Quasi-free "Second Quantization"

Lars-Erik Lundberg
Matematisk Institut HCØ, Copenhagen University, DK-2100 Copenhagen, Denmark

Abstract

Araki and Wyss considered in 1964 a map $A \rightarrow Q(A)$ of one-particle trace-class observables on a complex Hilbert-space \mathscr{H} into the fermion C^{*}-algebra $\mathfrak{H}(\mathscr{H})$ over \mathscr{H}. In particular they considered this mapping in a quasi-free representation.

We extend the map $A \rightarrow Q(A)$ in a quasi-free representation labelled by $T, 0 \leqq T \leqq I$, to all $A \in B(\mathscr{H})_{\mathrm{sa}}$ such that $\operatorname{tr}(T A(1-T) A)<\infty$ with $Q(A)$ now affiliated with the algebra. This generalizes some well-known results of Cook on the Fock-representation $T=0$.

1. Introduction

Let $\mathfrak{H}(\mathscr{H})$ denote the fermion C^{*}-algebra over a complex Hilbert space \mathscr{H}, i.e. there exists a conjugate linear mapping $f \mapsto a(f)$ of \mathscr{H} into $\mathfrak{H}(\mathscr{H})$, whose range generates $\mathfrak{H}(\mathscr{H})$ as a C^{*}-algebra such that $a(f) a(g)^{*}+a(g)^{*} a(f)=\langle f, g\rangle I, a(f) a(g)+$ $a(g) a(f)=0$ for all $f, g \in \mathscr{H}$ and where $\langle\cdot, \cdot\rangle$ denotes the inner product on \mathscr{H}.

A gauge-invariant quasi-free state ω_{T} of $\mathfrak{H}(\mathscr{H})$ is uniquely defined by the n-point functions $\omega_{T}\left(a\left(f_{n}\right)^{*} \ldots a\left(f_{1}\right)^{*} a\left(g_{1}\right) \ldots a\left(g_{m}\right)\right)=\delta_{n m} \operatorname{det}\left(\left\langle g_{i}, T f_{j}\right\rangle\right) \quad$ where $T \in B(\mathscr{H})$ and $0 \leqq T \leqq I$. Denote by \mathscr{H}_{T}, π_{T} and Ω_{T} the Hilbert-space, the representation, and the cyclic unit-vector associated with ω_{T} via the GNS-construction, i.e. $\omega_{T}(x)=\left(\Omega_{T}, \pi_{T}(x) \Omega_{T}\right), x \in \mathfrak{A}(\mathscr{H})$.

Let A be a self-adjoint (s.a.) finite-rank operator on \mathscr{H}, i.e. there exists an orthonormal set $\left\{u_{n}\right\}_{n=1}^{N}$ in \mathscr{H} and $\alpha_{n} \in \mathbb{R}$ such that $A f=\sum_{n=1}^{N} \alpha_{n} u_{n}\left\langle u_{n}, f\right\rangle$ for $f \in \mathscr{H}$. Araki and Wyss [1] considered the following map Q of finite-rank s.a. operators on \mathscr{H} into $\mathfrak{U}(\mathscr{H})_{\mathrm{sa}}, A \mapsto Q(A)=\sum_{n=1}^{N} \alpha_{n} a\left(u_{n}\right)^{*} a\left(u_{n}\right)$, which has the following
properties: properties:

$$
\begin{align*}
& Q(A)+Q(B)=Q(A+B), \tag{1.1}\\
& {\left[Q(A), a(f)^{*}\right]=a(A f)^{*}} \tag{1.2}\\
& i[Q(A), Q(B)]=Q(i[A, B]) . \tag{1.3}
\end{align*}
$$

They showed in particular that the map $A \mapsto Q(A)$ extends to all s.a. trace-class operators on \mathscr{H} and by complexification to all trace-class operators on \mathscr{H} (see also Araki [2]).

Let us now consider $\pi_{T}(\mathscr{H}(\mathscr{H}))$ and put

$$
\begin{equation*}
Q_{T}(A)=\pi_{T}(Q(A))-\omega_{T}(Q(A)) \tag{1.4}
\end{equation*}
$$

where A is a s.a. finite rank operator, i.e. $\left(\Omega_{T}, Q_{T}(A) \Omega_{T}\right)=0$. One easily verifies that $\omega_{T}(Q(A))=\operatorname{tr}(T A)$. For convenience we put $\pi_{T}(a(f))=a_{T}(f)$. Equations (1.1)-(1.3) now imply

$$
\begin{align*}
& Q_{T}(A)+Q_{T}(B)=Q_{T}(A+B) \tag{1.5}\\
& {\left[Q_{T}(A), a_{T}(f)^{*}\right]=a_{T}(A f)^{*}} \tag{1.6}\\
& i\left[Q_{T}(A), Q_{T}(B)\right]=Q_{T}(i[A, B])-2 \operatorname{Im} \operatorname{tr}(T A B) 1 \tag{1.7}
\end{align*}
$$

A simple calculation gives

$$
\begin{equation*}
\left(\Omega_{T}, Q_{T}(A) Q_{T}(B) \Omega_{T}\right)=\operatorname{tr}(T A(1-T) B) \tag{1.8}
\end{equation*}
$$

which suggests an alternative form of (1.7)

$$
\begin{equation*}
i\left[Q_{T}(A), Q_{T}(B)\right]=Q_{T}(i[A, B])-2 \operatorname{Im} \operatorname{tr}(T A(1-T) B) 1 \tag{1.9}
\end{equation*}
$$

(observe that $\operatorname{tr}(T A T B)$ is real). Let us put $W_{T}(A)=e^{i Q_{T}(A)}$; then $W_{T}(s A), s \in \mathbb{R}$, is a unitary one-parameter group on \mathscr{H}_{T}. Equations (1.6) and (1.9) now imply that

$$
\begin{align*}
& a_{T}\left(e^{i s A} f\right)=W_{T}(s A) a_{T}(f) W_{T}(s A)^{-1} \tag{1.10}\\
& W_{T}(A) W_{T}(B) W_{T}(A)^{-1}=W_{T}\left(e^{i A} B e^{-i A}\right) e^{i b_{T(A, B)}} \tag{1.11}\\
& b_{T}(t A, B)=-2 \operatorname{Im} \int_{0}^{t} \operatorname{tr}\left(T A(I-T) e^{i s A} B e^{-i s A}\right) d s \tag{1.12}
\end{align*}
$$

