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Abstract. Relativistic canonical systems and their symmetries are defined and
classified within the class of canonical systems treated in a previous paper.
Their algebra of variables contains a subset of “monotone” variables which
satisfy a certain uniqueness condition and are later shown to increase strictly
in the course of the dynamical evolution of the system on all physically ac-
ceptable states. This leads to a unique space-time interpretation of relativistic
canonical systems. Finally we study space-time factorizations of such systems
and introduce the appropriate notion of states. For a certain simple class of
states the theory is shown to describe the motion of relativistic matter in
some external gravitational and electromagnetic field.

1. Introduction

In this paper we shall study a certain class of canonical systems, the general
theory of which we have developed in [1]. Let us briefly state the basic notions
and results obtained there.

A canonical system is an ordered set containing a canonical manifold M
(with canonical form €, see [2]) and a canonical vectorfield Y on M (the
kinematical vectorfield). The algebra (M) of differentiable functions on M
(these are called variables) contains a subalgebra 2, which is required to satisfy
a set of Kinematical Axioms: Under the Poisson bracket operation 2, is maximal
commutative and is mapped to itself by variables from the subset Y(2[;). Both
A, and Y(A,) have only the zero variable in common and determine the dif-
ferentiable structure on M (such sets of functions which define a differentiable
structure on M are called sufficient sets).

The Hamiltonian vectorfields generated by variables in 2 define a quotient
manifold N of integral submanifolds in M. To any variable 4 in A, there cor-
responds a unique differentiable function A* on N, and vice versa. The vector-
fields X on N are in bijective correspondence with variables Py in some submodule
of functions A, :

{Py, A}*=X(A%); Ain Ay, Pyin ¥, . (1.1)
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There exists a unique diffecomorphism of M with the cotangent bundle L*(N)
over its quotient, and the canonical structure is completely determined by the
equations:

i) {4,B}=0, (1.2)
ii) {Py, A}*=X(4%),

iii) {Py, PX1}=P[X,X1]+F(X’ Xy
for 4, Bin y; Py, Py, in A,. The function F(X, X ;) is in W, and defines a closed
differential 2-form wy on N by:

iv) F(X, X)* =X, X,).

Finally one obtains a unique nowhere degenerate symmetric tensorfield ¢
on N by:

1) g(dA*, dB*)={Y(A), B}*, (1.3)
and the kinematical vectorfield Y is given by:
i) YF)={T,F}+Y°F), Fin A,

where 2T is the function on L*(N) corresponding to g, and Y° vanishes on .

The subclass of canonical systems we study here is singled out by an additional
set of Relativistic Axioms; these systems are called relativistic canonical systems.
The most important of these axioms postulate the existence of “monotone”
variables and a certain uniqueness condition for them.

In Chapter 2 relativistic canonical systems and their symmetries are defined
and classified. By studying the trajectories defined by the kinematical vectorfield
the notion of permissible integralcurves and of a physical submanifold are intro-
duced. Monotone variables behave in a strictly monotone way along any trajectory
in a physical submanifold. They should hence be considered as time-like variables.

Finally the most important Relativistic Axiom is deduced from the postulate
that the initial value problem for the kinematical vectorfield shall admit a unique
solution for any initial surface defined by some monotone variable in the physical
submanifold. This leads to a unique space-time interpretation of relativistic
canonical systems, according to which the quotient manifold N must be considered
as the space-time of general relativity.

In Chapter 3 we study space-time factorizations, which provides some motiva-
tion for our notion of states. These are defined as positive linear functionals on
variables with compact support, which result from integration over hypersurfaces
of constant time. The differential forms required for this are called state forms.
They describe completely the motion of the matter present and define the current
vector and energy-momentum tensor of the matter. Some aspects of Y-invariant
forms are discussed. The detailed theory of state forms and the resulting equations
of motion for the classical fields will be developed in a subsequent paper.

