A New Method for Constructing Factorisable Representations for Current Groups and Current Algebras

K. R. Parthasarathy and K. Schmidt
Mathematics Institute, University of Warwick, Coventry, Warwickshire CV4 7AL, England

Abstract

Let $C_{e}^{\infty}\left(R^{n}, G\right)$ denote the group of infinitely differentiable maps from n-dimensional Euclidean space into a simply connected and connected Lie group, which have compact support. This paper introduces a class of factorisable unitary representations of $C_{e}^{\infty}\left(R^{n}, G\right)$ with the property that the unitary operator U_{f} corresponding to a function f in $C_{e}^{\infty}\left(R^{n}, G\right)$ depends not only on f, but also on the derivatives of f up to a certain order. In particular these representations can not be extended to the group of all continuous functions from R^{n} to G with compact support.

§ 1. Introduction

Let G be a simply connected and connected Lie group and let \mathscr{G} be its Lie algebra. Let $\exp : \mathscr{G} \rightarrow G$ denote the exponential map. We denote by $C_{e}^{\infty}(R, G)$ the class of all C^{∞} maps from R into G with compact support. A map $\varphi: R \rightarrow G$ is said to have compact support if takes the value e, i.e., the identity element of G outside a compact set. Let $C_{0}^{\infty}(R, \mathscr{G})$ denote the class of all infinitely differentiable maps from R into the vector space \mathscr{G} with compact support. For any $f \in C_{0}^{\infty}(R, \mathscr{G})$, we define $\operatorname{Exp} f \in C_{e}^{\infty}(R, G)$ by writing $(\operatorname{Exp} f)(x)=\exp f(x)$, for all $x \in R . C_{e}^{\infty}(R, G)$ is a group (under pointwise multiplication) and $C_{0}^{\infty}(R, \mathscr{G})$ is a Lie algebra (under pointwise addition, scalar multiplication and Lie brackets). These may respectively be called as current group and current algebra over R. We give $C_{0}^{\infty}(R, \mathscr{G})$ the usual Schwarz topology. A homomorphism $\varphi \rightarrow U_{\varphi}$ of the group $C_{e}^{\infty}(R, G)$ into the group of unitary operators on a Hilbert space H is said to be a unitary representation or simply a representation if $U_{\operatorname{Exp} f_{n}}$ converges weakly to $U_{\operatorname{Exp} f}$ whenever $f_{n} \rightarrow f$ as $n \rightarrow \infty$ in the topology of $C_{0}^{\infty}(R, \mathscr{G})$.

For any compact set $K \subset R$, let $C(K, G) \subset C_{0}^{\infty}(R, G)$ be the subgroup of all those maps with support contained in K. If K_{1}, K_{2} are two disjoint compact subsets of $R, C\left(K_{1} \cup K_{2}, G\right)$ can be identified in a natural manner with the cartesian product $C\left(K_{1}, G\right) \times C\left(K_{2}, G\right)$. Indeed, for any $\varphi \in C\left(K_{1} \cup K_{2}, G\right)$, define

$$
\begin{aligned}
\varphi_{i}(x) & =\varphi(x) \quad \text { if } \quad x \in K_{i} \\
& =e \quad \text { if } \quad x \notin K_{i}, \quad i=1,2 .
\end{aligned}
$$

Then $\varphi=\varphi_{1} \varphi_{2}$. The map $\varphi \rightarrow\left(\varphi_{1}, \varphi_{2}\right)$ gives the required identification. For any representation U of $C_{e}^{\infty}(R, G)$, we define the representation U^{K} of the subgroup $C(K, G)$ by

