/dm2)A3)ΓN , (31 a)

dΓN/dμ2 = ((da/dμ2)A1+(db/dμ2)A2+(dc/dμ2)A3)ΓN , (31 b)

(31 c)

where the At signify the insertion of the extra vertices Ai=i2~ΐ $dxφ2(x),
A2 = i2~1$dxdμφdμφ and A3 = (i/4\) ̂  dxφ4(x) into the graphs for ΓN. Putting
P=φ in Equation (13) we get in addition

(-2(m2-ά)A1+2(l+b)A2-4(c-g)A3 + N)ΓN = Q. (31 d)

Eliminating the Δi from (3 Id) in favour of the diff. operators in (31a-c) it takes
the form

[μ2 d/dμ2 + ρm2 d/dm2 + σ d/dg -τN~]ΓN = Q, (32a)

am2A1ΓN (32b)

with some coefficients α depending on m, μ, g and β, y, ρ, σ, τ depending on m/μ
and g. Applying Equation (32) to the normalization conditions Equation (30)
we get

ρ = 0, σ = 4^τ-iμ2δΓ4/φ2(s.p.), τ = μ2(dΓ2/dμ2)(p2=μ

2)/2i(μ2 -m2)

and similar for α, β, γ .

Equations (32) are the renormalization group resp. Callan-Symanzik equation.
Note that there is no hard mass insertion like in Ref. [11] involved since Δ± is soft.



22 P. Breitenlohner and D. Maison

III. Dimensional Renormalization

11 Li. Definition of the Renormalίzed Amplitudes

As we have emphasized in Section II, the dimensionally regularized Feynman
amplitudes are meromorphic functions of the complex parameter n. The problem
of renormalization consists in subtracting the poles of these functions at n=4 in
a way which is compatible with additive renormalization. That is, the subtractions
have to be performed in a way that they correspond to counterterms in the
Lagrangian. What is to be subtracted for a graph G is the singular part of the
amplitude for H inserted into the amplitude for the reduced graph G/H. We will
symbolize this subtraction by the application of a subtraction operator CH analo-
gous to the Taylor series subtraction operator in the BPHZ scheme. The singular
part of the amplitude for H is defined to be the singular part of the Laurant series
expansion at n = 4 of 3~H, the amplitude resulting from 2ΓH after performance of
the subtractions corresponding to all its genuine 1PI subgraphs.

Theorem 1. The singular part of the dimensionally regularized amplitude for H as
defined above consists of poles of order hH or less and is a polynomial of degree ωH

in the external momenta of the graph. The singular part vanishes if H is superficially
convergent. The amplitudes ^G,ε(j?> n\ remaining after performance of the subtrac-
tions corresponding to all 1PI subgraphs, are analytic at n = 4 in any order of per-
turbation theory. The \im&GiS(g9ri) exists in e9

5?/(IR4M') and is again analytic n = 4.

This limit $G(j), n) (or its value for n = 4) is the renormalized amplitude.

Remark. Clearly the overall singularity at n=4 of the dimensionally regularized
Feynman amplitude is not a polynomial in its external momenta. This becomes
only true after combination with the counterterms corresponding to all its genuine
1PI subgraphs.

It is straightforward to show that the procedure described here differs by a
finite renormalization from the BPHZ scheme. Therefore, the procedure defines
a renormalization fulfilling the usual requirements of causality and unitarity [5].
As usual, the physical normalization conditions can be achieved by finite counter-
terms in the Lagrangian.

III.2. Proof of Theorem 1

Let us first discuss the limit ε->0. Since the renormalized amplitude (for πΦ4) is
a finite sum of the unrenormalized, regularized amplitude -I- counterterms, each
of which has a continuous lim in '̂(IR4M'), there is no question that also

ε-»0

lim^G5fi(p,n) exists in '̂(IR4M') for rcφ4. Since #Gfβ(p,n) is analytic at n = 4,

lim^G ε(p, n) can be continued to n = 4.

In order to prove that the subtractions actually have the required properties
we have to exhibit the singularities connected with all the 1PI subgraphs of a
given graph G and combine them with the corresponding counterterms. As usual,
the complication due to overlapping divergences is resolved be the decomposition
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of the integration region in α-space according to families of non-overlapping
subgraphs. It is, however, to be remarked that in contrast to BPH-renormalization
the subtraction corresponding to a particular subgraph H can be completely
absorbed into the integrations over those sectors related to families containing H,
leading to the simple representation Equation (3) below.

We use maximal forests as defined in Appendix A, since they correspond
directly to counterterms in the Lagrangian. They differ from the s-families of
Speer [9] mainly by a different definition of overlapping graphs.