2. Relativistic Canonical Systems and Their Symmetries

In this chapter we shall study a certain class of canonical systems, for which a
complete kinematical interpretation can be obtained. According to this inter-
pretation the quotient manifold N we have constructed in [1] will appear to be
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identical to the space-time of general relativity. These systems will be called
relativistic canonical systems. They satisfy an additional set of Relativistic Axioms,
concerning the dynamical vectorfield of the system. The concepts necessary to
formulate these axioms are introduced below; they will be discussed thoroughly
later on.

Consider the relation between functions in 2, and vectorfields on the quotient
N established by (1.1). This relation may be extended to symmetric tensorfields of
higher order. Denote by 2, the 2 -module generated locally in A by monomials
of degree k in functions from Y(,). By A" we denote the corresponding module
generated by all sets 2, with k<r. We state the following Proposition without
proof; this would be analogous to the proof of Proposition 2.4 in [1].

Proposition 2.1. Let F be in U, then F is in W if and only if:
Can2Can0 - oCanF) isin Uy

Sor any set (A4, ..., A of functlons from W, For any F in A* there exists a unique
symmetrical tensorf eld Dk defined by:

Di(dAY, ..., dAH)=(—1)"/k1 &g q,0...oE 4 (F)*.
The kernel of the map D in A* is the submodule A*~1.

Let T* be any symmetric tensorfield of degree k. There exists a unique function
P% in A, which is mapped to T* by the map D¥ Denoting the commutative tensor-
multiplication by “®” one has for the maps D and P:

Dl+k_DF®D 1+kS__Pz PS

Identifying the isomorphic algebras U, and A(N) the maps D* and P, are
easily seen to be U,-linear. Hence we obtain a unique isomorphism D of the
subalgebra A® of locally finite sums of functions from all sets 2, with the sym-
metric tensorfield algebra over N. D is an isomorphism of commutative algebras
over the ring of functions 2.

With an obvious shorthand notation we have the following relations in 2*:

i) {Ak WAkt~ 21)
i) Y(A)CA,, Y(AHCA*T,

It follows that Y is a derivation on the subalgebra A, UA*. The first relativistic
axiom will require that Y be a derivation on subalgebra U® alone, without its
ring of coefficients U, This means that Y should act monotonely with respect
to the graduation in W,UA.

The second axiom concerns the existence of “monotone” variables on M,
and a certain uniqueness condition imposed on them. These variables will appear
to increase strictly in the course of the dynamical evolution of the system for all
physically acceptable states. They may therefore be considered as time-like
variables.

Definition 2.1. Let A be in A, and U an open submanifold of the quotient N.

A is called monotone over U if
i) {Y(4),4}*>0in U.
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The set of monotone variables over U is denoted by K(U).

A is called monotone if it is monotone over N. Let 4 be monotone over U.
The positive set K 4(U) associated to A over U is defined as the set of all monotone
variables B over U for which:

ii) {Y(B), 4}*>01in U.

Relativistic Axioms: Let (L*(N), Q, Y) be a canonical system.
Ri) Y(U)CUA LA,
R.i) There exists a monotone variable.
R.ii) For any open submanifold U of N and any variable A monotone over U
‘one has: K ,(U)=K4U) for any Be K ,(U).
A kinematical system satisfying these Axioms is called a relativistic canonical
system (RCS).

Proposition 2.2. The axiom R.iii) is equivalent to:
R.ii") For any open submanifold U of N and A, B in K(U) either: {Y(A), B}*>0,
or: {Y(A4),B}*<0in U.

Proof. Denote by g the nowhere degenerate tensorfield defined in (1.3,i). Assume
that for some q in U: g(dA*, dB*)(q)=0. Choose an open submanifold V at g in U
such that for some constant d one has:

g(dA*, dA¥), g[dB*, dB*)= d; g(dA*, dB¥)<d .

