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Time Evolution for Infinitely Many Hard Spheres
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University of Colorado, Boulder, CO 80309, USA

Abstract. We construct the time evolution for infinitely many particles in IR
interacting by the hard-sphere potential

+w  |x|<a
‘p(x)z{ 0 Ix=a.

Because there are abundant examples of hard-sphere configurations with
more than one solution to the Newtonian equations of motion, we introduce
the concept of a regular solution, in which the growth of velocities and
crowding of particles at infinity are limited. We prove that (1) regular solutions
exist with probability one in every equilibrium state, and (2) any configuration
of the infinite system is the initial point of at most one regular solution.
Equilibrium states are invariant under the time-evolution.

0. Introduction

0.1. Imagine infinitely many billiard balls of mass m and diameter a at positions
g;€lR’, i=1,2,... (where |g;—q;|=a if i= ), with corresponding momenta p;eR",

i=1,2,.... The problem is to solve the Newtonian equations of motion when
these particles interact by the hard-sphere potential
+oo  |x|<a
&(x)= 1.
(x) { 0 Ixlza. (0.1.1)

The equations of motion take, roughly speaking, the form

J;=Di/m

4=Pi 0.1.2)

p:=0+ elastic reflection at collisions .

Rigorous work on time-evolution of classical systems of infinitely many particles
was pioneered by Lanford [4—5]. Lanford’s 1974 Battelle lectures [6] contain

*  Part of this work forms part of the author’s doctoral dissertation written at the University of
California, Berkeley, under the direction of O.E. Lanford III
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his construction of time-evolution for particles in v-dimensions with long range
superstable interactions, as well as a summary of other approaches. Hard core
systems have been studied by Ya. Sinai, who constructed dynamics for infinitely
many particles in one dimension [10], and in v-dimensions at low density [11],
when the interaction is finite-range and singular at the hard core radius.

There is no hope of solving the Equations (0.1.2) for all initial configurations.
With the naked hard-sphere potential (0.1.1) the positions and momenta of out-
going particles after grazing or triple collisions do not depend smoothly—some-
times not even continuously—on incoming data, so we must exclude all con-
figurations which evolve to a grazing or triple collision.

A more serious difficulty is that initial configurations can have more than
one solution. Here is a simple example, complementary to that given by Lanford
[6]. Place particles at positions ¢;, i=1, 2,... in a straight line so that

Z(Q1+1 —a)<ow. (Bach g, ;—¢;>a))

All p;=0. One solution is: all particles remain at rest forever. For a second solution,
choose a number v>0and fori=1, 2,... let the particle at ¢; begin to move toward
the particle at ¢, _, with speed v at time

=(1/v) i(%’ﬂ —Qj_a)’

J=t
and come to rest when it collides with the particle at ¢,_, at time t,_;=¢t;+
v Mg~ i1 — ).

It is easy to see that by allowing a moderate growth in speed as i tends to
infinity one can relax the requirements that the particles lie in a straight line and
that the sum of the interparticle distances be finite.

To exclude pathological examples like this one and the one given by Lanford,
we introduce in § 4 the notion of a regular solution. Exponential growth of veloci-
ties (which occurs in Lanford’s example) and too-close crowding of particles at
infinity (as in this example) will be prohibited. It will be shown that any con-
figuration of the infinite system has at most one regular solution, and that almost
every configuration (in the sense of equilibrium probability) has a regular solution.

0.2. Notations, Conventions. We take our particles to have diameter a and mass m,
fixed positive numbers. Positions and momenta of particles are vectors ¢, p,
respectively, of IR". Positions of n particles are points ¢ of IR*, which we think
of as n-tuples (qy,...,q,) of points of R”; similarly for momenta.

A bounded Lebesgue-measurable subset A of R* has volume |A]|.

In a set Q, with subset 4CQ, A°=Q\A is the complement of A4. I, is the indi-
cator function of A4, i.e., the function on Q which is 1 on 4 and 0 on A4°.