$$
U_{\varphi}^{K}=U_{\varphi}, \varphi \in C(K, G)
$$

We say that a representation U of $C_{e}^{\infty}(R, G)$ is factorisable if, for any two disjoint compact sets $K_{1}, K_{2} \subset R$, the representation $U^{K_{1} \cup K_{2}}$ is unitarily equivalent to the tensor product $U^{K_{1}} \otimes U^{K_{2}}$. This unitary equivalence will of course depend on K_{1} and K_{2}. Examples of such factorisable representations based on the unitary representations of G and their first cohomologies were first constructed by Streater [6] and Araki [1]. Further development of these ideas may be found in the works of Parthasarathy and Schmidt [4, 3], Vershik, Gelfand and Graev [7], and Guichardet [2]. However, most of these examples have the degenerate property that they factorise completely. These representations extend to borel maps from R into G and the factorisability property extends to pairs of disjoint borel sets. This is mainly because the representations constructed in these papers do not involve the derivatives of smooth maps in a certain sense. One may compare this with the following situation in the classical theory of distributions. To evaluate the Dirac δ at a testing function φ one need not know the derivations of φ. However to evaluate the distributions $\delta^{\prime}, \delta^{\prime \prime}, \ldots$ one requires a knowledge of $\varphi^{\prime}, \varphi^{\prime \prime}, \ldots$ The main aim of this paper is to construct factorisable representations U which for their evaluation at $\operatorname{Exp} f, f \in C_{0}^{\infty}(R, \mathscr{G})$ requires a knowledge of $f, f^{\prime}, f^{\prime \prime}, \ldots$. A beginning in this direction was already made by Schmidt [5] in the case when G is the Heisenberg group, whose representations lead to canonical commutation relations.

§ 2. The Leibnitz Extension of a Lie Algebra

In order to outline the method of constructing factorisable representations we need to construct an extension of the Lie algebra \mathscr{G}. To this end consider the space \mathscr{G}_{n} which is the $n+1$-fold Cartesian product of \mathscr{G}. Any element \boldsymbol{X} of \mathscr{G}_{n} can be written as

$$
\boldsymbol{X}=\left(X_{0}, X_{1}, \ldots, X_{n}\right), X_{i} \in \mathscr{G} \quad \text { for each } i
$$

Between two elements \boldsymbol{X} and \boldsymbol{X}^{\prime} in \mathscr{G}_{n} define the bracket operation by

$$
\left[\boldsymbol{X}, \boldsymbol{X}^{\prime}\right]=\boldsymbol{X}^{\prime \prime},
$$

where

$$
\begin{align*}
X_{0}^{\prime \prime} & =\left[X_{0}, X_{0}^{\prime}\right], \\
X_{j}^{\prime \prime} & =\sum_{r=0}^{j}\binom{j}{r}\left[X_{r}, X_{j-r}^{\prime}\right] . \tag{2.1}
\end{align*}
$$

An easy computation shows that for $\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{Z} \in \mathscr{G}_{n}$,

$$
[[X, Y] Z]=T
$$

where

$$
T_{r}=\sum_{k_{1}+k_{2}+k_{3}=r}\left(r!/ k_{1}!k_{2}!k_{3}!\right)\left[\left[X_{k_{1}}, Y_{k_{2}}\right], Z_{k_{3}}\right]
$$

This shows that

$$
[[\boldsymbol{X}, \boldsymbol{Y}], \boldsymbol{Z}]+[[\boldsymbol{Y}, \boldsymbol{Z}], \boldsymbol{X}]+[[\boldsymbol{Z}, \boldsymbol{X}], \boldsymbol{Y}]=0 .
$$

In other words \mathscr{G}_{n} becomes a Lie algebra. We shall call \mathscr{G}_{n} the $n^{\text {th }}$ Leibnitz extension of the Lie algebra \mathscr{G}. The mapping $X \rightarrow(X, 0,0, \ldots, 0)$ is an isomorphism of \mathscr{G} into \mathscr{G}_{n}. All elements of the form $\left(0, X_{1}, X_{2}, \ldots, X_{n}\right), X_{1} \in \mathscr{G}, i=1,2 \ldots n$ constitute a nilpotent Lie subalgebra $\ell^{(n)}$ of \mathscr{G}_{n}. Further

$$
\begin{aligned}
& {\left[(X, 0,0, \ldots, 0),\left(0, X_{1}, X_{2}, \ldots, X_{n}\right)\right]} \\
& =\left(0,\left[X, X_{1}\right],\left[X, X_{2}\right], \ldots,\left[X, X_{n}\right]\right) .
\end{aligned}
$$