According to Lemma 3 the regularized Feynman amplitude can be decom-
posed

,TG=lim,rG,ε=lim Jdβ/G>ί(p,β)=lim Σ f <fe/G..(g,ffl) (1)
ε->0 ε-»0 0 ε-»0 (tf,σ) 0(φ,σ)

where the sum extends over all labelled forests (#, σ) for G. Resolving the recur-
sive definition of the subtraction operators into a forest formula, anticipating
that we know the action of CH on /G, the renormalized amplitude can be de-
composed accordingly

00

ίfG=lim^Gιβ=lim $ da Σ Π (-Ca)/0..(p,β)
ε-»0 ε^O 0 Pe& HeF

= lim Σ J < f e Σ Π(-Cfl)/β,.(p,ίϊ) (2)
ε-+0 (tf,σ) 0(tf,σ) Fe^ HeF

where J^ is the set of all forests of non-overlapping 1PI subgraphs of G. Since
CH will be defined such that J da Y[(-CH)IGε = 0 unless Fc^7, we can

0(tf,σ) HeF
rewrite the renormalized amplitude

,ε= Σ ί d«
HeF

= Σ ί *fΠ(l-Cfl)/ c..(p,lϊ). (3)
(tf,σ) ^(^,σ) He^

It is easy to verify that the regularized amplitude for a 1PR graph is the
product of the regularized amplitudes for its components and of the (momentum
space) propagators for all lines connecting them. This factorization is obviously
maintained for the decomposition of the renormalized amplitude as given by
Equations (2, 3) [compare Lemma 3 (a)]. We will therefore assume for the re-
mainder of this subsection (III.2) that G is 1PI in order to avoid complicated
notation.

For each labelled forest (<£, σ) we introduce the familiar scaling variables
(ί,£) = (ffl, H e t f , #,, έe^ = £>G\σ(%)) [8] as well as auxiliary variables ξH, ζH

Π tH> = t2

Hξ2

H = ί2H if ί =

and define β^=l if teσ(ffl for convenience.
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The image of ^(Ή, σ) under this substitution is the set

{(ί,£):0^ίG<oo;0^ίH^l for ΉφG O^jS^l for

Using Lemma 4 we may rewrite the contribution of &(<£, σ) to

.(p,s)= Π
0 He<<ί I 0

-ge(<ϊ.,u,t,§,v)
= n{$dVHC-ωiίZH(-id/du)}gε(q,u,t,β,v) (4)

where v = n — 4, ω#=ωH- £ αv, ZH(-id/du)= f] ίC^X — ίδ/δtt)} and
H'eJί(H) £<=&H

ΘH 1

J dμH=2 J ΛH/ίfl J Π ̂  with ΘG= oo and ΘH= 1 for

The ZH are polynomials in_ί and gε is C°° in (£, ̂ ), analytic in v and exponen-
tially decreasing as fG-»oo. For the definition of H,q,u etc. see Appendix A.

Considered as a generalized function tλ

H + is a meromorphic function of A
with simple poles at all negative integers

tvh -co - 1
reguιar at v = o .

[We put <5(ω)(f)/ω! =0 and (d/dt)ω/ω 1 = 0 for ω<0.] This will enable us to define
the action of the subtraction operator C on the Feynman integrand. Correspond-
ingly we can decompose the ίH-integral in Equation (4) into

o

Due to the structure of the integrand /ε the first part is a polynomial of degree
ωH in the external momenta of H. The second part is analytic at n=4 and may be
represented by the following integral, convergent for |Re(v/z#)|<l

(OH-I

(6)

Next we proceed to the definition of the subtraction operators CH acting on the
Feynman integrand IG>ε. Let us denote by s/G the formal algebra of covariants
generated by {p;,μ};ê G and {uΛμ},e^ (and by yμ's etc. if required) with complex
coefficients depending meromorphically on n.

On Ae<$/G we define the operator C (not yet CH!) by

C(A)= sing, part at n = 4 of NF(v4|y=0).

Notice that C is precisely the operator to be used in a recursive definition of
the counterterms.
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As a first step versus the construction of a suitable domain for the CH we
consider the set &G of triplets X = (X, Fx, (<g, σ)x) with Xc G, Fxe&x= {forests of
pairwise disjoint, 1PI, proper subgraphs of X}, (Ή, σ)x a labelled forest for X/FX.

Next we introduce a set SG of functions on <&G with values in ^G:SG =
{f:^G^^G>f(X) depends only on the (p, u) from X/Fχ}. As the domain for CH

we take the subset &H= {fz£G\ for all X of the form X = (H, 0, (#, σ)H) C(/(X))
is a polynomial in p}.

One particular such function IG can be affiliated with the Feynman amplitude
for G. IG:X->Ix/Fx, represented in the form of Equation (4) in the sector ®(ί?, σ)x.
The meromorphic dependence of the coefficients on n is achieved by interpreting
the fractional powers of ί's in the distributional sense as displayed in Equations
(5, 6).

On Q)H the operator CH is defined by

(CHf)(X) =

f(X) if either XnH = 0 or H £ίf for some HΈFX

C(f(X)) iϊX=HandFx = 0

UH(C(f(H0)))f(XΉ) iΐHφFx,
0 else

where H0 = (H, 0, («, σ)H) andX:H = (X, Fxv {H}, («, σ)X: H) with (* , σ)H, («, σ)X: H

the pair of labelled forests for H resp. J^/Fxu{#} corresponding to (^9σ)x (see
Appendix A). U# is defined in Appendix B.

