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Abstract. From classical and quantum mechanics we abstract the concept of
a two-product algebra. One of its products is left unspecified; the other is
a Lie product and a derivation with respect to the first. From composition
of physical systems we abstract the concept of composition classes of such
two-product algebras, each class being a semigroup with a unit. We show that
the requirement of mutual consistency of the algebraic and the semigroup
structures completely determines both the composition classes and the two-
product algebras they consist of. The solutions are labelled by a single par-
ameter which in the physical case is proportional to the square of the quantum
of action.

I. Introduction

In both classical and quantum mechanics, the set of physical variables belonging
to a system with a given number of degrees of freedom is a linear space with two
algebraic products. The classical variables are real-valued functions on a phase
space, and the two products are the usual multiplication and the Poisson bracket
of such functions. The quantal variables are self-adjoint operators on a Hubert
space, and the two products are i [ , ] + and {ih)~1t,']-, where [ , ] + and [ , ] _
denote the anticommutator and the commutator of such operators. Multiplica-
tion of classical functions is commutative and associative, while the anticom-
mutator of quantal operators is a commutative but not associative product. Both
the Poisson bracket and the commutator are Lie products. Further, in both
mechanics the two products are related by the same "distribution law", i.e. the
derivation rule. For example, if /, g, h are classical variables and and {,} denote
the two classical products, then {f,g-h}={f,g} h + g {f,h}.

From the examples provided by classical and quantum mechanics we abstract
the concept of a two-product algebra {Jf, τ, α}. In the definition of this structure,
the properties of the product τ are left unspecified, while the product α is required
to be a Lie product and the operators /α, with feJίf, are to be derivations with
respect to the product τ.
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When two classical or two quantal systems interact, they form a single classical
or quantal system. The set of physical variables belonging to the composite
system is the tensor product of the component spaces of physical variables, and
the composite space carries a two-product structure which is induced by the
component two-product structures.

From the manner in which physical systems compose in classical and quantum
mechanics we abstract the concept of a composition class β of two-product
algebras. The structure β is defined to be a semigroup with a unit.

Our purpose is to investigate the restrictions which the semigroup structure
of a composition class imposes on the algebraic structure of the two-product
objects that belong to the class [1].

In Section II we determine the composition classes of two-product algebras
and the corresponding composition laws for the products τ and α. We show that
all composition classes are obtained from a family {fa} whose members are
labelled by a parameter a which is defined modulo the squares in the field of
scalars, #". When J is the field IR of real numbers and α>0, a is proportional
to the square of the quantum of action.

The composition class Jf0, with α = 0, is called classical, and the classes Jφ

with α + 0, are called quantal. The class parameter a also occurs as an element
of structure of the individual two-product algebras in the class. In all algebras
in a class J>φ with a arbitrary, the product τ is symmetric and denoted by σ. In
the classical case, the substructure {Jf, σ} of the two-product algebra {Jf, σ, α}
is a commutative associative algebra, whereas in the quantal case {Jf, σ} is a
special Jordan algebra.

All algebras {Jf7, σ, α} have an "associative envelope", i.e. a single-product
associative algebra {J#, β}, such that β = σ + boc, where b=]/r^a if αφO and
b2=0 if a = 0. When α^O, β is not a product in J f itself but in a space J f over
an extension of the field #". In the quantal case (a > 0), this extension is the field
^[]/—ά] ( = (£ for ^ = IR), whereas in the classical case (a==0), the extension is
the ring J^φbJ^.

In Appendix A we discuss briefly the composition of identical two-product
algebras. We show that the symmetric tensor powers of a two-product algebra
form a composition class, whereas the exterior powers do not. However, the
direct sum of a symmetric power and an antisymmetric power (of the same
degree) is a two-product algebra, and a composition class can be formed of such
algebras.

Finally, in Appendix B we show that the composition laws for the products
in a quantal algebra lead to a simple proof of a result similar to C. L. Mehta's
theorem [2] on the relation between the classical and quantal Lie products.