Thus \mathscr{G} acts as a Lie algebra of derivations of the nilpotent Lie algebra $\ell^{(n)}$. In other words \mathscr{G}_{n} is a semi-direct sum of \mathscr{G} and $\ell^{(n)}$.
Remark 2.1. Since any Lie algebra \mathscr{G} can be represented as a Lie algebra of matrices, we shall assume that \mathscr{G} is a Lie algebra of real matrices in all our computations hereafter. Let the order of the matrices in \mathscr{G} be $k \times k$.

Lemma 2.2. The map

$$
A:\left(0, X_{1}, X_{2}, \ldots, X_{n}\right) \rightarrow A\left(X_{1}, X_{2}, \ldots, X_{n}\right), X_{i} \in \mathscr{G}, i=1,2 \ldots n
$$

where

$$
A\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\left(\begin{array}{cccccc}
0 & X_{1} / 1! & X_{2} / 2! & \ldots & & X_{n} / n! \\
0 & 0 & X_{1} / 1! & X_{2} / 2! & \ldots & X_{n-1} / n-1! \\
0 & 0 & 0 & X_{1} / 1! & \ldots & X_{n-2} / n-2! \\
\ldots & \ldots & \ldots & \ldots & \ldots \ldots & \ldots \ldots \ldots \\
0 & 0 & 0 & \ldots \ldots \ldots \ldots
\end{array}\right)
$$

is an isomorphism of the Lie algebra $h^{(n)}$ into the Lie algebra of all matrices of order $k(n+1) \times k(n+1)$.

Proof. This follows from a routine computation and is left to the reader.
Lemma 2.3. Let A be the map defined in the preceding lemma. Then the matrix $\exp A\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is of the form

$$
\left(\begin{array}{cccccc}
I & A_{1} & A_{2} & \ldots & \ldots & A_{n} \\
0 & I & A_{1} & A_{2} & \ldots & A_{n-1} \\
0 & 0 & I & A_{1} & \ldots & A_{n-2} \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & 0 & \ldots & I
\end{array}\right)
$$

where

$$
A_{j}=\sum_{p=1}^{j} 1 / p!\sum_{\substack{m_{1}+\ldots+m_{p}=j \\ 1 \leqq m_{i} \leqq j}} m_{1}!^{-1} X_{m_{1}} m_{2}!^{-1} X_{m_{2}} \ldots m_{p}!^{-1} X_{m_{p}}
$$

Proof. It is left to the reader.
Remark 2.4. Let H be the group generated (algebraically) by all matrices of the form $\exp A\left(X_{1}, X_{2}, \ldots, X_{n}\right), X_{i} \in \mathscr{G}, i=1,2 \ldots n$. Its Lie algebra is isomorphic with $\ell^{(n)}$. Let G be the simply connected group for which the Lie algebra is \mathscr{G}. Then for any $X_{0} \in \mathscr{G}$, the element $\exp X_{0}$ of G acts as an automorphism of H as follows:

$$
\begin{aligned}
& \exp X_{0}: \exp A\left(X_{1}, X_{2}, \ldots, X_{n}\right) \\
& \rightarrow \exp A\left(e^{\operatorname{ad} X_{0}}\left(X_{1}\right), e^{\operatorname{ad} X_{0}}\left(X_{2}\right), \ldots, e^{\operatorname{ad} X_{0}}\left(X_{n}\right)\right)
\end{aligned}
$$