Equation (3) is to be interpreted as £ J dfd/J [ Π (1 - CH)/G ] (G, 0, (#, σ))|̂  = 0
(*,<r) LHe^ J

where the factors (1 — CH) are to be ordered such that those for smaller graphs
act first.

The main problem in combining the singular part of the integral with the
expression for the counterterm for H inserted into G/H comes from the fact that
the coefficient of the pole at v = 0 exhibited in Equation (4) depends on the number
of loops of H. The subtractions corresponding to genuine subgraphs of H can be
interpreted as counterterms inserted into reduced graphs and these reduced
graphs will have fewer loops than H has. Therefore the term tvh in Equation (4)
will be replaced by a sum of terms with different exponents and furthermore with
coefficients which have poles at v = 0. The following definition will be useful to
trace such sums through the recursion.

Given a maximal forest %> for G, we define sets of functions J# (for Q^
and J| (for Q^K^hH) for all

eJg- K= X KH,\
H'eΛί(H) H'eJί(H) J

JH = \9(ξ>v):0 or £V0 with 9^Jπ or flf(&v)=fdx/x/(x,v) with /eJf"1^.
I i

If hπ= 1 (i.e. Jί(H) = 0) there is only K = 0 and J^= {ξv}.
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Lemma 2. Let f(ξ, v) be any element of J#, then

hH

(a) f(ξ, v) = v'κ Σ cmξvm with some constants cm (7)
m=l

(b) f(ξ, 0) = c(ln ξ)κ with some constant c (8)

(c) /(ξί,v)=Σ/ιXί,v)/2χί,v) (9)

wiίΛ fij^Juij such that K

(d) J&={rv,w = l,...,ΛH}. (10)

Proof. All statements are true if hH=ί. (a), (b) and (d) follow easily from the
resursive definition of the sets J#. Assume that (c) holds for all Ή which are
genuine subgraphs of H and let h(x9 v)e JH~I Then

ξt t ξ
j (dx/x)h(x, v)= j (dx/x)h(x, v)+ J (dx/x)h(xt, v)
1 1 1

= } (dx/x)h(x, v) + Σ I (dx/x)ΛiXx, v)Λ2χί, v)
1 7 1

with hijGJgV such that Xlj. + JfiC2t; = -K— 1. Insertion of this decomposition into
the definition of J^ proves the statement (c) for H.

It should be noted that the pole of order K at v = 0, indicated by the decom-
position (7) is not really there. This is made explicit by Equation (8).

Now we are ready to prove

Proposition 3. Consider any ^ O e , ̂ 0 ̂
 and define

for some

After performance of all subtractions corresponding to subgraphs He%, the con-
tribution of (<£, σ) to β&G ε is a sum of terms of the form

Π {\dμH(l-CH)ζ]ΓωaZH(-id/da)} Π {£HωH0H(^v)}

where (ί, ̂ ) and u are scaling variables and scaled i/s for G/2£0 (i.e. UH for
are already set to zero) and q are scaled momenta appropriate for the family
gH£Jn far some K and g% is some element of the abstract algebra of covariants
with complex coefficients which are C°° in (t,β\ analytic at v = 0 and, due to ε>0,
exponentially decreasing astG^co.

Proof (by induction with respect to £ hH = \3?\).
fle^o

i) The statement certainly holds for & = 0 [compare Eq. (4)].
ii) Consider some ^C^(^Φ0) #Ό€^0> choose any He^0 and assume that

the statement is true for ̂  = J((H)\jX^\{H} (i.e. X' = 3K\{H}). If 9C0 = {G} we
will prove Theorem 1, otherwise we will show that the proposition holds for
#Ό as well.
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The relevant part of Equation (11) is

H'eJt(H)

First we notice that ίn' = ̂ H — ̂ Ή^n f°r HΈJίf(H). Evaluating the derivatives with
respect to UH, setting uH = Q and integrating over β's we obtain

(12) = (1 - CH) ](dtH/tH)(ξHtHΓωHf(ξHtH, v)ff'(ίfl,a,fi,_ί,& v) (13)
o

where /e J# and we have replaced the variables (q',uf,tr,βf), appropriate for 3£r,
by those for X. In particular 3fl=(gΉ/ ίH>flΉ'j H'eJί(H)) and therefore #' is again
C0 in (tB,t,§) and analytic at v = 0. Furthermore #' = 0 for ίH>l unless #=G.
Using Equations (5, 7) we get

=(l-CH)^ω«{v-κ-1 *£
= 0 LωH !

f(ξHtH, v)g')\ . (14)

In contrast to Equation (7) there is now really a pole of order K+ 1 ^hH at v=0.
If H = G then ξH=\,q = q and there are no u's left in 0'. As shown in Appendix B

B0Ί(β-o (15)'

is a polynomial of degree ωH in the external momenta q (a homogeneous poly-
nomial in momenta, masses and J/5Γif all Zf are homogeneous in these variables).
We reduce P(q) to NF in order to make its v-dependence explicit. We do, how-
ever, not interprete P(q) as a 4-dimensional covariant at this point. Due to the
exponential decrease of gf the regularized integral is absolutely convergent and
analytic in v. Using the Taylor operator T* of degree K in v we obtain

as one term in the contribution of (#, σ) to the counterterm for H which is
annihilated by (1 — CH). The contribution to ^H)g

(12) = Σ ̂ m-'v^-'α - W(5)+ ]((dtH/tBWf(tB, v)0')reg. (16)

is analytic at v = 0 (n = 4) by construction. This proves Theorem 1, once we have
completed the proof of Proposition 3.