Then we have for the function C=A+B:CeK (V), Ce Kg(V), however 4 is not
in Kg(V) contradicting R.iii). Conversely assume this situation is met for three
monotone variables 4, B, C over V. Then for some g in ¥V we have:

gldA*, dC*)(g)=d>0; g(dA*, dB*)(g)= —b<0.

However the function D=d-B+b-C is in K(V), and we have g(dA*, dD*)(q)=0,
contradicting R.iii"). QED.

Theorem 2.1. Let (L*(N), Q, Y) be a relativistic canonical system. The nowhere
degenerate tensorfield g on N defined by Y is of signature (1,n—1) everywhere.
The dynamical vectorfield Y is Hamiltonian: Y =&y, where 2H is the function on
L*(N) defined by g:2H = P%. In any associated chart (U; Q', P,) we have

H=3) G"P,P,;G"={Y(Q), 0"} .
Proof. By R.ii) there is a monotone variable A4, hence g(d4* dA*)>0 on N. By
Proposition 2.2 there cannot exist a differential dB}, such that g(dB, dB})>0 and
g(dA}, dBj)=0. Hence g is of signature (1, n—1). By [1], Theorem 3.2 we have to
show that Y° vanishes. However {Y°(Py), B} = Y°({Py, B})— {Py, Y°(B)} =0 for
B in Ay, hence YO(Py) is in A, On the other hand &,(Py) is in A, UA,, and the
same is true for Y(Py) by R.i). Hence Y°(Py)=0, and thus Y°=0. QED.

We obtain a physical interpretation for any given RCS if we interpret the
integralcurves of Y as defining the trajectories of physical particles. Their equations
([1], (3.4)) then describe the motion of these particles of unit charge in the gravita-
tional field described by the tensorfield g and the external electromagnetic field
described by the closed 2-form w;. Note that no additional dynamicle principle
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is required for this result apart from the Kinematical and Relativistic Axioms.
We shall now consider this “external field interpretation” somewhat more closely.
The important Relativistic Axiom R.iii) will be shown to result from a physical
postulate concerning the initial value problem for the integral curves of Y.

Let y be some integral curve of Y with p on y. By projecting onto the quotient
N we obtain a corresponding curve y* in N which we shall call a trajectory through
qg=m(p). The tangentvector defined by this trajectory at g is just the projection
of Y,:

Y¥(A®)=Y, (A)=Y(A)g v,). (2.2)

As p varies over the fixed submanifold p* =7n~*(q) in L*(N), the corresponding
projections vary over the set of directions into which trajectories through g may
go. By (2.2) these directions define the corresponding values for all functions in
Y(2,) on p*.

Since these values uniquely determine the points on p*, and hence the integral-
curves through p*, we conclude that any trajectory is uniquely determined by a
single point on it plus its direction at that point.

Now consider the values which variables like Py take along some fixed integral
curve y. It is not difficult to see that except at points where Py =0 for all X there
exists a function B in 2, such that:

Py= X(B¥*) along y resp. y*, (2.3)

and B* is determined uniquely up to a constant along the corresponding part
of y*. We shall call B a parameter associated to y, and the points on y are just
given by (g, dB¥), g on y*. However from (2.2) we obtain:

Y3(4%)=Y(4) (¢, dBy) = {Y(A), B}p)={Y(B), A}(p). 24)

Thus the integral curve through g of the vectorfield generated by the function
Y(B) is just the trajectory through g. In this sense we may say that the trajectories
on N are generated by the first order derivatives of their associated parameters.
This connection between the dynamical evolution of the system and the trans-
formations generated by the momenta variables Py is the essential content of the
kinematical axiom K.iv) stated in [1].

We shall now for any integral curve consider the change of its associated
parameter along the corresponding trajectory. This will lead to the notion of
“permissible integral curves”.

Definition 2.2. Any integral curve y of Y is called permissible if any associated
parameter increases along the corresponding trajectory:

1) Y3(B*)={Y(B), B}*(q)>0.