Here we have used the fact that $\pi_{T}(\mathscr{H}(\mathscr{H}))^{\prime \prime}$ is a factor (see Powers and Størmer [3]) to conclude that $b_{T}(A, B)$ is a real number. The one-parameter group property of $W_{T}(t A)$ implies that $b_{T}\left(\left(t_{1}+t_{2}\right) A, B\right)=b_{T}\left(t_{1} A, B\right)+b_{T}\left(t_{2}, e^{i t_{1} A} B e^{-i t_{1} A}\right)$, which is the cocycle equation. Equation (1.11) gives $W_{T}(t A) Q_{T}(B) W_{T}(t A)^{-1}=$ $Q_{T}\left(e^{i t A} B e^{-i t A}\right)+b_{T}(t A, B)$ i.e. (1.9) implies $(d / d t) b_{T}(t A, B)=-2 \operatorname{Im} \operatorname{tr}(T A(I-T) B)+$ $b_{T}(t A, i[A, B])$ with the initial condition $b_{T}(0, B)=0$. The solution is given by (1.12).

In this paper we show that the mapping $A \rightarrow W_{T}(s A)$ can be extended to $O_{T}(\mathscr{H})=$ $\left\{A \in B(\mathscr{H})_{\mathrm{sa}} ; \operatorname{tr}(T A(1-T) A)<\infty\right\}$ and such that $W_{T}(s A)$ is a strongly continuous unitary one-parameter group on \mathscr{H}_{T} fulfilling (1.10) and (1.11). Stones theorem then ensures the existence of a s.a. operator $Q_{T}(A)$ such that $W_{T}(s A)=e^{i s Q_{T}(A)}$.

We furthermore construct a domain \mathscr{D}_{T} in \mathscr{H}_{T} such that $Q_{T}(A) \mathscr{D}_{T} \subset \mathscr{D}_{T}$ for all $A \in O_{T}(\mathscr{H})$ and the restriction of $Q_{T}(A)$ to \mathscr{D}_{T} is essentially s.a. Formulas (1.5), (1.6), and (1.9) hold on \mathscr{D}_{T} and (1.8) hold for all $A, B \in O_{T}(\mathscr{H})$.

We shall also briefly discuss the ${ }^{*}$-algebras generated by the complexified operators $Q_{T}(A)$.

In a second paper we apply these results to quantum field theory. In particular we show how the Luttinger, Thirring and Schwinger models fit into this framework.

2. Quasi-free Representations in Terms of the Fock-Representation

For later convenience we review some well-known properties of quasi-free states and representations (see for example [2]).

Let γ_{t} denote the gauge-automorphism group of $\mathfrak{A}(\mathscr{H})$ whose action on $a(f)$ is given by $\gamma_{t}(a(f))=a\left(e^{i t} f\right)$. The quasi-free state $\omega_{T}\left(T \in B(\mathscr{H})_{\mathrm{sa}}, 0 \leqq T \leqq I\right)$ is gauge-invariant, i.e. invariant under the transposed action of γ_{t}.
Definition 2.1. Let $U_{T}(t)$ denote the unitary group on \mathscr{H}_{T} implementing the gaugeautomorphism γ_{t} of $\pi_{T}(\mathscr{H}(\mathscr{H}))$ and leaving Ω_{T} invariant, i.e.

$$
\begin{equation*}
\pi_{T}\left(\gamma_{t}(x)\right)=U_{T}(t) \pi_{T}(x) U_{T}(t)^{-1}, \quad U_{T}(t) \Omega_{T}=\Omega_{T} \tag{2.1}
\end{equation*}
$$

In the case when T is a projection $T=P$, then ω_{P} is a pure state and π_{P} is irreducible. A state ω_{T} of $\mathfrak{A l}(\mathscr{H})$ can always be expressed as a restriction of a pure state $\omega_{P_{T}}$ of $\mathfrak{A}(\mathscr{H} \oplus \mathscr{H})$ with P_{T} given by

$$
P_{T}=\left(\begin{array}{cc}
T & T^{\frac{1}{2}}(I-T)^{\frac{1}{2}} \tag{2.2}\\
T^{\frac{1}{2}}(I-T)^{\frac{1}{2}} & I-T
\end{array}\right)
$$

and

$$
\begin{equation*}
\omega_{T}\left(a\left(f_{n}\right)^{*} \ldots a\left(g_{m}\right)\right)=\omega_{P_{T}}\left(a\left(f_{n} \oplus 0\right)^{*} \ldots a\left(g_{m} \oplus 0\right)\right) \tag{2.3}
\end{equation*}
$$

Remark 2.2. One can identify $\mathscr{H}_{T}, \pi_{T}(\mathscr{\mathscr { U }}(\mathscr{H}))$ and Ω_{T} with a subspace of $\mathscr{H}_{P_{T}}$, $\pi_{P_{T}}(\mathscr{Q}(\mathscr{H} \oplus O))$ and $\Omega_{P_{T}}$ respectively. The commutant $\pi_{T}(\mathscr{H}(\mathscr{H}))^{\prime}$ is then identified with a part of $U_{P_{T}}(\pi) \pi_{P_{T}}(\mathscr{H}(O \oplus \mathscr{H}))^{\prime \prime}$.
Definition 2.3. Let $\mathscr{F}(\mathscr{H})$ denote the anti-symmetric Fock-space over \mathscr{H}, i.e. $\mathscr{F}(\mathscr{H})=\bigoplus_{n=0}^{\infty} \mathscr{H}_{n}^{a}$ with $\mathscr{H}_{0}^{a}=\mathbb{C}, \mathscr{H}_{1}^{a}=\mathscr{H}$, and \mathscr{H}_{n}^{a} is the antisymmetric part of $\otimes^{n} \mathscr{H}$. The Fock-vacuum $\Omega=\bigoplus_{n=0}^{\infty} \Omega_{n}$ is given by $\Omega_{0}=1, \Omega_{n}=0$ for $n \geqq 1$. Let furthermore $a_{0}(f)$ denote the Fock-representation in $\mathscr{F}(\mathscr{H})$ of $a(f) \in \mathfrak{W}(\mathscr{H})$ i.e. $a_{0}(f) \Omega=0, \forall f \in \mathscr{H}$.