If HΦ G we use Lemma 5 to rewrite [(ωH I)"1 (d/dtH)ωHg']tH =0 as the amplitude
for G/H with the polynomial P [Eq. (15)] inserted as vertex part:

Vl^o^
where

is a polynomial in^, d/du andj.
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Let ((^Ί,^), (^2>
σ2)) be the pair of labelled forests for G/H and H corre-

sponding to (#, σ). Due to Lemma 5 gG/H is the precise analogue of gx in Equation
(11) but for the contribution of (^^σ^) to &G/H>ε after subtracting all counter-
terms corresponding to subgraphs contained in SEr^^ The counterterm for H
can now be inserted into the partially subtracted amplitude for G/H, i.e. (1 — CH)
can be evaluated and we obtain

(17)
0 J

Using Equation (7) we may rewrite the first part as

= v-κ-1Σcmm-1{[(am-l)Γv

κ + ̂ m(l-^)]P}0G/H
m

= f (Λ/ί)/(t, v)(T?P)gGia+ Σ^m-1^ [v-'-'ίl - TV

K)P]0G/H (18)

and evaluate the derivatives with respect to u contained in P. For the regularized
integral we use Equation (9) to get

ΪU)re,. = Σ /ι/£*v) 0 (*Λ)/2/ί> v)r"*(i - i?*)g'
o j lo

- ϊ (dt/t)f2J(t, v)Γ»*(1?>*- V)} (19)
i J

where both integrals are absolutely convergent and yield a function C°° in (ί, /?)
and analytic at v = 0. Collecting all contributions of Equations (18,19) we arrive at

(12) = ξϊ»* Σ ̂ H(̂ ? v)fa@, δj, ̂ , v) (20)

where each ^fH and gf^ has all the properties required in Equation (11). Finally
combining Equation (20) with all those terms not contained in Equation (12) we
are led back to an expression of the form (11) but now for the set $"0 = {#}u
SC^\Jί(H). This completes the proof of both Proposition 3 and Theorem 1.

As a final remark it should be added that whenever we use the word counter-
term it refers to the ones which are singular for n=4 and not to the additional
finite counterterms which occur explicitly in the Lagrangian and serve to fix the
physical normalization conditions.

7/7.3. The Renormalized Action Principle

Having defined the renormalized amplitudes in a satisfactory way we have to ask
about the validity of the action principle in the renormalized theory, which is
answered by
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Theorem 2. The action principle, Equations (11.13-15), remains valid without any
change for the renormalίzed theory (for nφ4), if there is no explicit n-dependence
involved. In particular, the classical equations of motion remain valid without any
modification.

The reservation made about an explicit n-dependence is to be understood in
the following sense. The Action Principle leads to certain linear relations between
regularized Feynman amplitudes reduced to their resp. NF. If these relations
have n-independent coefficients they remain true for the renormalized amplitudes.
In contrast, n-dependent coefficients are generally the source of anomalies, i.e.
terms absent in the tree approximation. Such n-dependence can arise in two ways.
Either the variation δφ depends explicitly on n, as for dilatations (the dimension
dφ of the field φ depends on n) or the n-dependence comes in during the reduction
to NF in the course of eliminating 0-type covariants. A typical case for the latter
situation is the Adler anomaly. {yμ,y5} = 2/yμ

(y5 can lead to terms containing
gμμ = n-4. More generally one can say that operators like (ψ{γμ9ys}ψ)ren' or
((n—4)</>4)ren vanishing in the tree approximation are non-zero due to radiative
corrections.

As was shown in Section II.3 the proof of the action principle is based essen-
tially on the equality of two regularized amplitudes, one for a graph G with a
factor Zj=i (D+m2) and the other one for a graph G/f where the line / is con-
tracted to a point. Assume this equality still holds for ̂ G, i.e. after performing all
subtractions for genuine subgraphs, then uniqueness of the Laurant expansion
guarantees that also the finite parts (i.e. the renormalized amplitudes) are equal
and, therefore, satisfy the action principle. Here we have to use the convention
that any parameter of the Lagrangian which might depend implicitly on n is not
subject to the Laurant expansion.