Boltzmann factors involving the hard-sphere potential @ reduce to indicators;
they occur so frequently that we give them a name:

J(q1, q2)=exp[ - BP(q, “112)](=I[|ql—q2(;a]) .

Here [|q, —qg,|=a] means the set of points (q,, q,) of R satisfying |q, —g,|=a.
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" 1. Phase Space

1.1. Definition. X, the phase space for infinitely many particles in R”, is the set
of all functions x from R"XIR" to the non-negative integers such that for any
bounded set A CIRY,

Y x(g.p)<oo. (1.1.1)
(g, p)eA XRY
1.2. An element x of X, is called a locally finite configuration; x(g, p) is the
number of particles at the position ¢ having momentum p. For Lebesgue measur-
able ACIR" we define X, the space of locally finite configurations of particles
in A, in the obvious way; thus we have the decomposition

xw=%A><%Ac (1.2,1)

which simply says that a configuration consists of the particles inside A and those
outside A.

We agree to the following abuse of notation: to each configuration x we
associate the function on R, also called x, defined by

x(g)= ), x(g.p)-
peRY
This is a convenient device when only the positions of particles in a configuration
matter.

1.3. X, has a topology in which two configurations are close if they are close on
a compact set. Let 7] be the space of continuous real functions on IR” x IR¥ whose
support, projected on the first factor, is compact. For each function ¢e#] define
a function @ on X, by

o= Y x@pep.
(@, PERY XRY
The condition (1.1.1) on x and the support properties of ¢ guarantee that ¢
is finite-valued; we give X the weakest topology making all functions ¢ con-
tinuous. It can be shown [4] that X with this topology is a Polish space, that
is, it has a countable dense subset and the topology comes from a metric in which
X, is complete.

14. Definition. X, the space of configurations of hard spheres of diameter a, is
the subset of X consisting of configurations x such that
a) sup ) x(q,p)=1,
gqeRY peRY

b) x(q)=1=x(¢q’) and q=+¢q  implies |¢—q'|=a.

1.5. Hard-sphere configurations have at most one particle (centered) at any point
of space, and any two of their particles are separated by a distance not less than a.
X is evidently "closed in X, hence is itself a Polish space.

There is a slight technical difficulty, because the product decomposition
X=X, x X . for subsets A4 of IR* no longer holds. We circumvent this by identi-
fying X with its image in the product X, x X ,., and taking measures on X to be
measures on the product which are zero on the complement of (the image of) X.
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2. Gibbs States

2.1. A Gibbs state is a measure on X describing thermal equilibrium. Specifically,
a Gibbs state for the hard-sphere potential @, with inverse temperature  and
activity z, is a Borel probability measure u on X satisfying the Equilibrium
Equations:

For every bounded Borel set 4CR* and function ¢ in L'(X, p)

" nv/2
fcodu Z ( b ) | dqdp[]J(g:q)

w0 n1\2mm) 4 lpey i<j
cexp[—pp*/2m)] [ wdy) 1 J(asq)-0(q p)y). (2.1.1)

XRv\4 1<iZn

g =1

The Equilibrium Equations just determine the conditional distribution for x
in X, given y in Xgy 4

In any Gibbs state u, the number of particles in a bounded Borel set 4 CIR*—

nA (X) = z x(q, p)

(g, p)ed X RY

is a random variable bounded a.s.—u by a constant times |4] because of the

hard core condition; in particular | n,du, the mean number of particles in 4, is
X

bounded by const |4].

2.2. Maxwell Velocity Distribution. It follows from the equilibrium equations that
the momenta in a Gibbs state are independent v-dimensional Gaussian random
variables with mean 0 and variance vm/f5. For each bounded Borel set ACR" we
introduce the useful random variable

Vinax(X) = Vinax(x; A)=0 v sup {|pl/m:(g, p)e A X R", x(g, p) =1} . 221

Vax(+; A) is the speed of the fastest particle in A.