Hence we can form the semi-direct product $G \odot H$ of the two groups G and H. $G \odot H$ consists of all pairs $(g, h), g \in G, h \in H$. The multiplication operation is defined by

$$
(g, h) \cdot\left(g^{\prime}, h^{\prime}\right)=\left(g g^{\prime}, h \cdot g\left(h^{\prime}\right)\right),
$$

where $h^{\prime} \rightarrow g\left(h^{\prime}\right)$ is the automorphism of H induced by g. The Lie algebra of the group $G \odot H$ is then isomorphic to the Lie algebra \mathscr{G}_{n}. In particular \mathscr{G}_{1} is the Lie algebra of the semidirect product of G and the additive group \mathscr{G}, where G acts as the adjoint representation in \mathscr{G}.

Lemma 2.4. For any $\boldsymbol{X}=\left(X_{0}, X_{1}, \ldots, X_{n}\right) \in \mathscr{G}_{n}$, the exponential map from \mathscr{G}_{n} into $G \odot H$ is defined as follows: let

$$
\begin{equation*}
A_{j}(t)=\sum_{p=1}^{j} \sum_{\substack{m_{1}+\ldots+m_{p}=j \\ 1 \leqq m_{l} \leqq j}} \int_{0<t_{1}<t_{2}<\ldots<t_{p}<t}\left(\prod_{k=1}^{p} e^{t_{k} \mathrm{ad} X_{o}}\left(m_{k}!^{-1} X_{m_{k}}\right)\right) d t_{1} \ldots d t_{p} \tag{2.2}
\end{equation*}
$$

for $j=1,2 \ldots n$. Let

$$
A(t)=\left(\begin{array}{ccccc}
I & A_{1}(t) & A_{2}(t) & \ldots A_{n}(t) \\
0 & I & A_{1}(t) & \ldots A_{n-1}(t) \\
0 & 0 & I & \ldots A_{n-2}(t) \\
\ldots & \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
0 & 0 & \ldots \ldots & 0 & I
\end{array}\right)
$$

Then

$$
\exp t \boldsymbol{X}=\left(\exp t X_{0}, A(t)\right) \quad \text { for all } \quad t \in R
$$

Proof. Indeed, differentiating (2.2) at $t=0$, we get

$$
d A_{j} /\left.d t\right|_{t=0}=j!^{-1} X_{j} .
$$

Thus

$$
d A(t) /\left.d t\right|_{t=0}=\left(\begin{array}{ccccc}
0 & X_{1} / 1! & \ldots & X_{n} / n! \\
0 & 0 & X_{1} / 1! & \ldots & X_{n-1} /(n-1)! \\
\ldots & \ldots & \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Further

$$
\begin{aligned}
& \left(\exp t X_{0}, A(t)\right) \cdot\left(\exp s X_{0}, A(s)\right) \\
& =\left(\exp (t+s) X_{0}, A(t) \cdot \exp t X_{0}(A(s))\right.
\end{aligned}
$$

where

$$
\exp t X_{0}(A(s))=\left(\begin{array}{ccccc}
I & B_{1} & B_{2} & \ldots & B_{n} \\
0 & I & B_{1} & \ldots & B_{n-1} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & I
\end{array}\right)
$$

and

$$
\begin{align*}
B_{j} & =B_{j}(t, s)=e^{t X_{0}} A_{j}(s) e^{-t X_{0}} \\
& =\sum_{p=1}^{j} \sum_{\substack{m_{1}+\ldots+m_{p}=j \\
m_{2} \geqq 1 \text { for alli }}} \int_{0<t_{1}<t_{2}<\ldots<t_{p}<s} \prod_{k=1}^{p} e^{\left(t_{k}+t\right) \mathrm{ad} X_{0}}\left(k!^{-1} X_{m_{k}}\right) d t_{1} \ldots d t_{p} \\
& =\sum_{p=1}^{j} \sum_{\substack{m_{1}+\ldots+m_{p}=j \\
m_{l} \geqq 1 \text { for alli } i}} \int_{0<t_{1}<t_{2}<\ldots<t_{p}<t+s} \prod_{k=1}^{p} e^{t_{k} \mathrm{ad} X_{0}}\left(k!^{-1} X_{m_{k}}\right) d t_{1} \ldots d t_{p} . \tag{2.3}
\end{align*}
$$