II. Composition of Two-Product Algebras

A two-product algebra 91 = {J^, τ, α} is a linear space J f over a (commutative)
field #", equipped with two products, τ, α: J f (g) J f -»Jf, which satisfy the identities:

fag=-gocf (1)

(/αflf)αft + (gah)af + (haf)ag = 0 (2)

Mgτh) = (fag)τh + gτ(fodι) = 0 (3)
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If J f is a topological linear space and the products τ, α are required to be
continuous, the relations (1), (2), (3) define a topological two-product algebra. In
this paper we consider only purely algebraic questions.

A composition class is a set $ of two-product algebras, equipped with a
product O : / x / ^ / with the following properties:

1) I f S I ^ ^ e / and 2I 1 2 = 2IiO2I2- then Jf12 = J f Ί ® ^ 2 , (4)

i.e. the underlying linear space of the product algebra is the tensor product of the
underlying linear spaces of the component algebras.

2) Associativity:

(2Ii O 912) O 913 = 8ίi O (9I2 O 913). (5)

3) Existence of a unit.
The field #", considered as a two-product algebra {J% τ, α}, where τ is the

product in 3F and α = 0, is a unit for the composition product:

jFQ9ί = 9I = 9 I O ^ (6)

for all 91 e / .
With these conditions on the composition product O, a composition class β

of two-product algebras is a semigroup with a unit.
A two-product algebra {jf, τ, α} in which (fag)τh = 0 for all f,g,he34? shall

be called trivial. We do not consider composition classes which consist exclusively
of trivial algebras.

Let 9IX and 9I2 be a pair of non-trivial algebras belonging to a composition
class β. We shall determine the products τ 1 2 , α 1 2 in the composite algebra
9I1 2 = 9 ί 1 θ 9 l 2 induced by the component products τ 1 ,α 1 ,τ 2 , α2 and consistent
with the conditions (l)-(6).

For this purpose it is convenient to decompose the products τ into a sym-
metric and an antisymmetric part, i.e. τ = σ+π,fσg = j(fτg+gτf),fπg=^(fτg—gτf).
With this decomposition, and in view of relation (1), all products, σ, π, α have
definite symmetry properties.

A general element of J^ί2 is a linear combination of decomposable elements
fι®fi> where/XGJ fl5 and/ 2 eJ^ 2 , but since σ1 2, π 1 2 , and α 1 2 are linear mappings
it suffices to consider their effect on the decomposable elements themselves. For
typographical economy, tensor product symbols shall be omitted, ̂ 'f\®f2 = fifi
Further, expressions of the form {fρg)i9 where i= 1, 2,... and ρ = σ, π, α, are to be
interpreted as f^g^^.

The most general antisymmetric algebraic product that can be formed from
the component products is

(7 a)

Similarly, omitting the obvious variables,

π i 2 ~ c σ 1 π 2 + ίiπ1σ2 + xσ 1 α 2 +ycc1σ2 . (7b)

The most general symmetric product is of the form

σ i2 = r ^ i σ 2 + socί(x2 + wαxπ2 + t;π1α2 + wπ1π2 . (7c)

In these expressions the coefficients m,n,...w are elements of the field 3F.
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The symmetric product σ occurs in all terms of the antisymmetric products
α 1 2 and π 1 2 and hence it cannot vanish if the algebras are composable. In other
words, the producr τ cannot be antisymmetric. An obvious solution for the
product π is a multiple of α.

The requirement that the field #" be a unit for the composition product
imposes strong restrictions on the coefficients in the expressions (7). Relation (6),
together with the choice 2lj = # " and f1=g1 = \e!F \Ά Equation (7 a), yield m = 1
and p = 0. Similarly, 9I2 = ̂  fi = Qi = 1 e &* g i γ e s n = 1, # = 0. The same arguments
applied to the products π and σ yield c = d = r=l and x = y = 0.