The quasi-free state ω_{0} is usually called the Fock-state and one can identify $\mathscr{H}_{0}, \pi_{0}(a(f))$ and Ω_{0} with $\mathscr{F}(\mathscr{H}), a_{0}(f)$ and Ω respectively.
Definition 2.4. Let P be an orthogonal projection operator on \mathscr{H} and J a conjugation commuting with P, i.e. $J^{2}=1,\langle J f, J g\rangle=\langle g, f\rangle$ for $f, g \in \mathscr{H}$ and $[J, P]=0$. Let us then define

$$
\begin{equation*}
a_{P}(f)=a_{0}((I-P) f)+a_{0}(J P f)^{*}, \quad f \in \mathscr{H} . \tag{2.4}
\end{equation*}
$$

It is easy verified that $a_{P}(f)$ gives a representation of $a(f) \in \mathscr{H}(\mathscr{H})$ in Fockspace $\mathscr{F}(\mathscr{H})$ and one can identify $\mathscr{H}_{P}, \pi_{P}(a(f))$ and Ω_{P} with $\mathscr{F}(\mathscr{H}), a_{P}(f)$ and Ω respectively.

3. On Innerness of One-Particle *-Automorphisms in $\pi_{T}(\mathfrak{H}(\mathscr{H}))^{\prime \prime}$

In the introduction we considered the map $A \rightarrow W_{T}(s A)$ of s.a. finite-rank operators on \mathscr{H} into strongly continuous one parameter groups in $\pi_{T}(\mathscr{H}(\mathscr{H}))$ fulfilling (1.10) and (1.11).

Definition 3.1. Let $T \in B(\mathscr{H})_{\mathrm{sa}}$ such that $0 \leqq T \leqq I$ and put $O_{T}(\mathscr{H})=\left\{A \in B(\mathscr{H})_{\mathrm{sa}}\right.$; $\operatorname{tr}(T A(1-T) A)<\infty\} . O_{T}(\mathscr{H})$ is a real linear vector space. We shall call $O_{T}(\mathscr{H})$ the vector space of one-particle observables.

Remark 3.2. If $A, B \in O_{T}(\mathscr{H})$ then $i[A, B] \in O_{T}(\mathscr{H})$ and $e^{i A} B e^{-i A} \in O_{T}(\mathscr{H})$.
Theorem 1. There exists a map $A \mapsto W_{T}(s A)$ of $O_{T}(\mathscr{H})$ into $\pi_{T}(\mathscr{H}(\mathscr{H}))^{\prime \prime}$ such that $W_{T}(s A)$ is a strongly continuous unitary one-parameter group, fulfilling (we put $\left.a_{T}(f)=\pi_{T}(a(f))\right)$

$$
\begin{equation*}
\left.a_{T}\left(e^{i s A} f\right)\right)=W_{T}(s A) a_{T}(f) W_{T}(s A)^{-1}, \quad \forall f \in \mathscr{H} . \tag{3.1}
\end{equation*}
$$

$\Omega_{T} \in D\left((d / d s) W_{T}(s A)_{s=0}\right)$ and $W_{T}(s A)$ are uniquely determined if we require that

$$
\begin{equation*}
\left(\Omega_{T},(d / d s) W_{T}(s A)_{s=0} \Omega_{T}\right)=0 \tag{3.2}
\end{equation*}
$$

For $A, B \in O_{T}(\mathscr{H})$ the following identity holds

$$
\begin{align*}
& W_{T}(A) W_{T}(B) W_{T}(A)^{-1}=W_{T}\left(e^{i A} B e^{-i A}\right) e^{i b_{T}(A, B)} \tag{3.3}\\
& b_{T}(t A, B)=-2 \operatorname{Im} \int_{0}^{t} \operatorname{tr}\left(T A(I-T) e^{i s A} B e^{-i s A}\right) d s \tag{3.4}
\end{align*}
$$

The proof of this theorem will be divided into several lemmas. We will first prove it when T is a projection P and then reduce the general case to this by a method indicated in the previous section.

Let P denote an orthogonal projection on \mathscr{H} and decompose $A \in O_{P}(\mathscr{H})$ as follows

$$
A=A_{0}+A_{1}, A_{0}=(1-P) A(1-P)+P A P, A_{1}=P A(1-P)+(1-P) A P
$$

i.e. $\left[P, A_{0}\right]=0$ and A_{1} is Hilbert-Schmidt (H.S.).

Lemma 3.3. Let $U(s)=e^{-i s A_{0}} e^{i s A}$. The following representation of $U(s)$ holds:

$$
\begin{equation*}
U(s)=\sum_{n=0}^{\infty} R_{n}(s) \tag{3.5}
\end{equation*}
$$

with $R_{0}(s)=I, R_{n}(s)=i \int_{0}^{s} A_{1}\left(s^{\prime}\right) R_{n-1}\left(s^{\prime}\right) d s^{\prime}, n=1,2, \ldots, A_{1}(s)=e^{-i s A_{0}} A_{1} e^{i s A_{0}}$ and the convergence is with respect to H.S. norm and is uniform in s for compact subsets of \mathbb{R}.

Proof. Differentiation and integration of $U(s)$ gives

$$
\begin{equation*}
U(s)=1+i \int_{0}^{s} A_{1}\left(s^{\prime}\right) U\left(s^{\prime}\right) d s^{\prime} . \tag{3.6}
\end{equation*}
$$

Iteration of (3.6) in N steps gives $U_{N}(s)=\sum_{n=0}^{N} R_{n}(s)$. The H.S. convergence in the limit follows from the following estimates

$$
\begin{align*}
\left\|R_{1}(s)\right\|_{2} \leqq & \left\|A_{1}\right\|_{2}|s|,\left\|R_{2}(s)\right\|_{2} \leqq\left\|A_{1}\right\| \int_{0}^{s}\left\|R_{1}\left(s^{\prime}\right)\right\|_{2} d s^{\prime} \leqq\left\|A_{1}\right\|_{2}^{2} / 2! \\
& \cdot|s|^{2},\left\|R_{n}(s)\right\|_{2} \leqq\left(\left\|A_{1}\right\|_{2}^{n} / n!\right)|s|^{n} \tag{3.7}
\end{align*}
$$

where $\left\|\|_{2}\right.$ denotes the H.S. norm
Remark 3.4. It follows that $P e^{i s A}(1-P)$ is H.S. $\forall s \in \mathbb{R}$, i.e. $P e^{i s A}(1-P)=e^{i s A}$ 。 $P U(s)(1-P)$ which obviously is H.S.