A straightforward matrix multiplication shows that

$$
A(t) \cdot \exp t X_{0}(A(s))=\left(\begin{array}{ccccc}
I & C_{1} & C_{2} & \ldots & C_{n} \\
0 & I & C_{1} & \ldots & C_{n-1} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & I
\end{array}\right)
$$

where

$$
\begin{aligned}
C_{j} & =\sum_{r=0}^{j} A_{r}(t) B_{j-r}(t, s), \\
A_{0}(t) & =B_{0}(t, s)=I,
\end{aligned}
$$

and where A_{r} and B_{r} is defined by (2.2) and (2.3) respectively. Now an easy computation gives $C_{j}=A_{j}(t+s)$. This shows that $\left(\exp t X_{0}, A(t)\right)$ is a one parameter group with the generator $\left(X_{0}, X_{1}, X_{2}, \ldots, X_{n}\right)$. The proof is complete.

Corollary 2.5. When $n=1$ and $G \odot H$ is identified with the semidirect product of G and the additive group \mathscr{G}, where G acts as adjoint representation in \mathscr{G}, we have

$$
\exp t\left(X_{0}, X_{1}\right)=\left(\exp t X_{0} \frac{e^{t \mathrm{ad} X_{0-1}}}{t \operatorname{ad} X_{0}}\left(X_{1}\right)\right)
$$

for all $t \in R$.
Proof. This follows from the preceding lemma by noting that

$$
\int_{0}^{t} e^{t_{1} \operatorname{ad} X_{0}}\left(X_{1}\right) d t_{1}=\frac{e^{t \mathrm{ad} X_{0}}-1}{t \operatorname{ad} X_{0}}\left(X_{1}\right) .
$$

§ 3. Representation of Current Algebras and Current Groups

In the preceding section we gave a complete description of the group associated with the n-th Leibnitz extension \mathscr{G}_{n} of a Lie algebra \mathscr{G}. The following lemma yields the required embedding of $C_{0}^{\infty}(R, \mathscr{G})$ into $C_{0}^{\infty}\left(R, \mathscr{G}_{n}\right)$ for writing down our representations.

Lemma 3.1. Let Π_{n} be the map from $C_{0}^{\infty}(R, \mathscr{G})$ into $C_{0}^{\infty}\left(R, \mathscr{G}_{n}\right)$ defined by

$$
\Pi_{n}(f)(x)=\left(f(x), f^{\prime}(x), f^{\prime \prime}(x), \ldots, f^{(n)}(x)\right)
$$

for all $x \in R, f \in C_{0}^{\infty}(R, \mathscr{G})$.
Then Π_{n} is a Lie algebra isomorphism of $C_{0}^{\infty}(R, \mathscr{G})$ into $C_{0}^{\infty}\left(R, \mathscr{G}_{n}\right)$.
Proof. This follows immediately from the fact that

$$
d^{j}[f, g] / d x^{j}=\sum_{r=0}^{j}\binom{j}{r}\left[f^{(r)}(x), g^{(j-r)}(x)\right]
$$

and the commutation rules in \mathscr{G}_{n} are defined by (2.1).
As mentioned in $\S 1$, we define for any $f \in C_{0}^{\infty}(R, \mathscr{G}), \operatorname{Exp} f$ as the element in $C_{e}^{\infty}(R, G)$ with the property

$$
(\operatorname{Exp} f)(x)=\exp f(x), x \in R
$$

Consider the group $G \odot H$ described in Remark 2.4. We shall call it the n-th Leibnitz extension of the group G. For any $f \in C_{0}^{\infty}(R, \mathscr{G})$, we define $\operatorname{Exp}_{n} f$ as the element in $C_{e}^{\infty}(R, G \odot H)$ with the property