Further restrictions are imposed on the remaining coefficients in expression
(7c) by the requirement that the composition product be associative. Equation (5)
applied to the product α 1 2 3 in 2I i 2 3 = 2 ϊ i θ 2 Ϊ 2 θ 3 Ϊ 3 reads

Substitution of relations (7a) and (7c) shows that the coefficients u, v, and w must

vanish. Hence, the composition laws reduce to

(8a)

σ 1 2 = σίσ2 + sαxα2 . (8c)

The associativity condition (5) applied to the product σ, i.e. σί{23) = σ{12)3,
leaves the coefficient s arbitrary, while the condition π 1 ( 2 3 ) = π ( 1 2 ) 3 yields 5 = 0.
Hence, if sφO the associativity condition for the composition product O does
not allow the algebraic product τ in {J^τ, α}ε*/ to have an antisymmetric part
which is different from the product α.

So far we have derived the conditions which are imposed on the composition
laws for the algebraic products α, π, and σ by the assumption that a composition
class be a semigroup with a unit. We shall now investigate how these conditions
interact with the identities defining the individual algebras in a composition class
(the Jacobi identity and the derivation rule).

Using relation (8 a) one sees that the generic term in the Jacobi identity (2) is

+ (fσ(gahMfa(gσh))2

+ (MgσhMfσ(goch))2 + (MgahMfσ(gσh))2 . (9)

The Jacobi identity then reads

X {{fσ{gσhMfa{gah))2 + (MgoihMfσ{gσh))2} = 0.
cycl.

Addition of this identity to the one obtained by interchange of gt and h1 yields
the relation

{[/ 0, ΛL + [/, Λ, gli}(Mgodι))2 = {(gaihaf^+ihaigaf)),} [7ι,/, g\2 (10)
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where the symbol [,,] denotes the σ-associator, i.e. [f,g,h]=(fσg)σk—fσ(gah).
Relation (10) implies proportionality of the associator and the double α-product:

a^Mgah^^b^hJ^l (11)

where ί= 1,2 and the coefficients a^ bt, which cannot both vanish, are defined up
to a proportionality factor. Substitution of relation (11) into relation (10) yields

aίb2 = b1a2. (12)

One sees that b1=0 implies b2 = 0. Hence, if a composition class contains an
algebra with b = 0, then all algebras in the composition class have b = 0.

According to relation (11), b = 0 implies that fa(gah) = 0 for all algebras in the
composition class. Applied to relation (9), this conclusion yields the identity

(fσ(gahMfa(gσh))2 + (fa(gσhMfσ(gah))2 = 0.

By taking g2 = h2 one gets

^ or (fa(gσg))2 = 0.

Substitution of g + h for g in the second equation gives (fa(gσh))2 = 0. Hence, in
both cases the algebras are trivial. Consequently, all algebras in a composition
class with b = 0 are trivial. Thus, we are not interested in this case.

If a composition class contains an algebra with έ>φθ, then all 21; in the com-
position class have fo + 0, and since a{ and bt are defined only up to a common
factor we can choose bt=ί. Relation (12) then reads a1=a2, i.e. the constant a
is the same for all algebras in the composition class, and relation (11) becomes

ίh,f,g-] = afaίgaLh). (13)

Next, we consider the derivation condition (3) for the composite α and σ
products:

Use of the composition laws (8a), (8c), and the Jacobi identity for the component
α-products yield the relation

((fσg)σh)1((fag)σh)2

- (fσ(gσhMfa(gσh))2 + ((fag)σh)1((fσg)σh)2

+ (gσ(MMgσ(fσh))2-(fu(gσhMfσ(gσh))2

+ s{{{fah)σgU{fag)ah)2 + {{ga.f)σhUga{fah))2

Addition of this identity to the one obtained by interchange of j x and gu and use
of the derivation rule for the component products give the relation

{if, 0, K\ + ίg, f, h] + gφaf) + fφoίg)}1((fag)σh)2

= -((/<x0)αλ)i {if, k g-] + sha(gaf)}2



182 E. Grgin and A. Petersen

which implies

cihσigφ^d&f, h, g\ + sha(gaf)}i (14)

where cf and dt are scalars which do not both vanish. If both ci and dt are different
from zero, then substitution of the double α-product for the associator according
to relation (13) shows that hσ(gaf) is proportional to ha(gaf). Since these ex-
pressions have different symmetry properties they must both vanish, i.e. the
algebra is trivial. The same result holds if dt = 0. Consequently, if the algebra is
to be non-trivial, the coefficient ct must vanish, and this yields the identity

Comparison with relation (13) shows that

a=-s. (15)

While the results obtained previously from the semigroup structure of a com-
position class were restrictions on the class parameters in the composition laws
for the algebraic products, the result s= —a relates the semigroup product O to
the associativity properties of the algebraic product σ in the individual algebras
belonging to the composition class.