If the maximal forests for the two graphs G and Gff are in one to one cor-
respondence we can immediately justify our assumption. Either a particular sub-
graph H does not contain the line (\ in this case the same singular part of the
amplitude for H has to be inserted into the amplitudes for two reduced graphs
which are equal. Or the line { is contained in the subgraph H of G: then the sub-
tractions corresponding to H and H/t, being the singular part of two equal
amplitudes, are equal and are inserted into the amplitude for the same reduced
graph G/H. This again justifies recursively the above assumption, provided the
maximal forests or equivalently the forests of non-overlapping 1PI subgraphs
for G and G// are in one to one correspondence.

There will, however, in general be no such one to one correspondence for the
following two reasons:

i) There may exist 1PI subgraphs H of G which contain both vertices of/
but not the line £ itself. They do not have any corresponding subgraph in G//.

ii) There may be 1PR subgraphs H of G such that H/έ becomes 1PI in G//.
Figures 1 and 2 exemplify these two possibilities. All other 1PI subgraphs of

G are in one to one correspondence with 1PI subgraphs of G//.
The first case is very easily resolved for dimensional renormalization; sub-

tractions for subgraphs like H in Figure 1 may just be omitted since they do not
contribute to this particular amplitude. They do, however, contribute if there is
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Fig. 1. Example of a subgraph HcG, which is
1 PI, contains both endpoints of line /, but not
line /

HcG

α) HcG

Fig. 2. Example of a subgraph He G, which is
1PR in G (a), but becomes 1PI in G/S (b)

b) HcG/l

no factor (D+m2 — ίε) for line /. This is the reason why we do not use any normal
ordering at all in the Gell-Mann-Low expansion (11.12). Since f is a loop line in
G/H, the contribution of CH to 3fcG would be proportional to

= i J da(d/d(ήa-nl2Z'(d/du) exp [ - i(a(m2 - iε) + w2/4α)] |M=0 .
o

Assuming that Z' is a polynomial of degree 2k or less and performing the dif-
ferentiations with respect to u, this gives

"(α) exp [ - ια(m2 - ίε

Here we have used that the integral is defined by analytic continuation in n and
vanishes identical for Re(n)< — 2k. The analogous problem has been discussed
by Lam [8] for Zimmermann's renormalization scheme (normal product algo-
rithm) [14, 15] whereas the problem of subtractions, related to subgraphs like
the ones shown in Figure 2, has not been discussed in this context. It is shown
in Appendix C that the classical equations of motion are valid also for this case
without any modification. This is due to a special property of our subtraction
operator CH. Assume a graph H=H1u/f2 such that Hl and H2 overlap at a
single vertex. The Feynman integrand for H factorizes /H=^nr^H2

 anc^ the sub-
traction operators satisfy

(-CH)(1- CHί- CH2)=(-CHί)(- CH2) .

This is slightly stronger than the unitarity requirement which allows an addi-
tional finite counterterm. The proof in Appendix C shows, again in a recursive
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way, that the whole sum (3) for 3tGI€ may be rewritten such that we finally get the
analogous sum but over all forests of G. Therefore, the classical equations of
motion are valid for the renormalized (amplitudes of) composite operators.

Acknowledgements. We are indebted to K. Symanzik for pointing out the relevance of Equation (11.32 b)
to us. Considerable improvements in the formulation of Section III and Appendix B are due to many
discussions with E. R. Speer

Appendix A. Feynman Graphs

In this Appendix we have collected all relevant definitions and properties con-
cerning Feynman graphs, following essentially the notation of Refs. [9] and [17].

A Feynman graph G is a collection of vertices {Vl9...,VM} = 'Ϋ"G and of lines
Kι,...,/L} = cSfG together with a rule assigning to each line £ an initial vertex V{

and a final vertex Vf . The corresponding incidence matrix eG is defined by

e Λ =j-ι if v~vίt*vfι

I 0 otherwise.

A subgraph G C G is a subset of lines and vertices of G which build again a Feyn-
man graph in the above sense. A generalized vertex G of G is a subgraph of G
containing with any pair of vertices all lines in G joining them.

A Feynman graph G is called connected if rank (e) = M — 1, irreducible if it
stays connected by removal of any one line or vertex, one-particle irreducible
(1PI) if it is connected and stays so after removal of any one line, one-particle
reducible (1PR) if it is not 1PI, non-empty if ^GΦ0, non-trivial if J^GΦ0. The
maximal non-empty connected subgraphs of G are called its connectivity com-.
ponents (ocomponents).

Two subgraphs G1? G2 C G are called non-overlapping (Gl®G2) if either Gl C G2,
G 2 CGi or G1nG2 = 0, otherwise they are overlapping (G1oG2).

For any G'cG the reduced graph G/G' is the graph obtained from G by
removal of all lines of G' and replacement of all the vertices of each c-component
of G' by one new vertex. For an^ set Jί of pairwise disjoint subgraphs of G, GjJi
is defined as the obvious extension of this definition.

In what follows G is a connected Feynman graph. The number hG=L—M+l
is called the connectivity (or number of independent loops). A tree T in G is a
maximal subgraph of G with hτ = 0. A K-tree (K^2) is a tree minus K—l lines.
We call the maximal non-trivial 1PI subgraphs of G the (1PI-) components of G.