Any maximal open submanifold of L*(N) containing only permissible curves
is called a physical manifold L§(N).

We realize that the parameters associated to permissible curves are exactly
the variables which are monotone over some open submanifold U. For any
canonical system an integral curve is permissible if and only if the function defined
by the tensorfield g is non-negative along this curve (see Theorem 2.2 of [1]). In
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particular non-relativistic particle mechanics may be characterized by the fact
that all curves are permissible. We shall now specialize again to RCS and derive
the Relativistic Axiom R.iii) from a simple postulate. This postulate requires
that the initial value problem for the vectorfield Y has a solution in any physical
manifold for all submanifolds defined by monotone variables.

Initial Value Problem: Let U be an open submanifold of L*(N), and U, a
submanifold in U defined by an equation F= f=const, F in A(U). Does there
exist an open submanifold ¥ in U containing U, such that the following equivalent
statements hold:

i) Through any point in U, there passes a unique integral curve of Y in V
which is not tangential to U, and different points correspond to different curves
in V.

ii) For any function G, in (U ) there exists a unique Y-invariant function G
in A(V) such that:

Y(G)=0inV;G=G,on U,.

By considering a suitable chart at some point on U, ([4]; I, § 3.1) we realize
that the integral curves of Y are just the characteristic curves of the partial dif-
ferential equation resulting from ii) in that chart. The necessary and sufficient
condition for the Initial Value Problem of that differential equation posed by the
submanifold U, to have a solution (see for example [4], 2. Kap., §2) may be
reformulated as:

Y(F)+=0on U, . 4.5)

By covering U, with charts as above it is not difficult to demonstrate this
result for all of U,. Hence the Initial Value Problem has a solution if and only if
Y(F)#0 on U, and thus either Y(F)>0 or Y(F)<0, since U, is connected.

Postulate 2.1. Let U be an open submanifold of N, and L(U) any physical sub-
manifold of L*(U). Then for any submanifold in L(U) defined by an equation
B=b=const with monotone variable B over U the Initial Value Problem has a
solution.

Proposition 2.3. Any kinematical system satisfying the Initial Value Postulate 2.1
satisfies the Relativistic Axiom R.iii).

Proof. For any 4, B monotone over U the point (g, d4}) with g in U is in some
L§(U), hence the Initial Value Problem posed by B at (¢, d4}) has a solution, and:

Y(B)(g, dA7)={Y(B), 4}*(9)>0,

or
{Y(B), A}*(¢)<0.

Since U is connected, one of these inequalities must hold on all of U, and by
Proposition 2.2 the Axiom Ru.iii) is satisfied. QED.
For a relativistic canonical system we may define two physical manifolds.

Proposition 2.4. Let (L*(N), 2, Y) be a relativistic canonical system with Hamil-
tonian H and monotone variable A. Then any physical manifold is equal to one of the
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following disjoint open submanifolds.
1) L% =(p|H(p)>0, Y(4)>0).
ii) Lt =(plH(p)>0, Y(4)<0).

The proof is immediate from Proposition 2.2. We may conclude from this
the important result that the Initial Value Problem posed by 4 has a solution in
any physical manifold. Choosing a definite physical manifold, say L* amounts to
choosing a definite orientation of time with respect to the integration parameter
of Y, and turns 4 into a positive timelike variable. Furthermore it is not difficult
to see that for any B monotone over some U we have:

Y(B)>0 or YB)<0 in L¥UU)

hence the Initial Value Problem posed by B has a solution in that part of L§
projecting onto U.