The closure of a composition class under the product O implies that the
association constant a of a composite algebra must be the same as that of the
component algebras. It is straightforward to verify that if the equation

is true for z=l , 2, and if α 1 2 and σί2 are given by relations (8a), (8c), then this
equation is also true for i = 12. Hence, the closure condition imposes no restric-
tions on the constant a.

It remains to investigate the restrictions imposed by the derivation condition
for the antisymmetric part π of the product τ. Since π φ α is impossible in com-
position classes where sΦO, it suffices to consider the case s = 0, in which the
algebras {Jf, σ} are associative. With this condition, the derivation rule (3) for
the product α 1 2 with respect to the product π 1 2 reduces to

{fσ(gπh) - (fσg)πh}1({fag)σh)2 + {fσ{gπh) -

+ ((f^σh), {fσ(gπh) - (fσg)πh}2 + {gσ(fvh))i iMgπh) - gπ(fσh)}2 = 0.

Addition of this identity to the one obtained by interchange of gx and hx yields

gσh)), = {gπ(fσh) + hπifσh)},

where bt is a scalar. By taking the cyclic sum of both sides of this equation one
obtains a new equation in which the left side vanishes identically. Hence,

from which one concludes that π is proportional to α if gσh is an arbitrary element
of Jf7. If necessary, this condition can be satisfied by adjunction of a unit to the
commutative associative algebra {Jf, σ}.
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Thus, we have the result that the product τ in an algebra {Jf, τ, α} is of the
form τ = σ -f cα, where c is a scalar. Further, the easily verified identity

if 9i nΛτ = Vf $>> ]̂<r + c 2 [/> 9> h\ (16)

together with Equation (13) and the Jacobi identity (2) yield the association
relation

If g, h]τ = (a + c2) If g, K]a . (17)

Relation (17) shows that the product τ satisfies the Jordan identity If2, g,f]τ = 0
and the flexible law [/, gf,/]τ = O. Thus, in an algebra {jf, τ, α}, the substructure
{Jf, τ} is a non-commutative Jordan algebra [3].

Substitution of σ = τ —cα into relations (8 a) and (8 c) and use of Equation (15)
yields the composition laws for the products α and τ in algebras {Jf, τ, α}:

α12 = τ 1 α 2 + α 1 τ 2 — 2cαxα2 , (18)

τί2 = τiτi~(a + c2)(χι(χ2 - (19)

Thus, the composition classes / are labelled by the parameters a and c. The
classes for which a = 0 shall be called classical and the classes with αφO shall be
called quantal. Since relation (13) is automatically satisfied for algebras {Jf,σ,α}
in which both [f,g,h]σ = 0 and [/, g, h\ = 0, such algebras belong to both the
classical and the quantal composition classes.

The system of identities (1), (2), (3), (17) defining an algebra {Ĵ 7, τ, α, c, a] with
parameters c and a is invariant with respect to the group of transformations

T:

where t is a non-zero scalar. The orbits of this group are the isomorphism classes
of the composition classes β. For algebras {Jf7, σ, α, 0, α} the orbits of the par-
ameter a are the sets ^ / s q ^ , where sqJ^ denotes the squares in the field #". The
fixed point {0} corresponds to the classical algebras {jf, σ, α}, and the other
cosets of sq#" correspond to the composition classes of quantal algebras. In the
case #" = IR, there are two quantal composition classes, ^ and #_.