As mentioned in the previous section one can identify $\mathscr{H}_{P}, \pi_{P}(a(f))$ and Ω_{P} with $\mathscr{F}(\mathscr{H}), a_{P}(f)$ and Ω respectively. We shall do this in the following. Equation (3.1) then takes the form

$$
\begin{equation*}
a_{P}\left(e^{i s A} f\right)=W_{P}(s A) a_{P}(f) W_{P}(s A)^{-1} \tag{3.8}
\end{equation*}
$$

The defining equation for $a_{P}(f)$, (2.4) implies that (3.8) is equivalent to

$$
\begin{equation*}
a_{0}(L(s) f)+a_{0}(M(s) f)^{*}=W_{P}(s A) a_{0}(f) W_{P}(s A)^{-1} \tag{3.9}
\end{equation*}
$$

where $L(s)$ is complex linear, $M(s)$ is complex anti-linear and they are explicitly given by $L(s)=L_{1}(s)+L_{2}(s), M(s)=M_{1}(s)+M_{2}(s)$ with

$$
\begin{gather*}
L_{1}(s)=(1-P) e^{i s A}(1-P), \quad L_{2}(s)=P J e^{i S A} J P \tag{3.10}\\
M_{1}(s)=J P e^{i S A}(1-P), \quad M_{2}(s)=(1-P) e^{i S A} J P \tag{3.11}
\end{gather*}
$$

We note if there exists a unitary operator $W_{P}(s A)$ in $\mathscr{F}(\mathscr{H})$ such that (3.9) holds then

$$
\begin{equation*}
\left[a_{0}(L(s) f)+a_{0}(M(s) f)^{*}\right] W_{P}(s A) \Omega=0 \tag{3.12}
\end{equation*}
$$

for all $f \in \mathscr{H}$.
Theorem 1 will be proved by actually first constructing $\chi_{s}=W_{P}(s A) \Omega$ explicitly. This method of proof goes back to Friedrichs [4] (see also Shale and Stinespring [5] and Araki [2]).

Lemma 3.5. There is an $\chi_{s} \in \mathscr{F}(\mathscr{H})$ such that for small s

$$
\begin{equation*}
\left[a_{0}(L(s) f)+a_{0}(M(s) f)^{*}\right] \chi_{s}=0, \quad \forall f \in \mathscr{H} . \tag{3.13}
\end{equation*}
$$

Proof. We first construct a vector χ_{s} such that (3.13) holds for all $f \in(1-P) \mathscr{H}$, and then we show that this vector solves (3.13) for all $f \in \mathscr{H}$. For $f \in(1-P) \mathscr{H}$ (3.13) takes the form

$$
\begin{equation*}
\left[a_{0}\left(L_{1}(s) f\right)+a_{0}\left(M_{1}(s) f\right)^{*}\right] \chi_{s}=0, \quad \forall f \in(1-P) \mathscr{H} \tag{3.14}
\end{equation*}
$$

The operator $L_{1}(s):(1-P) \mathscr{H} \rightarrow(1-P) \mathscr{H}$ is easily seen to have a bounded inverse (at least for small s). This means that (3.14) is equivalent to

$$
\begin{equation*}
\left[a_{0}(g)+a_{0}\left(M_{1}(s) L_{1}(s)^{-1} g\right)^{*}\right] \chi_{s}=0, \quad \forall g \in(1-P) \mathscr{H} . \tag{3.15}
\end{equation*}
$$

$M_{1}(s)$ is H.S. by Remark 3.4; hence $K(s) \equiv M_{1}(s) L_{1}(s)^{-1}$ also is H.S. and therefore has a spectral representation

$$
\begin{equation*}
K(s) g=\sum_{n=1}^{\infty} \lambda_{n}(s) v_{n}(s)\left\langle g, u_{n}(s)\right\rangle, \quad \lambda_{n}(s) \geqq 0 \tag{3.16}
\end{equation*}
$$

where $\sum_{n=1}^{\infty} \lambda_{n}(s)^{2}<\infty$ and $\left\{v_{n}(s)\right\}_{n=1}^{\infty}, \quad\left\{u_{n}(s)\right\}_{n=1}^{\infty}$ are orthonormal sets in $P \mathscr{H}$, $(1-P) \mathscr{H}$ respectively. Let us define $\chi_{s}^{N} \in \mathscr{F}(\mathscr{H})$ by

$$
\begin{equation*}
\chi_{s}^{N}=\prod_{n=1}^{N} e^{-\lambda_{n}(s) a_{0}\left(u_{n}(s)\right)^{*} a_{0}\left(v_{n}(s)\right)^{*}} \Omega \tag{3.17}
\end{equation*}
$$

One easily verifies that (3.15) holds with $\chi_{s}=\chi_{s}^{N}$ for all $g \in \operatorname{span}\left\{u_{n}(s)\right\}_{n=1}^{N}$. A simple calculation gives

$$
\begin{equation*}
\left\|\chi_{s}^{N_{1}}-\chi_{s}^{N_{2}}\right\|^{2}=\left|\prod_{n=1}^{N_{1}}\left(1+\lambda_{n}(s)^{2}\right)-\prod_{n=1}^{N_{2}}\left(1+\lambda_{n}(s)^{2}\right)\right| \tag{3.18}
\end{equation*}
$$

which shows that $s-\lim _{N \rightarrow \infty} \chi_{s}^{N}$ exists in $\mathscr{F}(\mathscr{H})$. Let us then define