$$
\left(\operatorname{Exp}_{n} f\right)(x)=\left(\exp f(x), A^{f}(x)\right)
$$

where

$$
A^{f}(x)=\left(\begin{array}{ccccc}
I & A_{1}^{f}(x) & A_{2}^{f}(x) & \ldots & A_{n}^{f}(x) \\
0 & I & A_{1}^{f}(x) & \ldots & A_{n-1}^{f}(x) \\
\ldots & \ldots & \ldots & \ldots & \ldots
\end{array}\right) \ldots \ldots . . .
$$

$$
\begin{align*}
A_{j}^{f}(x)= & \sum_{p=1}^{j} \sum_{\substack{m_{1}+\ldots+m_{p}=j \\
m_{i} \geqq 1 \text { for } 11 i}} \int_{0<t_{1}<t_{2}<\ldots<t_{p}<1} \prod_{k=1}^{p} e^{t_{k} \mathrm{ad} f(x)} \\
& \cdot m_{k}!^{-1} f^{\left(m_{k}\right)}(x) d t_{1} d t_{2} \ldots d t_{p}, \tag{3.1}
\end{align*}
$$

for $j=1,2 \ldots n$. With this notation we have the following corollary to Lemma 3.1.
Theorem 3.2. Let G be a connected and simply connected Lie group whose n-th Leibnitz extension is G_{n}. Suppose $\varphi \rightarrow U_{\varphi}$ is a factorisable representation of the current group $C_{e}^{\infty}\left(R, G_{n}\right)$. Then the map

$$
U^{(n)}: \operatorname{Exp} f \rightarrow U_{\operatorname{Exp}_{n} f}, f \in C_{0}^{\infty}(R, \mathscr{G})
$$

determines a factorisable representation of the current group $C_{e}^{\infty}(R, G)$. In particular this determines a factorisable representation of the current algebra $C_{0}^{\infty}(R, \mathscr{G})$.
Remark 3.3. To construct a factorisable representation U of the current group $C_{e}^{\infty}\left(R, G_{n}\right)$ one may start with a projection valued measure on the Borel subsets of R, a unitary represention V of the group G_{n} commuting with the projection valued measure and a first order cocycle for the representation V, and adopt the procedure outlined in [4]. Since G is a subgroup of G_{n} it follows that $C_{e}^{\infty}(R, G)$ is a subgroup of $C_{e}^{\infty}\left(R, G_{n}\right)$. Hence the restriction of U to $C_{e}^{\infty}(R, G)$ yields a representation $U^{(0)}$ of $C_{e}^{\infty}(R, G)$. The representation $U^{(n)}$ of Theorem 3.1 obtained from U may be considered as the n-th derivative of the representation $U^{(0)}$.

Example 3.4. We shall now illustrate the procedure outlined in the preceding remark in a special case. Let G be a compact, connected, simply connected and semi-simple Lie group with Lie algebra \mathscr{G} and Cartan Killing form $B(X, Y)$, $X, Y \in \mathscr{G}$. Let $g \rightarrow \operatorname{Ad} g$ be the adjoint representation of G acting in \mathscr{G}. Let G_{1} denote the first Leibnitz extension of G. Then G_{1} is the semi direct product of G and the additive group \mathscr{G} in which G acts as a group of automorphisms through the adjoint representation. Any element of G_{1} can be expressed as a pair $(g, X), g \in G$, $X \in \mathscr{G}$. Then $(g, X) \rightarrow \operatorname{Ad} g$ is an irreducible unitary representation U of G_{1} acting in the vector space \mathscr{G} with the positive definite inner product $-B$. Define the map $\delta: G_{1} \rightarrow \mathscr{G}$ by