If {Jf, σ, α} is a quantal algebra with a parameter α such that — a is a square
in the field #", then relation (17) shows that the product β = σ+ ]/— a α in J^7 is
associative. If — α is not a square, then /? is a product in the spaced = J f 0 j / — α J ^
[This is the case in quantum mechanics, where J^ = 1R and α = (ft/2)2.] Conse-
quently, any quantal algebra {Jf, σ, α} has an associative envelope pfjS} or
{J#,^}. With respect to /}, the products σ and α are σ = - j [ , ] + , α = (l/2J/^α)[,]_
or the restrictions of the anticommutator and the commutator to the space Jf.
It follows that in a quantal algebra {Jf7, σ, α}, the substructure pf, σ} is a special
Jordan algebra.

τ

α

c

a

->

τ

ία

r2fl
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If pf, σ, α} is a classical algebra and β = σ + b α, relation (16) shows that β is
associative if b2 = 0. Thus, in order to obtain an associative envelope of a classical
algebra, a nilpotent element, b, must be adjoined to the field.

One sees that in the classical case (α = 0) and in the quantal case with — a not
a square in #" (to which quantum mechanics belong), obtaining the associative
envelope requires an extension of the field of scalars. However, while the quantal
case requires an extension of J^ to a new structure #"[]/—«], which is also a field,
the classical case requires an extension of ^ to a new structure $F®b$F, with
fr2 = 0, which is a ring. Hence, the underlying set of a classical β-algebra is not
a linear space, but a module over the ring ^ © b J ^ .

If #" is the field R of real numbers, one can subsume the two cases by means
of the 2 x 2 real matrix

/ 0 2cosh2ω/2

~ \-2sinh 2 ω/2 0

which yields b2= — sinh2ω /, where I is the unit 2 x 2 matrix. For ω = 0, b2 =
and for ωφO, a= sinh2ω.

Appendix A

Identical Algebras

Let us consider a composition class β whose elements are generated by a single
algebra 2ϊ={jf,σ,α}:

The underlying linear space of the algebras in f are tensor powers of Jf :

Since there exist two other tensor powers, the totally symmetric power

jf^ΞΞjrvjf v... VJT

and the totally antisymmetric power

MΛ ... Λjf,

it is natural to inquire whether they can be used as underlying linear spaces of
composable two-product algebras.

The answer is affirmative in the symmetric case, i.e. there exist composition
classes of the type

This is the standard composition of observables belonging to identical systems
in quantum mechanics and in statistical classical mechanics. The antisymmetric
powers are not closed under the algebraic products σ, α, i.e. if f,geJ^[n\ then
fσg and fag are not in Jf ["] for n > 1. Hence, there is no composition class based
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on the antisymmetric powers. However, it is interesting to note that, for each n,
the linear space

with the composition-induced products σ, α is a two-product algebra
Composition in the class

is then based on the product • defined by the relation

je{n} • J T { m } =2/e { n + m ) e jp[n+m].

We now outline the proofs of the above statements. A general element in Jjf{n)

or J^[n] is a sum of elements of the form

f=C-i»fil...fin,

where summation over all indices i = l , . . . , n is understood, and where, as before,
juxtaposition of variables is to be understood as their tensor product. lϊfeJf[n\
we have c i l > l n = e i l > l n , where ε is the completely antisymmetric symbol in
n variables. If/eJf ( n ), c i l - i » = | f i i l " ' H

The elements fσg and fag are obtained most easily by computing fβg where

β=σ + ba, with b2=—a in the quantal case, while in the classical case b is a

nilpotent, b2 = 0. With g = Djl 'ingjί...gjn9 one has

which is a sum of n! terms of the form

where single indices are now represented by pairs of indices.
In the symmetric case, J4?{n\ a transposition of two indices leaves the coef-

ficients C unchanged, while, in the antisymmetric case, jfln\ it multiplies them
by — 1. Thus, one can write

where c= ± 1 , and similarly for D and H"\ One then obtains from the above
expressions the equation

cd=h

which proves the assertions.

Appendix B

Relation between Classical and Quantal Algebras

The parameter a, which is an element of structure in a classical or quantal algebra
{J f, σ, α}, appears also in the composition law for the product σ. Thus, the com-
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position laws (8a), (8c), may contain information regarding the relation between
classical and quantal algebras.