$$
\begin{align*}
& \chi_{s}=c(s) \prod_{n=1}^{\infty} e^{-\lambda_{n}(s) a_{0}\left(u_{n}(s)\right)^{*} a_{0}\left(v_{n}(s)\right)^{*}} \Omega, \tag{3.19}\\
& c(s)=e^{i \varphi_{s}} \prod_{n=1}^{\infty}\left(1+\lambda_{n}(s)^{2}\right)^{-\frac{1}{2}}, \quad \varphi_{s} \in \mathbb{R}, \tag{3.20}
\end{align*}
$$

then χ_{s} is a normalized vector fulfilling (3.15) for all $g \in \operatorname{span}\left\{u_{n}(s)\right\}_{n=1}^{\infty}$. If $(1-P) \not{H} \ni$ $g \perp \operatorname{span}\left\{u_{n}(s)\right\}_{n=1}^{\infty}$ it easily follows that (3.15) holds and (3.14) also holds. If one makes an analogous construction for $f \in P \mathscr{H}$ one just has to make the replacement $L_{1}(s) \rightarrow L_{2}(s), M_{1}(s) \rightarrow M_{2}(s)$. A formula similar to (3.19) is then obtained. To compare the two formulas we anti-commute the creation operators in one of the formulas. The two vectors are now seen to coincide (up to a phase) because

$$
M_{1}(s) L_{1}(s)^{-1}=-\left(M_{2}(s) L_{2}(s)^{-1}\right)^{*}
$$

which follows from (3.10) and (3.11).
Lemma 3.6. There exists a strongly continuous unitary one-parameter group $V(s)$, unique up to a phase $e^{i \varphi s}, \varphi \in \mathbb{R}$ such that $a_{P}\left(e^{i s A} f\right)=V(s) a_{P}(f) V(s)^{-1}, \forall f \in \mathscr{H}$.

Proof. Let α_{s} denote the one-parameter *-automorphism group of $\mathfrak{H}(\mathscr{H})$ whose action on $a(f)$ is given by $\alpha_{s}(s(f))=a\left(e^{i s A} f\right)$ and let us define an operator $V(s)$ on $\pi_{P}(\mathfrak{H}(\mathscr{H})) \Omega$ by

$$
\begin{equation*}
V(s) \pi_{P}(x) \Omega=\pi_{P}\left(\alpha_{s}(x)\right) \chi_{s}, \quad x \in \mathfrak{A}(\mathscr{H}) \tag{3.21}
\end{equation*}
$$

It is easily verified that $V(s)$ defines an isometry by using that $a_{P}\left(e^{i s A} f\right) \chi_{s}=0$, $\forall f \in(1-P) \mathscr{H}$ and $a_{P}\left(e^{i s A} g\right)^{*} \chi_{s}=0, \forall g \in P \mathscr{H}$, which follows from Lemma 3.5. The irreducibility of the representation implies that the range of $V(s)$ is dense in $\mathscr{F}(\mathscr{H})$, i.e. $V(s)$ extends to a unitary operator on $\mathscr{F}(\mathscr{H})$. Equation (3.21) implies that $a_{P}\left(e^{i s A} f\right)=V\left(s\left(a_{P}(f) V(s)^{-1}\right.\right.$. The irreducibility implies that $V(s)$ is unique up to a phase, which is just the phase in formula (3.20). It follows from a theorem by Kadison [6] that this phase can be chosen such that $V(s)$ becomes a strongly continuous one-parameter group of unitaries and we are then left with a phase $e^{i \varphi_{s}}, \varphi \in \mathbb{R}$.

We shall from now on assume that $e^{i \varphi_{s}}$ in (3.20) is chosen such that Lemma 3.6 holds.

Lemma 3.7. The phase φ_{s} is analytic in a neighbourhood of zero and $\Omega \in \mathscr{D}((d /$ $\left.d s) V(s)_{s=0}\right)$ and provided $\varphi_{0}^{\prime}=0$ (3.2) holds with $W_{P}(s A)=V(s)$.
Proof. We first note that $c(s)$ in (3.20) can be extended to an analytic function in a neighbourhood of zero, i.e. consider

$$
\begin{equation*}
(\psi, V(s) \Omega)=c(s)\left(\psi, \prod_{n=1}^{\infty} e^{-\lambda_{n}(s) a_{0}\left(u_{n}(s)\right)^{*} a_{0}\left(v_{n}(s)\right)^{*} \Omega}\right) \tag{3.22}
\end{equation*}
$$

where ψ is an analytic vector of the generator of $V(s)$.

$$
\begin{aligned}
& \text { But } \\
& \begin{array}{l}
\sum_{n=1}^{\infty} e^{-\lambda_{n}(s) a_{0}\left(u_{n}(s)\right)^{*} a_{0}\left(v_{n}(s)\right)^{*}} \Omega \\
=e^{-\sum \lambda_{n}(s) a_{0}\left(u_{n}(s)\right)^{*} a_{0}\left(v_{n}(s)\right)^{*}} \Omega \equiv e^{-\mathscr{K}(s)} \Omega=\Sigma(-\mathscr{K}(s))^{k} \Omega / k!
\end{array}
\end{aligned}
$$

and $\mathscr{K}(\mathrm{s})^{k} \Omega \in \mathscr{H}_{a}^{2 k} C \mathscr{F}(\mathscr{H})$ is just the appropriately antisymmetrized tensor product of k copies of $K(s)$.

The fact that $K(s)$ has an analytical extension in a neighbourhood of zero then shows that $c(s)$ is analytic, which implies the first statement in the lemma. Let us now compute $\left.(d / d s) V(s) \Omega\right|_{s=0}$ explicitly and verify that it is a vector in $\mathscr{F}(\mathscr{H})$. We have

$$
\begin{equation*}
\left.(d / d s) K(s)\right|_{s=0} \equiv K=J P i A(1-P), \tag{3.23}
\end{equation*}
$$

which is H.S. and therefore has a spectral representation

$$
\begin{equation*}
K g=\sum_{n=1}^{\infty} \lambda_{n} v_{n}\left\langle g, u_{n}\right\rangle, \quad \lambda_{n} \geqq 0 \tag{3.24}
\end{equation*}
$$

with $\Sigma \lambda_{n}^{2}<\infty$ and $\left\{v_{n}\right\}_{n=1}^{\infty},\left\{u_{n}\right\}_{n=1}^{\infty}$ are orthogonal sets in $P \mathscr{H},(1-P) \mathscr{H}$ respectively. Equation (3.19) then gives

$$
\begin{equation*}
\left.(d / d s) V(s) \Omega\right|_{s=0}=i \varphi_{0}^{\prime} \Omega-\sum_{n=1}^{\infty} \lambda_{n} a_{0}\left(u_{n}\right)^{*} a_{0}\left(v_{n}\right)^{*} \Omega \tag{3.25}
\end{equation*}
$$

which clearly is a vector in $\mathscr{F}(\mathscr{H})$ and by choosing $\varphi_{0}^{\prime}=0$ we find that $(\Omega,(d)$ $d s) V(s) \Omega)_{s=0}=0$.