$$
\delta(g, X)=X
$$

Then δ is a first order cocycle for the representation U. Hence the function

$$
\Phi(g, X)=\exp \frac{1}{2} B(X, X)
$$

is an infinitely divisible positive definite function on the group G_{1}.
Let now $\varphi: R \rightarrow \mathscr{G}$ be a C_{0}^{∞} map from R into \mathscr{G}. Then the map $t \rightarrow\left(\varphi(t), \varphi^{\prime}(t)\right)$ is a C_{0}^{∞} map from R into \mathscr{G}_{1} the Lie algebra of G_{1}. Let

$$
\psi(t)=\frac{e^{\operatorname{ad} \varphi(t)}-1}{\operatorname{ad} \varphi(t)}\left(\varphi^{\prime}(t)\right),
$$

and let

$$
\begin{equation*}
K(\operatorname{Exp} \varphi)=\exp \frac{1}{2} \int B(\psi(t), \psi(t)) d t \tag{3.2}
\end{equation*}
$$

Then K is an infinitely divisible positive definite functional on $C_{e}^{\infty}(R, G)$ which extends to $C_{e}^{1}(R, G)$, the group of all C^{1} maps from R into G with compact support. This positive definite functional defines a factorisable representation of $C_{e}^{1}(R, G)$ which cannot be extended to all bounded borel maps from R into G with compact support.

Since the factorisable representation corresponding to (3.2) is in a sense a continuous tensor product of copies of the irreducible adjoint representation of G one is tempted to conjecture that (3.2) yields an irreducible factorisable representation of $C_{e}^{1}(R, G)$.

Remark 3.5. The theory outlined above extends in a natural manner when R is replaced by R^{m} and one considers current groups $C_{e}^{\infty}\left(R^{m}, G\right)$. To describe this extension we adopt the following conventions. Let, for any positive integer N, F_{N} denote the set of all ordered m-tuples $j=\left(j_{1}, j_{2}, \ldots, j_{m}\right)$ of non-negative integers such that $j_{1}+j_{2}+\ldots+j_{m}<N$. For any $j \in F_{N}$, let $j!=j_{1}!j_{2}!\ldots j_{m}!$, where $0!=1$. A general point of R^{m} will be denoted by $x=\left(x_{1}, x_{2}, \ldots, x_{m}\right)$. Let $|j|=j_{1}+j_{2}+\ldots+j_{m}$. For any $C^{\infty} \operatorname{map} f$ from R^{m} into the Lie algebra \mathscr{G}, let

$$
f^{\underline{(j)}}=\partial \partial^{\underline{\mid} \mid} f / \partial x_{1}^{j_{1}} \partial x_{2}^{j_{2}} \ldots \partial x_{m}^{j_{m}} .
$$

We now define the N-th Leibnitz extension \mathscr{G}_{N} of \mathscr{G} as the set of all maps \boldsymbol{X} from F_{N} into \mathscr{G} with Lie bracket [$\left.\boldsymbol{X}, \boldsymbol{Y}\right]$ defined by

$$
[\boldsymbol{X}, \boldsymbol{Y}](j)=\sum(\underline{j}!/ \underline{r}!(j-\underline{r})![\boldsymbol{X}(\underline{r}), \boldsymbol{Y}(j-\underline{r})]
$$

where the summation is over all $0 \leqq r \leqq j$. Here $r \leqq j$ means that $r_{i} \leqq j_{i}$ for all $i=$ $1,2, \ldots, m$. Then \mathscr{G}_{N} is a Lie algebra. As before \mathscr{G} may be embedded in \mathscr{G}_{N} by mapping any $X \in \mathscr{G}$ to the element X with $X(\underline{0})=X, X(\underline{i})=0$ for $\underline{i} \neq \underline{0}$. Let us say that $\underline{i}<j$ if $\underline{i} \neq j$ but $i \leqq j$. As before all elements \boldsymbol{X} such that $\boldsymbol{X}(0)=0$ constitute a nilpotent Lie subalgebra $\hbar^{(N)}$ of \mathscr{G}_{N}. \mathscr{G}_{N} is a semidirect sum of \mathscr{G} and $\ell^{(N)}$. For $\boldsymbol{X} \in \ell^{(N)}$, we define the matrix $A(\boldsymbol{X})$ whose $(\underline{i}, j)^{\text {th }}$ element is $\boldsymbol{X}(\underline{i}+\underline{j})$ if $j>\underline{i}$ and 0 otherwise. The order of the matrix is $c k \times c k$ where c is the cardinality of F_{N} and k is the order of the matrices which constitute the Lie algebra \mathscr{G}. Lemma 2.3 now holds with the convention