Relations (8 a) and (8 c) are reminiscent of the addition formulas for the sine
and cosine functions, and hence it might be instructive to express the operators σ
and α as the cosine and the sine of an "angle" operator. Since the domain jtf (x) J f
of σ and α is different from their range jf, they cannot themselves be expressed
as formal power series. However, a power series expansion can be made after
a suitable factorization of the "angle" operator. Specifically, let α', σ', P be three
linear operators such that the diagram

is commutative, i.e. a' = σ'°P. The maps σ' and oί are products in Ĵ 7, and since
the map P is a linear endomorphism, one can obtain new products γ in jtf from P
and σ of the form y = σΌF(P), where F(P) is a power series in the operator P.

The formal similarity between the composition laws and the trigonometric
addition theorems suggests writing the products σ and α in a quantal algebra
{Jf, σ, α} over the field of real numbers in the form

= σfocos(]/aP)

When the parameter αelR approaches zero, the operators σ and α approach the
products σΌI and σ'°P = α', i.e. the "classical limit" of the quantal products is the
products σ\ α', that were used to obtain the operator P.

We shall show that these heuristic considerations lead to a simple proof of
a result similar to that obtained by C. L. Mehta [2] concerning the relation
between the classical and quantal Lie products. Let {J-f, σ\ α'} be a classical two-
product algebra over the field 1R, with products σ', α' which permit a factorization
α' = σ'°P, as in the diagram. The operator P, being an endomorphism of the
linear space Jf(x)J^, can be written as P=ΣQA®QAτ where QA and QA are

A

linear operators on the space J f and its dual space Jίf*, respectively, and where A
ranges over an index set </. Assume that for each value of the index A the operators
QΛ and QA are surjective. We shall show that under these conditions the structure

σΌcos((j/αP), σ<>{l/]/ά) sin(]/αP)} (20)

is a quantal algebra and is the only quantal algebra obtainable from the given
classical algebra {Jf, σ', α'} by means of a power series expansion.

In terms of the decomposition of the operator P one has
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The derivation rule for α' with respect to σ' assumes the form

Σ(QΛf)o'(QΛ(gσ'h))= Σ {(QAf)σ'(QA9yh-gσ'(QΛf)σ'(QAh)}
A A

or

Σ (QAfWiQAigσ'h)- {QAg)σ'h- gσ\QAh)} = 0 .
A

Since the operator QΛ is assumed to be surjective for each index A, i.e. QAfis
arbitrary, the expression in the curly bracket must vanish. Thus, for each A, the
operator QA is a derivation with respect to the product σ'\

QA(9σfh) = (QAg)σfh + gσf(QAh). (21)

A similar result holds for each operator QΛ.
For any quantal algebra (J»f, σ, α} there exists a unique associative product β

with respect to which σ = \ [, ] + and a = (1/2 ]/—a) [, ] _. Hence, we can find the
quantal algebras obtainable from the given classical algebra {Jf, σ\ a'} by deter-
mining all power series in the operator P which give rise to an associative product

One sees that

P2 (f®g) = P((QAf) <g> (QAg)) = (QABf) ® (QAB g)

etc., where summation is understood and where QAB = QAoQB = QBoQA. We shall
simplify the notation by writing {Qnf)®{Qng) instead of {QM"'Anf)®{QAl A g\
Hence Pn{f® g) = (Q»f) <g> (Qng), and

fβg=Σcn(Qnf)σf(Qng) (22)
n

From the derivation rule (21) and relation (22) one obtains

(fβg)βh= Σ Cmc
m,n,r

fβ(gβh)= Σ CaCb(
b)(Qbf)σ'(QaQb_cg)σ'(Qa+ch).

a,b,c \CI

Comparison of these expressions yields the following conditions on the indices:

which have the solution a = r, b = m + n — r, c = m — r. Hence, the coefficients Cn

satisfy the equations

cch-cc
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whose solutions are Cn=C[n\ for arbitrary G Thus, F(P) = exp(CP). For the
parameter α>0 and C=i\/a, one has the algebra (20). For a<0 and C= ]/α, the
circular functions are replaced by hyperbolic functions. This completes the proof.
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