We shall finally discuss the notion of symmetry for relativistic canonical
systems. Let ¢ be a canonical transformation on L*(N) leaving Y invariant:

Yo=¢eYop 1=Y; p(F)=Fo¢ for Fed. 2.2)

It is not difficult to check that for any such transformation the subalgebra
P(W,) satisfies all Kinematical Axioms if 2, does. However ¢(,) will in general
be different from 2A,. We call ¢ a symmetry of the relativistic canonical system
considered if in addition to (2.2) it permutes 2 ,:

¢ WA,y . (2.3)

It follows from (2.3) that ¢ permutes the integral submanifolds generated
by A, and hence induces a diffefomorphism ¢° on the quotient N.
Theorem 2.2. Let ¢ be a symmetry of the relativistic kinematical system (L*(N),Q,Y).
Then

i) ¢°[gl=9,

ii) ¢°[op] = oy,
where wy and g are defined as in (1.2) and (1.3), and ¢° corresponds to the induced
diffeomorphism ¢° on N. The symbols in i) and ii) denote the corresponding trans-
Sformed quantities.

Conversely let ¢° be a diffeomorphism on N satisfying i) and ii). Then there
exists a unique symmetry ¢ inducing ¢°.

Proof. We have for any 4, B in %,
P°(gdA*, dB*))= ¢({Y(A), B})*
={Y(¢(4), ¢(B)}*
=g(d(¢°(4¥)), d(¢°(B*))

which is equivalent to i). Furthermore we obtain from this
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for any Py in Y(2,), and hence for any Py in 21,. By a similar calculation as above
we conclude for the function F(X, X,) defined in (1.2, iii):

iv) Q(F(X, X,)=F(¢°[X], ¢°[X,]),

which is equivalent to ii). Now let ¢° be a diffeomorphism satisfying i) and ii).
Consider the map ¢: U - defined by:

YAF=0%4%), A in Wy
¢(PX)=P¢O[)(] 5 PX in QIl .

It is not difficult to check that ¢ is well defined and corresponds to a permuta-
tion of the points in L*(N), hence defines a diffeomorphism ¢ on M. By (1.2) and
iv) we may conclude that ¢{F, G}={d(F), (G)} for F, G in the sufficient set
A, AU, hence ¢ is canonical. Finally we get:

P(Y(4)=Y(4(A)) ,

and by calculating the image under ¢ of the expression for Y({Y(A), B}); 4, B
in Ay; we obtain:

V) G(Y(A)— Y2($(A)) is in Ao

However ¢ maps every homogeneous subspace 2, to itself, hence by R.i)
the term v) vanishes and we have:

MY (F))=Y($(F))
for F in A, 0 Y(A,), which implies that ¢[Y]=Y. QED.

3. Space-Time Decomposition and States

In this chapter we shall define the notion of states for relativistic canonical systems,
and discuss a certain simple classe of states. The detailed theory of states which
comprises the equations of motion for the classical fields will be developed in a
subsequent paper. It will be instructive to briefly study a certain decomposition
of the classical algebra of variables beforehand, which corresponds to the distinc-
tion between timelike and spacelike variables.

Let 4 be a monotone variable (R.ii), and X be the associated vectorfield
defined by:

Py={Y(A), A} 'Y (A); {Py, A}=1. G.1)

The canonical vectorfields defined by Py and 4 commute, and we shall assume
for simplicity that both generate one parameter groups. By arguing along similar
lines as in [1] we may show that the set of maximal integral manifolds of both
fields can be turned into a manifold L}, which we call the reduced manifold. The
algebra of differentiable functions on L} is isomorphic to the subalgebra:

Wy=(F in A;{Py, F}={A, F}=0). 3.2)

The Poisson bracket maps Uy to itself and is easily seen to induce a unique
Poisson bracket on the reduced manifold.
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Any given integral manifold w is difftomorphic to R?, with 4 and Py defining
global coordinates. On the physical submanifold wo=wnL§ we have:

i) 0H/0P= —{A, H}=Y(4)>0, P=Py; (3.3)

hence we may introduce H and A as coordinates on w,. Any variable F in A may
thus on L§ be considered as a unique function Fr on L§ depending on the ad-
ditional parameters H and A4:

ii) F(p)=Fx(w; H, A).