Let us first compute an elementary estimate for the conditional probability
that ¥V, .>A>0, given that there are k particles in A. The probability that a
particle has velocity less than 4 is

P(2)=(B/2mm)" [ exp[—pp?/2mldp

{peRV:|pl/m<2}

v/2 mi
=(B/2nm)** 2n//2) [ w~texp[—pu?/2m]du
so that

UV > Aln=k)=1—[P(A)]*< k(1 — P()) < const-k-e ™"

for any y<mf/2.
Using this estimate, we have for any bounded Borel set A

[ max>/q'] ZH( max>/1|n/1:k):u[n/1=k]

< conste” " Y ku[n,=k]< const-e” ||, (222
k
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since the sum over k in the last line is just the expectation of #n,. It follows that
exp[yV2,] is p-integrable for any y<mfp/2, and
§ exp [y Vganoe; A1 u(dx) <M A (223
x

with a constant M which is independent of A.

2.3. Correlation Functions. Every Gibbs state u has correlation functions defined
by [8]

Qn(ql,.--,qn)=2"iu(dy)GXP[—ﬂZ?(qi—qj)}exp -BIZ ®(g;—q)
i<j Sisn
y(@)*0
=2 [1J(goq) [ dy) T] Ja0 9. (23

If # is some statement about points of R", and ACIR" is a bounded Borel
set, let

E={qeA":q satisfies 2} ;
then jg,,(q)dq is just the expectation value in the Gibbs state u of the number
E

of n-tuples of particles in A satisfying Z.

From the definition one immediately deduces the basic inequality for cor-
relation functions [8, Exercise 4.D]:

o=z l—[ J(q; Qj)' (2.32)

15i<jsn

3. Probability Estimates

3.1. Proposition.(“Chain estimate”). Let p be a Gibbs state for ® with activity z.
For any bounded Borel set A of IR, any integer N >1 and any collection ¢, ¢,,...,6y 1
of positive numbers less than 1, the probability that there are N particles in A at
poSitions qy,...,qy satisfying |q; .1 —q;|Sa(l +¢) for i=1,2,...,N—1, is less than

2n2(2V—1)
v (v/2)

Proof. Let X be the random variable which counts the number of N-tuples of

particles in A satisfying the stated condition; the probability to be estimated is

#[X =17 which is not more than | Xdu. This integral is given by an integral of
the N-particle correlation function: put

E={qeAV:lq;,.,—q,|S(1+¢)a for 1SjSN—1,

N-1 N-—-1

N!A|ZN I1e- (3.1.1)
i=1

for some permutation iy,...,iy of (1,2,...,N)}.
Then
| Xdu= {on(q)dq .
X E
Therefore
[ XdusN! | on(q)dq .
X {qeAN:|giv1— .| S(1+e)a, 1 SiSN—1}
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Insert the basic inequality for correlation functions (2.3.2) into this integral and
change to difference variables y,=q;,,; —¢;, i=1,2,...,N—1; then
N—-1

de,ugN!Zdeq1 I ] dy;
X i=1 as|yi|l<a(l+e)
v/2

=N! Nn F( /2) v((1+8i)v_1)’

i=1
and since (1 +¢)’—1<(2"—1)e if 0<e< 1, the bound (3.1.1) follows.

3.2. Proposition (“Free distance estimate”). Let u be a Gibbs state for & with
inverse temperature 5, and let T' be a one-parameter group of transformations of X
leaving u invariant and having piecewise continuous orbits. For bounded Borel sets
ACR define

Vinax(t) = Vipax(T" x5 A) = sup {|p| /m:(q, p)e A x R*, T"x(q, p)=1}

the speed of the fastest particle in A at time t. For any positive number y less than
pm/2 there is a constant M independent of A such that for any 1>0, 1>0:

U [; Vmax(t)dt>l] <M|A| exp(—yA?/t?).

Proof. Let 0<y<mf/2, and define the random variable

UI:exp{ ( j 7 ax t)dt)z}.

Since dt/z is a probability on [0, 7] and exp[y(-)?] is convex, Jensen’s inequality
gives
1 T
Ulé ? j eXp [V max([)]dt‘z‘ U2 .
0

Let us show that U, (and therefore U,) is p-integrable. We have

dt 33; dpexp 7V (0]

dt [ dpexp [yVa (O]1=M|A].