Lemma 3.8. Let us define a mapping $A \mapsto Q_{P}(A)$ of $O_{P}(\mathscr{H})$ into s.a. operators on $\mathscr{F}(\mathscr{H})$ by $W_{P}(s A)=e^{i s Q_{P}(A)}$. Then for $A_{1}, A_{2} \in O_{P}(\mathscr{H})$ we have $Q_{P}\left(A_{2}\right) \Omega \in \mathscr{D}\left(Q_{P}\left(A_{1}\right)\right)$ and

$$
\begin{equation*}
\left(\Omega, Q_{P}\left(A_{1}\right) Q_{P}\left(A_{2}\right) \Omega\right)=\operatorname{tr}\left(T A_{1}(1-T) A_{2}\right) \tag{3.26}
\end{equation*}
$$

Proof. We note that (3.25) implies that

$$
\begin{equation*}
i Q_{P}\left(A_{2}\right) \Omega=-\Sigma \lambda_{2 n} a_{P}\left(u_{2 n}\right) * a_{P}\left(J v_{2 n}\right) \Omega \tag{3.27}
\end{equation*}
$$

If we apply $W_{P}\left(s A_{1}\right)$ to (3.27) we get

$$
\begin{equation*}
i W_{P}\left(s A_{1}\right) Q_{P}\left(A_{2}\right) \Omega=-\Sigma \lambda_{2 n} a_{P}\left(e^{i S A_{1}} u_{2 n}\right) * a_{P}\left(e^{i s A_{1}} J v_{2 n}\right) W_{P}\left(s A_{1}\right) \Omega \tag{3.28}
\end{equation*}
$$

The s-derivative at $s=0$ is easily seen to exist in $\mathscr{F}(\mathscr{H})$. In fact we get

$$
\begin{align*}
& -Q_{P}\left(A_{1}\right) Q_{P}\left(A_{2}\right) \Omega=-\Sigma \lambda_{2 n} a_{P}\left(i A_{1} u_{2 n}\right) * a_{0}\left(v_{2 n}\right) * \Omega-\Sigma \lambda_{2 n} a_{0}\left(u_{2 n}\right)^{*} \\
& a_{P}\left(i A_{1} J v_{2 n}\right) \Omega+\Sigma \Sigma \lambda_{1 m} \lambda_{2 n} a_{0}\left(u_{1 m}\right) * a_{0}\left(v_{1 m}\right) * a_{0}\left(u_{2 n}\right) * a_{0}\left(v_{2 n}\right) * \Omega \tag{3.29}
\end{align*}
$$

Equation (3.30) finally gives

$$
\begin{align*}
\left(\Omega, Q_{P}\left(A_{1}\right) Q_{P}\left(A_{2}\right) \Omega\right) & =\Sigma \lambda_{2 n}\left\langle J i A_{1} u_{2 n}, v_{2 n}\right\rangle=i \overline{\operatorname{tr}\left(A_{1} J K_{2}\right)} \\
& =\operatorname{tr}\left(P A_{1}(1-P) A_{2}\right) \tag{3.30}
\end{align*}
$$

Lemma 3.9. If $A, B \in O_{P}(\mathscr{H})$ then

$$
\begin{equation*}
W_{P}(t A) W_{P}(s B) W_{P}(t A)^{-1}=W_{P}\left(e^{i t A} S B e^{-i t A}\right) e^{i b(t A, s B)} \tag{3.31}
\end{equation*}
$$

where $b_{P}(t A, s B)=-2 \operatorname{Im} \int_{0}^{t} \operatorname{tr}\left(T A(I-T) e^{i A r} s B e^{-i A r}\right) d r$.

Proof. Equation (3.31) follows directly from (3.1) and the irreducibility of π_{p}. By taking the vacuum expectation value of (3.31) and differentiating with respect to t and s at $t=s=0$ we get

$$
\begin{equation*}
(d / d t) b_{P}(t A, B)_{t=0}=i\left(\Omega,\left[Q_{P}(A), Q_{P}(B)\right] \Omega\right)=-2 \operatorname{Im} \operatorname{tr}(T: A(I-T) B) \tag{3.32}
\end{equation*}
$$

The cocycle equation can now be solved as in the introduction.
We have thus completed the proof of Theorem 1 when T is an orthogonal projection. In order to prove the general case of a $T: 0 \leqq T \leqq I$ we recall Remark 2.2 which says that one can identify \mathscr{H}_{T} with a subspace of $\mathscr{F}(\mathscr{H} \oplus \mathscr{H}), \pi_{T}(\mathscr{U}(\mathscr{H}))$ with $\pi_{P_{T}}(\mathfrak{H}(\mathscr{H} \oplus O))$ and $\pi_{T}(\mathscr{H}(\mathscr{H}))^{\prime}$ with a part of $U_{P_{T}}(\pi) \pi_{P_{T}}(\mathscr{H}(O \oplus \mathscr{H}))^{\prime \prime}$.