The vectorfields corresponding to differentiation with respect to these param-
eters are given by:

iil) X,=0/0H=—Y(A)" ¢y,
V) X =0/0A=Cp—Y(A) ' Y(P)yy.

These vectorfields define a unique decomposition for any differential 1-form.
By considering the form dP we obtain:

i) o=wgr+oXydH+o(X )dA (3.4
i) dH=Y(A)dP—(dP)g)— Y(P)dA
ill) Y(F)=A(dH,dF)=A(dH, (dF)g + X 4(F)dA)
=Y(A)- A(dP— (dP)y, (dF)g + X 4(F)dA)
=Y(A)[ - A((dP)g, (dF)g)+ X 4(F)] .

Now the differential form (dF)g is just the differential of the function Fp,
considered as a function on L} alone. Hence we obtain the following decomposi-
tion.

V) Y(A) 'Y = —{Py,...}x+0/0A.

The first term is tangential to any manifold w,, and hence defines a vectorfield
on L§ which depends upon the additional parameters H (=mass) and A (=time).

This field is just the canonical field generated by the Hamiltonian P, with
respect to the induced Poisson bracket on L% We emphasize that P must be
considered here as a function on L} only, the parameter H and A4 being kept fixed.
The second term is just the partial derivative with respect to the time 4. In
particular we obtain for any F invariant under Y:

OF g/0A={Pg, Fp}g - (3.5)

This relation has led to the wide spread belief that the momentum associated
to a timelike variable is the Hamiltonian with respect to that variable. However
this is not the case if we consider the momentum P as a function of all relevant
parameters as it is necessary for a fully covariant formulation. The actual Hamil-
tonian is the mass-squared-variable H. The integration parameter associated
to H is easily seen to be (mass)~* x proper time); it is related in a strictly associated
way on the physical manifold to any timelike variable. Finally we emphasize
that the reduced manifold we have constructed is a quotient manifold rather
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than a constraint submanifold [3]. This allows us to treat the mass as a genuine
additional variable, rather than as some fixed constant. The constraint surface
corresponding to some fixed value & of H is given by the equation:

Py=(Py)g for A arbitrary, H=h=const. (3.6)

Let us now define the notion of states appropriate for our theory. In the
framework of the reduced manifold states would correspond to measures on L,
depending upon the additional parameters 4 and H. If we allow in addition for
integration over the mass variable H, the analogue in the original manifold would
be a set of surface measures defined on submanifolds of constant time.

Proposition 3.1. Let A be a monotone over U. Any submanifold V, defined by an
equation A=a=const in n~}(U), is orientable.

Since Y(4)>0 on n~}(U)y=n"YU)nL¥ the 2n—1)-form u(Y,...) defines an
orientation on V,, where p is the canonical 2n-form on L§ (see [2]). We shall
always integrate (2n— 1)-forms with respect to this orientation over submanifolds
like V, which are defined by monotone variables.

Definition 5.1. A state form is a closed (2n— 1)-form w on L§ such that:

| Froz0
Va

for any positive F with compact support and for any integral taken over some
submanifold defined by some monotone variable A as in Proposition 3.1.
Consider the dual of the state form , which is the vectorfield w* defined by:

) po* .. )=o(..). (3.7

It is not difficult to check that w being a state form is equivalent to:

ii) *(A4)=0 in n~!(U), for 4 monotone over U.

If w is some state form then a given multiple F-w with F>0 is a state form
if and only if

iil) w*(F)=0,

and hence if F is constant along the integral curves of w*. These curves may be
interpreted to define the trajectories of massive particles. The discussion of such
trajectories in Chapter 2 corresponds to the special case where w* is proportional
to Y; we call such forms Y-invariant.