Let {α,} be a set of L variables then we define a L x L matrix α by α^/ = α,δ^>
and a M x M matrix A by

L

^y = (β+α~1β)y= Σ e^W1

<?=!
M

The incidence matrix for a connected graph has rank M— 1, satisfying ]Γ e^ = 0,
ί=l

1
i.e. the vector n = is mapped to zero by e. Correspondingly A is singular
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since An = 0. Let us denote by E= <{p): £ Pi = 0> the hyperplane orthogonal tof M }= <{p): £ Pi = 0>
I ί=l J

n and by e£ resp. AE the restriction of e resp. ^4 to E. Then AE is non-singular
and we find AE = e^cκ,~leE. If we parametrize E by {PI,..., £&,..., PM) — where pk

means that pk is missing — we find

(4j%=Λ(g)M(ϊ) where 4(J|;;;;;£) is the corresponding

minor of A.
The so-called Symanzίk functions of G,d(α) = A(J) Π α, and Df/α)-^})

^eJSfc

• Π α<?> can be represented in the form d(a) = X Π α^ where the stun runs over
Λ=JSfG Γ *?£Γ

all trees Γ in G, and Dy(α) = Σ Π α* where the sum is running over all 2-trees
τ2 tΦτ2

T2 in G which separate Vk from Vi and F, . Note that d(a) and the quadratic form
p+A^1p= Σ (tfj(&)/d(a))piPj are independent of fc (for peE).

U Φ f c
Let G be a connected graph with components G1 ?...,GΠ. A maximal forest

for G is a maximal set of non- trivial non-overlapping 1PI subgraphs of G. For
any maximal forest # and any f/e^ \etJί(H) be the set of all maximal elements
of # properly contained in # and let J? be H/Jί(H\ A labelled forest is a pair
(#, σ) consisting of a maximal forest # and a mapping σ:^->JSfG such that
σ(H)ε&s for all f/e^. Note that (̂#) is uniquely determined by ff and σ(fl).

For any labelled forest (̂ , σ) we define 2)($, σ) to be the subset of α-space
given by

^0 for all t\ α ^ α for

Lemma 3. (a) Any maximal forest Ή for G is a disjoint union (g=Q)(£ί of maximal
i = l

forests cβi for the components Gt of G; G^^
(b) any maximal forest <β for G can be labelled;
(c) for any i PI subgraph H of G there is a natural one to one correspondence

between labelled forests (<g, σ) for G such that HεΉ and pairs ((<$l9 σ^, (^2, σ2)) of
labelled forests for G/H and H;

(d) any maximal forest for G has exactly hG elements;
(e) G-σ(^)isatreeinG;
(f) \

(g) for (<%, σ)Φ(^;, σ'), ®(% σ)n®(^, σ') is a set of Lebesgue measure zero
(as subset oj ΊSLL).

Proof. (a)Follows directly from the definition.
(b) Let Hetf and J((H)={Hl9...9Hm}. We first observe that H is non-trivial.

For m g 1 this follows directly from the definition of Jt(H\ For m^2 the Hi are
pairwise disjoint (no common vertices and no common lines), therefore H con-
tains lines which are in no one Ht. Choose any line of H as σ(H).
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(c) For any (#, σ) such that HeΉ chose

ViH' .H'eV and H'nH = 0 ; σ ί ( H ' ) = σ(H') or

One easily verifies the one to one correspondence and, furthermore, if (#, σ) is
a labelled forest so are (#15 σt), (#2, 0*2) and yice versa.

(d) Due to (a) it is sufficient to prove the statement for G 1PI. It trivially holds
for hG<2. Let hG = n^2 and assume the statement holds for all 1PI graphs G
with hG, < n. Any V for G contains at least one genuine subgraph H of G (maxi-
mality). From (c) follows the one to one correspondence between # and (#19 ̂  2)
#! resp. ^2 have hG/H=hG — hH resp. /% elements by assumption. Therefore, #
has /ZG elements.

(e) Let G! be one component of G, then G' = G — {σ(Gl)} is connected and
^— {Gx} is a maximal forest for G'. Proceeding this way we finally have removed
hG lines and get a connected graph which must be a tree.

(f) Let α = (α !,..., αL) be a point satisfying α^O and let us relabel the lines
of G such that α t ̂  α2 . . . ̂  αL. Let G7 be the graph consisting of lines *?!,...,/,- and
all their endpoints (G0 = 0). For each k (l:gfc:gftG) there is a unique j(fe) with
hGj(k) = k, hGj(k)_^k-\. Let #fe be that component of Gj(k} which contains line
^^ Then (<k,σ) with <g={Hk>k=ί,...,hG} and σ(Hk) = ̂ j(k} is a labelled forest

(g) Let (#, σ)φ(<<f , σ') and αe®(^, σ)n0(«", σr). We will show that α, = <vfor
'. The set of such α has Lebesgue measure zero. Since both # and ̂  contain

all components Gt of G there must exist a subgraph He #n#' for which σ(fί) Φ σ'(f/)
and hence ασ(fl) = α^(fl).