X

The last equality is asserted first, and is true because u is invariant under T*;
then the middle equality follows by Tonelli’s theorem. The inequality at the end
is just (2.2.3), and M is independent of A. Finally, the event [f max(t)dt>i} is

identical to the event [U, > exp(y4*/7?)], so the desired estimate follows from the
Markov inequality.

3.3. Remark. A similar bound can be proven for ,u{ sup Vmax(t)>/1] Since this
0=<t=t

is not necessary for our results, we prove it in the appendix.
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4. Partial Flows

4.1. For integers r>1 we define the partial flow in the sphere of radius r about
the origin of IR*, by placing a hard wall at |g|=r, fixing all particles not entirely
inside, and letting particles inside move according to the elastic reflection law.

For some configurations this prescription leads to triple collisions (simul-
taneous collisions of three or more particles) or grazing collisions (contacts with
zero momentum transfer), beyond which trajectories do not depend smoothly, or
not even continuously, on initial data, or perhaps are not even definable without
ambiguity.

The problem of existence of partial flows for all time has been solved in [1]
and we summarize the results here. Let

A(r)={qeR":|q|=r—a/2}.

Particles of a configuration x which are in A(r) are entirely inside the sphere of
radius » centered at the origin of IR"; they suffer elastic collisions at the boundary,
which consists of the hard wall at |g]| =7, together with bumps made by the fixed
particles in the annular region

A(r)={qeR":r—a/2 <|q|<r+a/2}.

Any two configurations whose restrictions to A(¥)uA(r) are the same, have
the same motion in the ' partial flow.

4.2. Definition. xe X is a collision point if there exist g, ¢ e R" with |g—¢'|=a and
x(q)=x(q")=1. xeX has pairwise collisions if x is a collision point and for every
q,q' R’ with |g—¢'|=a and x(q)=x(q")=1 there is no g” distinct from g and ¢
with |¢"—g|=a or |¢"—¢'|=a and x(q")=1. xeX has non-grazing collisions if
whenever x(q, p)=x(q’, p')=1 with |g—q'|=a, one has {p—p’,q—q'>+0.

Let & be the subset of X consisting of configurations with no collisions, or
collision points with pairwise, nongrazing collisions. Then % is a dense G with
full measure in every Gibbs state.

Now let T be the transformation of X which shifts a configuration ¢ units
along its trajectory under the flow in A(r), wherever the latter is defined. The
methods of [1, Chapter IT] may be applied to show that every T, is defined for
all time almost everywhere; we summarize these results in the next Proposition,
which shows that the estimates on the T, to be proven in the remainder of this
Chapter are not vacuous.

The estimates we shall prove have a wider application: they will show that
any flow on X which solves the equations of motion and leaves equilibrium states
invariant, must have orbits with very good regularity properties.

4.3. Proposition.a) Let S' be a one-parameter group of transformations of X given
by solutions of the equations of motion, and leaving all Gibbs states invariant. Then
there is a dense Gy subset of X, of full measure in every Gibbs state, consisting of
configurations whose orbits lie entirely in &, and which have only finitely many
collisions in any A(r) during any finite t-interval.

b) There is a dense Gz subset X of X, of full measure in every Gibbs state, on
which every T} is defined for all t; every orbit lies entirely in &, and has only finitely



224 R. Alexander

many collisions during any bounded interval of time. Every T! leaves all Gibbs
states invariant.

For the proof, we refer to [1]. In particular, the last statement of b) is proven
by conditioning on A°(r) and using the Equilibrium Equations (2.1.1) and the
fact, proven in [1, Chapter 11] that Liouville’s theorem holds for the flow in A(r).