Definition 3.2. Let @ be a state form and A be monotone. The state defined by w
at time A=a is given by the positive linear map:

S(w,a):G- | G-
A

=a

for variables with compact support, where the integral is taken over the sub-
manifold defined by A=a in L§.
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We may express any state by integration in the reduced manifold:

Aj G-w=£dH [ [G-0*(A)-Y(A)~"1x(H, a)ug(H, a) (3.8)
=a L%

where pp is the canonical volume element in the reduced manifold: u=dA A dP A
wg(H, A). The function w*(4)-Y(A)~! is the corresponding density. For Y-
invariant state forms it is just the function F defined by w*=F-Y with Y(F)=0
[see Eq. (3.5)].

In order to write down equations for the classical fields we need quantities
like the current and the energy-momentum tensor, which serve as sources for the
classical fields. These quantities may be obtained for any given state form w by
first integrating at any point g in N over that part K, of the cotangent space
contained in the physical manifold L:

Proposition 3.2. Let w be a (2n—1)-form on L*. Then:
) wo(X)q)= [ oy ...)

K‘]
defines a (n— 1)-form on N, where £y is the canonical vectorfield generated by Py.
(We have used a single symbol X to denote a set of n—1 vectorfields on N.) If o
is closed and vanishes on the boundary of K, the form wy is closed. For any sub-
manifold V, as in Proposition 3.1 one has:
i) [ o= | o,.
Va 7(Va)

If we assume that N is orientable, we may define dual objects for differential
forms on N by means of the metric g. The dual of the form w, in Proposition 3.2
is a vectorfield J(w) which we call the current defined by w. Within some given
chart at a point in (V) we may write the integral ii) in terms of the components of
J(w) and of the surface differential form do:

) [o= | YdoJYw). (3.9)

Va n(Va) k

Now consider forms like w’'=G-w, where » is some state form. We have:

ii) J(4-w)=A*J(w) for A in A,,
iii) J(Py-w)=T(X; w) for Py in 2U,.

The current J(w) is conserved since w is closed. The map T: X - T(X; w) is
easily seen to be an A(N)-linear map of vectorfields on N, and hence to define a
mixed vector-covector field of degree 2. We call this the energy momentum field
defined by w. Higher order tensorfields result from considering functions G in 2,
k> 1. For Y-invariant state forms we obtain particularly simple expressions for
the components of these fields in some chart (U, 4¥) with associated chart (=~ 1(U),
A¥ P) on L¥:

) Jiw)=Yg¥/—d " | P, Fdo(p) (3.10)
k K,

i) Tiw)=Y g*/—d [ P, P;-Fdo(p)
k Kq
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where do(p) is the volume element defined by the metric (9°) in K, F is the density
function: w=Fu(Y,...), and d is the determinant of (¢g*); n=4. The tensor T
satisfies in this case the known conservation law for charged particles of fixed
unit charge moving in the classical fields g and F':

i) ¥ T, =Y Fy-J*.
k k

Let us summarize the important features of the concept of states we have
introduced so far. In order to define a state two ingredients are required. The first
is a state form . This form completely describes the dynamics of the physical
system as far as the motion of the matter is concerned. Furthermore by Proposition
3.2 and (3.9) it determines the current vector and energy-momentum tensor of the
matter. The second ingredient is some space-like hypersurface in N. This can be
chosen at will, corresponding to the non-uniqueness of the notion of equal time
for different space-time events. Given both, expectation values may be formed
by integrating the form over the corresponding hypersurface in L§. Thus we may
say that in order to represent observations in our theory we must specify both the
variable to be observed and the instant of time with respect to some time variable
at which the observation is to be made. Both aspects are necessary for a theory
of observations in general relativity. To our opinion they are represented in a
very natural and satisfactory way within our canonical framework.

In the present paper we have treated the dynamical vectorfield Y and the
canonical form Q as fixed and independent of any particular state form. The
equations of motion for the classical fields represented by these quantities will be
treated in a subsequent paper, where we shall present a canonical theory of state
forms.

This theory will allow for a discussion of charges and spin degrees of freedom
as well.
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