Let G be a connected graph and # a family of non-trivial non-overlapping
subgraphs of G. The definition of Jί(H) and the concept of a labelled family (<g9 σ)
can obviously be extended to this situation. The elements HeΉ need not be 1PI
(not even connected) nor need ί? be maximal. We require, however, that Getf
and that for every HeΉ H/Jί(H) consists of a connected graph H plus possibly
some trivial graphs not connected to H. Given any <g these requirements can
always be satisfied by adding some suitable subgraphs to #.

To any vertex Va of H (Hety we assign a momentum qa which is the sum of
all those pi associated with vertices Vt which are mapped to Va by H-*H/Jί(H).
Let £& HeΉ be the momenta associated with all but one of the vertices of H.
The new momenta Q=(^H, HeΉ) are obtained from £=0^, i= 1,...,M— 1) by a
linear transformation R:^ = Rp. In order to express F(p,w,α) in terms of ̂ , we
decompose u = (u^ /e^fG) and the transformed incidence matrix eR+ in a similar
way: U = (UH=(U^ /e j£jj)> He«), βΛ+ =(eHH.,H, H'^\ If we introduce in addi-
tion scaled quantities q = (gH = ̂ πCjί? He(£\u = (UH =uH/ζH, HeΉ) and
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~ _ lq\ I 0 — 2e+\
we find V(p9u9a) = (g+

9u
+)M~l\-\ with M= 0~ AR ] where β is the

diagonal matrix with elements β^=^/ζjι, ££&& He%>.

Lemma 4. (a) det#=±l;
(b) eR+ has the following block structure

ϊ = Q i f H 1 s > H ' ;
eHH'{ is the incidence matrix e^ for H if H = H'

[ indicates how H' is contained in H if H 3 H'

(c) d(α)=d Π &hs = d Π t2

H

hH and d= detM/(-4)L^ f] dH as long as β^Q
He<$ He% He<&

for allέ e&G where

(d) considered as functions of (t, β) the matrix elements of M are independent
of tG and polynomials in the remaining variables;

(e) if Ή is such that hg^l for all He%>, and ζH are scaling variables for (<&, σ),
then d^l and therefore d'1 and M"1 are C°° in (t,§) from the domain {&(<£, σ).
This is true in particular if G is 1PI and (̂ , σ) is a labelled forest for G.

Proof, (a) Up to permutations R is a triangular matrix with all diagonal elements

= i;
(b) Introducing internal momenta fc = (/cΛ/eJ?G) flowing through all lines,

momentum conservation at each vertex is expressed by g + e+k=Q. The block
structure follows immediately fromg + Re+fe=0;

(c) The factorization follows from a), |^f5| + l = |^|-h/ι^ and the relation
between £ and t. The inequality is due to the fact that every pair of trees for G/H
and H corresponds to a unique tree for G and that the contribution of each tree
to d(a) is non-negative;

(d) The matrix elements of e are polynomials due to b) and clearly both e
and β are independent of £G;

(e) dH=l if hjj=Q and dH= Σ βt ^ hjj=l. /?σ(H) = l and therefore dH^l.
t*<e&

In the domain &(<&, σ) β^l for all ( and tH^ 1 for #φ G. The statements follow
from these results and (d).

Remark. We may consider a family ̂  obtained from Ή by omission of one element
H^Jt(Rύ and build momenta ^'wHe^' for this new family. Obviously there
is a choice for the gH and qH (i.e. choice for the vertex whose momentum is omit-
ted from H) such that H — H H and H=H f°r a^ other

Appendix B

Let G be 1PI, (*, σ) a labelled forest for G and He% (#ΦG). Corresponding to
(̂ , σ) there is a unique pair of labelled forests ((<&19 σj, ( 2̂> tf2)) ̂ or ^/^ an(^ ̂
[Lemma 3 (c)].
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We want to relate the contributions of these three labelled forests to £ΓG, $~GIH

and yH respectively. We will prove that the singular part of the ίH-integral [as
defined by Eq. (III.5)] in ZΓH is a polynomial P(c[H) of degree ωH in the external
momenta gH of H (a homogeneous polynomial of degree ωH in gH, masses and
j/β" if all spin polynomials Zf are homogeneous in — id/du, masses and j/β). On
the other hand we will express the singular part of the ί^-integral in ZΓG in terms
of the same polynomial P(gH) inserted as vertex function into ^G/H.

We will show all this for the regularized amplitudes 2Γ. The results apply as
well if we first perform subtractions for some subgraphs HΈΉ, H'^tH, because
the subtracted amplitudes are sums of regularized amplitudes for various reduced
graphs, each of them with the above mentioned properties. In particular reducing
a subgraph H' to a vertex with vertex function P(gH>) which is a polynomial of
degree ωH> does not change the degree of divergence ωH for any HD/f.