Let us now identify $A \in O_{T}(\mathscr{H})$ with $A \oplus O \in O_{P_{T}}(\mathscr{H} \oplus \mathscr{H})$. One easily verifies that

$$
\begin{equation*}
\operatorname{tr}\left(P_{T}(A \oplus O)\left(1-P_{T}\right)(B \oplus O)\right)=\operatorname{tr}(T A(1-T) B) \tag{3.33}
\end{equation*}
$$

Let α_{s} denote the one-parameter *-automorphism group of $\mathfrak{A}(\mathscr{H} \oplus \mathscr{H})$ whose action on $a(f \oplus g)$ is given by $\alpha_{s}(a(f \oplus g))=a\left(e^{\text {is.A. }} f \oplus g\right)$, i.e. $\mathfrak{H}(O \oplus \mathscr{H})$ is left invariant. We have thus reduced the general case to the case of a projection and now we identify $W_{T}(A)$ with $W_{P_{T}}(A \oplus O)$. Finally $W_{T}(A)$ belongs to $\pi_{T}(\mathscr{H}(\mathscr{H}))^{\prime \prime}$ because the automorphism α_{s} leaves $\pi_{T}(\mathscr{H}(\mathscr{H}))^{\prime}$ invariant in our identifications. The uniqueness follows from the factor nature which was proved by Powers and Størmer [3] and which also is obvious in the explicit representation in Fockspace given above. This completes the proof of Theorem 1.

4. Some Properties of the Quantization $\operatorname{Map} A \rightarrow Q_{T}(A)$

Let $A \in O_{T}(\mathscr{H})$ and consider the map $A \rightarrow W_{T}(s A)$ described in Theorem 1. The generator of the strongly continuous unitary one-parameter group $\left\{W_{T}(s A)\right\}_{s \in \mathbb{R}}$ is denoted by $Q_{T}(A)$; i.e., $W_{T}(s A)=e^{i s Q_{T}(A)}$.

By $\mathfrak{U}_{0}(\mathscr{H})$ we denote the *-algebra generated by $a(f), f \in \mathscr{H}$, and put $\mathscr{D}_{T}^{0}=$ $\pi_{T}\left(\mathcal{H}_{0}(\mathscr{H})\right) \Omega_{T}$. It is clear that $\overline{\mathscr{D}_{T}^{0}}=\mathscr{H}_{T}$.

Lemma 4.1. $\mathscr{D}_{T}^{0} \subset \mathscr{D}\left(Q_{T}(A)\right)$ for all $A \in O_{T}(\mathscr{H})$. Furthermore $Q_{T}\left(A_{n-1}\right) \ldots Q_{T}\left(A_{1}\right) \mathscr{D}_{T}^{0} \mathrm{C}$ $\mathscr{D}\left(Q_{T}\left(A_{n}\right)\right)$ for all $A_{1}, \ldots, A_{n} \in O_{T}(\mathscr{H}), n=2,3, \ldots$

Proof. Lemma 3.7 and Lemma 3.8 proves that $\Omega_{T} \in \mathscr{D}\left(Q_{T}(A)\right)$ and that $Q_{T}\left(A_{1}\right) \Omega_{T} \in$ $\mathscr{D}\left(Q_{T}\left(A_{2}\right)\right)$ if we make the identification of $W_{T}(s A)$ with $W_{P_{T}}(s A \oplus O)$. A direct generalization of this shows that $Q_{T}\left(A_{n-1}\right) \ldots Q_{T}\left(A_{1}\right) \Omega_{T} \subset \mathscr{D}\left(Q_{T}\left(A_{n}\right)\right)$. The extension of this to the whole of \mathscr{D}_{T}^{0} follows easily by remembering equation (3.1) and the boundedness of A_{1}, \ldots, A_{n}.

Definition 4.2. Let \mathscr{D}_{T} denote the domain in \mathscr{H}_{T} obtained by acting with monomials $\prod_{i=1}^{n} Q_{T}\left(A_{i}\right), A_{1}, \ldots, A_{n} \in O_{T}(\mathscr{H})$ on $\mathscr{D}_{T}^{0} n=1,2, \ldots$, i.e. $Q_{T}(A) \mathscr{D}_{T} \subset \mathscr{D}_{T}$ for all $A \in O_{T}(\mathscr{H})$.

Theorem 2. The map $A \rightarrow Q_{T}(A)$ of $O_{T}(\mathscr{H})$ into self-adjoint operators affiliated with $\pi_{T}(\mathfrak{H}(\mathscr{H}))^{\prime \prime}$ has the following properties: The restriction of $Q_{T}(A)$ to \mathscr{D}_{T} is essentially self-adjoint, and

$$
\begin{align*}
& \overline{Q_{T}(A)+Q_{T}(B)}=Q_{T}(A+B), \tag{4.1}\\
& {\left[\overline{\left[Q_{T}(A), a_{T}(f)^{*}\right]}=a_{T}(A f)^{*},\right.} \tag{4.2}\\
& \overline{i\left[Q_{T}(A), Q_{T}(B)\right]}=Q_{T}(i[A, B])-2 \operatorname{Im} \operatorname{tr}(T A(1-T) B) 1 . \tag{4.3}
\end{align*}
$$

The last term in (4.3) will be referred to as the Schwinger term. These relations are generalizations of (1.5), (1.6) and (1.9).

Proof. Let $\varphi \in \mathscr{H}_{T}, \psi \in \mathscr{D}_{T}$ and consider $\left(\varphi, W_{T}(s A) \psi\right)$. By doing computations similar to the ones in the proof of Lemma 3.8 one can verify that ($\left.\varphi, W_{T}(s A) \psi\right)$ has an analytical extension around $s=0$. Thus ψ is an analytical vector for $Q_{T}(A)$, i.e. \mathscr{D}_{T} is a dense set of analytic vectors and the restriction of $Q_{T}(A)$ to \mathscr{D}_{T} is ess. s.a. by Nelson's theorem. The verification of (4.1) is done by first verifying it on Ω_{T} which is a consequence of (3.27), (3.24) and (3.23). In order to verify it on an arbitrary vector in \mathscr{D}_{T} we first note that (4.2) follows from (3.1) by differentiation at $t=0$. That (4.1) holds on \mathscr{D}_{T} then follows from (4.2). Finally (4.3) follows by letting $A \rightarrow t A, B \rightarrow s A$ in (3.3) and differentiate with respect to t and s on \mathscr{D}_{T} at $t=s=0$.
Definition 4.3. Let us for $A, B \in O_{T}(\mathscr{H})+i O_{T}(\mathscr{H})$, define

$$
\begin{align*}
& \langle A, B\rangle_{T}=\operatorname{tr}\left(T A^{*}(1-T) B\right), \tag{4.4}\\
& \gamma_{T}(A, B)=\langle A, B\rangle_{T}-\langle A, B\rangle_{1-T} . \tag{4.5}
\end{align*}
$$