$$
A_{\underline{j}}=\sum_{p=1}^{|j|} p!^{-1} \sum_{\underline{m}_{1}+\ldots+\underline{m}_{p}=j} \underline{m}_{1}!^{-1} \boldsymbol{X}\left(\underline{m}_{1}\right) \ldots \underline{m}_{p}!^{-1} \boldsymbol{X}\left(\underline{m}_{p}\right) .
$$

Lemma 2.4 holds with the condition

$$
\begin{aligned}
A_{\underline{j}}(t)= & \sum_{p=1}^{|j|} \sum_{\underline{m}_{1}+\ldots+\underline{m}_{p}=\underline{j}} \\
& \int_{0<t_{1}<t_{2} \ldots<t_{p}<t} \prod_{i=1}^{p} e^{t_{i} \text { ad } \boldsymbol{X}(0)} \\
& \cdot\left(\underline{m}_{i}!^{-1} \boldsymbol{X}\left(\underline{m}_{i}\right)\right) d t_{1} \ldots d t_{p}
\end{aligned}
$$

Then Theorem 3.2 holds with the condition that in defining the map $f \rightarrow \operatorname{Exp}_{n} f$ we change (3.1) to

$$
\begin{aligned}
A_{\underline{j}}^{f}= & \sum_{p=1}^{|\underline{j}|} \sum_{\underline{m}_{1}+\ldots+\underline{m}_{p}=\underline{j}} \int_{0<t_{1}<t_{2} \ldots<t_{p}<1} \\
& \prod_{i=1}^{p} e^{t_{i} \mathrm{ad} f(x)}\left(\underline{m}_{i}!^{-1} f^{\left(\underline{m}_{\imath}\right)}(x)\right) d t_{1} \ldots d t_{p}
\end{aligned}
$$

Acknowledgement. The first named author wishes to thank the Mathematics Institute, University of Warwick and the Science Research Council (U.K.) for their generous assistance in the preparation of this article.

References

1. Araki, H.: Factorisable representations of current algebra, Publications of R.I.M.S. Kyoto University, Ser. A, 5 (3), 361-422 (1970)
2. Guichardet, A.: Symmetric Hilbert spaces and related topics. In: Lecture Notes in Mathematics, Vol. 261. Berlin-Heidelberg-New York: Springer 1972
3. Parthasarathy, K. R., Schmidt, K.: Positive definite kernels, continuous tensor products, and central limit theorems of probability theory. In: Lecture Notes in Mathematics, Vol. 272. Berlin-Heidelberg-New York: Springer 1972
4. Parthasarathy, K. R., Schmidt, K.: Factorisable representations of current groups and the ArakiWoods imbedding theorem. Acta Math. 128, 53-71 (1972)
5. Schmidt, K.: Algebras with quasilocal structure and factorisable representations, Mathematics of Contemporary Physics (ed. R. F. Streater), pp. 237-251. New York: Academic Press 1972
6. Streater, R.F.: Current commutation relations, continuous tensor products and infinitely divisible group representations. Rend. Sci. Int. Fisica E. Fermi, XI, 247-263 (1969)
7. Vershik, A. M., Gelfand, I.M., Graev, M. I.: Representations of the group $\operatorname{SL}(2, R)$ where R is a ring of functions. Russ. Math. Surv. 28, 87-132 (1973)

Communicated by H. Araki
Received July 16, 1975 ; in revised form March 30, 1976