Let us first consider the £G-integral in Equation (III.4)

Assuming that all Zf are homogeneous the entire dependence of gε on ίG, g,
masses and ε comes from the combinations £Gg, tGmf and tG\/ε. First of all there
is no singular part as long as ωG<0. If ωG§:0 the singular part is proportional
to [(ωG!)~1(rf/ΛG)ωσ^ε]ίG=0 which certainly is a homogeneous polynomial of
degree ωG.

In order to study the singular part of the t ̂ -integrals we replace the maximal
forest ^ by a family #= {G, H} and (using the notation of Lemma 4) introduce
momenta ^ = (<jfG,£j(H) correspondingly. Inserting the polynomial P(gH) as vertex
into the amplitude for G/H amounts to the substitution UH:^H-^^H—ieGHd/duG

and acting with the differential operator UH(P(^H)) on the integrand IG/H; the
external momenta of H differ from the external momenta of G associated with
vertices of H by linear combinations of internal momenta of G/H.

Apart from factors and integrals common to both amplitudes, the expressions
for 2ΓG resp. &~G/H (with the insertion corresponding to H) are

ξίH ί (dtMt**-»*IG\aH=0 IG = ZH(-id/duH)(detMΓnf2 expiPF
o

resp.

UH(ξ%HP(2H))lG/Hl IGfH=(detMGIHΓn/2 expιWc/fl .

Using the homogeneity of ZH and P(gH) we can compensate the difference in
scaling variables used for ^~G and 9~H and find

"^with (X stands for either G/H or H) M = M-2tH(e + e+)ι

M —
M-> - - " "*'-'-2ex -4β}
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and

= Σ ^(mj-iε).

Lemma 5. UH[_ξ^P(gH)-\lGIH= \_(ωH

Remark. This establishes the required connection between the singular part of the
^integrals in 3~G and SΓH. The remaining difference, a factor ξ$H, is the origin
of Σcmm~ίζVHl in Equation (III. 14), each term ξ™ arises from reduced graphs

m

of H with m loops.

Proof. First we note that (detM)|ffί=0 = (detMG/H)(detMH), W\tH=0 = WGIH+
WH\tH=0 and c[H=ξHtH(iH. It is therefore sufficient to show that

-i(d/dtH) {(detMΓM/2 QxpiW} = UH(dWH/dtH) {(detM)~π/2

where (d/dtH) is taken either for fixed (qH, UH) or fixed (qH, ύH). This can be done,
using JJH(Q) = Q- it He+*d/dQ+ and some properties of the matrix e:eM~1e = Q,
Tr(^M~1) = 0, e+M~ίdQ/dtH=0. Once again we need du^/du^=δ^>gμμ = δ^.n
and it is therefore important that we interprete u as an element of the abstract
algebra of "n-dimensionaΓ covariants.

Appendix C. Completion of the Proof of Theorem 2

The problem to be considered is that there may be subgraphs H of G which have
two components Hl and Hr joined by line {. These become 1PI by contraction
of line /.The forests used to renormalize 2ΓG may contain {Hl9 Hr} whereas the
forests for ̂ Gίe may contain {//}, {H, H{ } or {H , Hr}. We shall recursively remove
the latter forests from yGjf and replace them by forests (for G) containing {H^H^.
We show that ΣΠ(- CH) does not change under these replacements due to the
factorization IH

=^H^Hr

 and the identity

) = CHι CHr .

Define

/zH=X; H, nHΓ=

Since there is a one to one correspondence between subgraphs of G// and those
of G not containing line /, we may consider these subgraphs also to be in G//.

Put ^= {forests for G which do not contain subgraphs of the type shown in
Figure 1},

^= {forests for G//} , ^ = {Fe J^ FaH 1PI in G//} .
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J^+1 is constructed in the following way from J^: For all He3FK replace all
forests which contain either {H} or {H, Hl } or {H, Hr} by corresponding forests
which contain {Ht, Hr}. This procedure gives

&κ= {Fe^: If HeF, then either H is 1PI in G or H is 1PI in G/f and hH>K;
for any pair {Hl9 H2}eF either H1ΦH2 in Gjf or H1uH2e (j ^}.

IPIinG}.

We prove now the

Proposition 4. // (1) holds for all He φ JtfK9 then
K

Σ Π(-CH)= Σ Π(-CH) /or l^K</ιG- (2)
Fe^κ HeF FeJFκ + ι HeF

Proo/ We observe the following: Let {H1, H2}C^K+ 15 then
i) HloH2 and, therefore, there is no Fe&κ with {H\H2}eF;

ii) HloHf or H^oΠ2. or max{/ιHιuH2,/z jF/2u/ίrι}>K + l and, therefore, there is
no Fe&κ+1 with {H},H},Hf,Hi}cF. * l " '

That means that we can uniquely decompose (φ = disjoint union)

*k= Θ Θ
He^κ+ι Fe^^

= Θ Θ

, and

^H ={Fe/r

κ:H'eF=>Hf non-overlapping with H, Hb Hr} .

Using this decomposition and Equation (1), Equation (2) is immediately proved.
We get

Σ U(-CH)^= Σ ΓK-CH)^
FeJFi HeF Fe^ho HeF

and this completes the proof of Theorem 2.
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