For $A, B \in O_{T}(\mathscr{H})$ we easily verify that

$$
\begin{equation*}
-2 \operatorname{Im} \operatorname{tr}(T A(1-T) B)=i \gamma_{T}(A, B) \tag{4.6}
\end{equation*}
$$

i.e. if we complexify the map $A \rightarrow Q_{T}(A)$ by defining

$$
\begin{equation*}
Q_{T}(A)=Q_{T}(\operatorname{Re} A)+i Q_{T}(\operatorname{Im} A) \quad \text { on } \quad \mathscr{D}_{T} \tag{4.7}
\end{equation*}
$$

we find that (4.3) generalizes to

$$
\begin{equation*}
\left[Q_{T}(A)^{*}, Q_{T}(B)\right]=Q_{T}\left(\left[A^{*}, B\right]\right)+\gamma_{T}(A, B) \cdot 1 \tag{4.8}
\end{equation*}
$$

on \mathscr{D}_{T} for all $A, B \in O_{T}(\mathscr{H})+i O_{T}(\mathscr{H})$, and we furthermore have

$$
\begin{equation*}
Q_{T}(A)^{*} \supset Q_{T}\left(A^{*}\right) \tag{4.9}
\end{equation*}
$$

We note that $\gamma_{T}\left(A^{*}, B^{*}\right)=-\gamma_{T}(B, A)$.
Remark 4.4. Consider complex subspace \mathscr{V} of $O_{T}(\mathscr{H})+i O_{T}(\mathscr{H})$ with the property that all operators in \mathscr{V} are commuting and \mathscr{V} is invariant under adjoint operation, then (4.8) gives on \mathscr{D}_{T}

$$
\begin{equation*}
\left[Q_{T}(A)^{*}, Q_{T}(B)\right]=\gamma_{T}(A, B) 1 \tag{4.10}
\end{equation*}
$$

for all $A, B \in \mathscr{V}$. These are just the commutation relations of the self-dual $C C R$ algebra considered by Araki and Shiraishi [7], and Araki [8].

Remark 4.5. Araki [9] has discussed factorizable representations of commutation relations similar to (4.3).

Conclusions

We have considered the fermion C^{*}-algebra $\mathfrak{A}(\mathscr{H})$ over \mathscr{H} together with certain one-parameter groups of *-automorphisms of $\mathfrak{H}(\mathscr{H})$. Let A be a self-adjoint (s.a.) operator on \mathscr{H}. There exists a unique strongly continuous one-parameter *-automorphism group α_{s} of $\mathfrak{H}(\mathscr{H})$ with the property that $\alpha_{s}(a(f))=a\left(e^{i s A} f\right) f \in \mathscr{H}$.

Let ω_{T} be the gauge-invariant quasi-free state of $\mathfrak{A}(\mathscr{H})$ associated with T, $0 \leqq T \leqq I$ and let \mathscr{H}_{T}, π_{T}, and Ω_{T} be the Hilbert-space the representation and the cyclic vector associated with the GNS construction.

Let furthermore $O_{T}(\mathscr{H})$ denote the real vectorspace consisting of bounded s.a. operators A on \mathscr{H} with $\operatorname{tr}(T A(1-T) A)<\infty$.

For $A \in O_{T}(\mathscr{H})$ the automorphism α_{s} of $\mathfrak{A}(\mathscr{H})$ extends to an inner automorphism of $\pi_{T}(\mathfrak{H}(\mathscr{H}))^{\prime \prime}$. Let $W_{T}(s A)$ denote the implementing strongly continuous group. $W_{T}(s A)$ is unique up to a phase $e^{i \psi_{s}}$. Let $Q_{T}(A)$ denote the s.a. generator i.e. $W_{T}(s A)=e^{i Q_{T}(A)}$. It is shown that $\Omega_{T} \in \mathscr{D}\left(Q_{T}(A)\right)$ and the phase is then chosen such that $\left(\Omega_{T}, Q_{T}(A) \Omega_{T}\right)=0$.

For $A, B \in O_{T}(\mathscr{H})$ one gets $W_{T}(A) W_{T}(B) W_{T}(A)^{-1}=W_{T}\left(e^{i A} B e^{-i A}\right) e^{i b_{T}(A, B)}$ and there exists a dense domain $\mathscr{D}_{T} \subset \mathscr{H}_{T}$ such that $Q_{T}(A) \mathscr{D}_{T} \subset \mathscr{D}_{T}$ for all $A \in O_{T}(\mathscr{H})$ and the restriction of $Q_{T}(A)$ to \mathscr{D}_{T} is essentially s.a.

The *-algebras generated by the map $A \rightarrow W_{T}(A)$ are called observable algebras. Applications to quantum field theory will be considered in a second paper.

Acknowledgements. This paper has grown out of many discussions with George Elliott who I want to thank. H. Araki is finally acknowledged for critically reading a preliminary version of the manuscript and pointing out an error.

References

1. Araki, H., Wyss, W.: Representations of canonical anticommutation relations. Helv. Phys. Acta 37, 136 (1964)
2. Araki, H.: On quasi-free states of CAR and Bogoliubov automorphisms. Publ. RIMS Kyoto Univ. 6, 385 (1971)
3. Powers, R.T., Størmer, E.: Free states of the canonical anti-commutation relations. Commun. math. Phys. 16, 1 (1970)
4. Friedrichs,K.O.: Mathematical aspects of the quantum theory of fields. New York: WileyInterscience (1953)
5. Shale, D., Stinespring, W.F.: Spinor representations of infinite orthogonal groups. J. Math. Mech. 14, 315 (1965)
6. Kadison, R.V.: Transformations of states in operator theory and dynamics. Topology $\mathbf{3}$ (Suppl. 2), 195 (1965)
7. Araki, H., Shiraishi, M.: On quasi-free states of the canonical commutation relations (I). Publ. RIMS. Kyoto Univ. 7, 105 (1971)
8. Araki, H.: On quasi-free states of the canonical commutation relations (II). Publ. RIMS. Kyoto Univ. 7, 121 (1971)
9. Araki, H.: Factorizable representations of current algebra. Publ. RIMS. Kyoto Univ. 5, 361 (1970)

Communicated by H. Araki
Received April 5, 1976