4.4. The estimates of the following sections will hold both for the partial flows
and for any equilibrium-preserving global flow. Thus for each integer r>1 let

xO=Tx (xe¥)
or
x,(t)=8"x

with S satisfying the conditions of 4.3 a).
Choose two numbers o> 5/2 and ¢>0. Put

n="3a/5 (4.4.1)
and choose w in the open interval (20,/5, 3a/5—1/2); then

1<20/5=a—n<w<n—1/2 (44.2)
and

2 —w)>1. (4.4.3)

Let r, an integer greater than 1, be large enough that

4(logr) “<a, (4.4.4)

8(logr) < c(logr)*™" (4.4.5)
and define

N=N(r)=[(2a) " *c(logr)* "], (4.4.6)!

t=1(r)=(logr)™". (4.4.7)

Let u be a Gibbs state for @ with inverse temperature  and activity z, and
let y<pm/2 and M be the constants for which 3.2 holds. Finally, let C, be
ZNMN=1 times the expression in brackets in (3.1.1).

Define

Vonax(®) = Vanax(X,(8); A(r) = sup{|pl/m:(q, p)e A(r) x R", x,() (g, p)=1} . (4.4.8)
Define A4,(z) to be the event that either

t+t

a) | Vou(s)ds>z(logr) ™

or '
b) x,(t) has N(r) particles in A(r) at positions ¢, ...,qy satisfying
1g; 41— g1 Za+4(logr)™?, i=1,2,...,N—1.

v [A], “ceiling of A”, is the smallest integer greater than 1
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4.5. Lemma.
pA ) =AM {M exp [—(7/4)(logr)*"~ ']+ N(r)!(4coa™ " (logr)~*)¥" 71}

Proof. Immediate. Use 3.1 with ¢;=4a~* (logr)"® [note (4.4.4)]; and use 3.2 with
t=1(r)=(logr) " and A=(1/2)(logr) " °.

Now let t,>0 and put
K(to)=[to(logn].

The next lemma is an immediate consequence of the invariance of u under T} or S".

K—1
4.6. Lemma. Put B,(ty)= U A,(jt). Then uB,(t,) <2KuA,(0).

ji=-K

4.7. Proposition.For every x in a Borel set X of X of full measure in every Gibbs
state, and every t, positive there is an ro=ry(X, ty) such that if r>r,:
a) there is no subinterval IC[—ty, to] of length t(r) for which

[ Vanan (x,(0))dt > (logr) =
1

and

b) at no time t, —t,<t=t,, does x,(t) have N(r) particles in A(r) at positions
Q1> -»qn Such that

g1 —qlsa+2(logr)””, i=1,2,..,N—1.
Proof. For positive integers k let X, = [B,(k)i.0.]° We show ) uB,(k)<oo for any
Gibbs state u, so that u¥X,=1 by the Borel-Cantelli lemma. '

From 4.5 and 4.6 we have a bound for uB,(k) which we write as a sum of two
terms. The first is

K (RIA®) M exp[ —(7/4)(logr)*1=]
< const (logr)"7” exp [ — (7/4)(logr)*"~]

and since 2(n —w)>1 (4.4.3) this term is summable in r.
The second term in the bound for uB,(k) coming from 4.5.6 is

K(RIA@IN(r)!(4coa™ (logr) )N~
< const(logr)'r’N(r) ! exp[ —w(N(r)—1) log logr+O(N(r))] .
Now use Stirling’s formula and the definition (4.4.6) to write
N()!=exp[(a—n)N(r) loglogr+O(N(r)].
Then the term in question is bounded by
const (logr)"r* exp [c(2a) ™ (x— 1 — w)(logr)* "log logr+ O(logr)* "]

and the exponential goes to zero more rapidly than any inverse power of r because
(t—n—w)<0 and a—n>1 by (4.4.2).
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This completes the proof that ) uB,(k)<oo. Thus for each k, uX,=1, where

X, consists of phase points which are in B/(k) for at most finitely many r.
Now if xe[B,(k)]¢, there is no interval I of length (r) in [ —k, k] for which
the free distance [ V., (x,(t)dt exceeds (logr)™®. For if there were, we could

I
choose j, — K(k)<j< K(k)—1, so that

(G+1)x
I Viax(x(6)dt = I Vaax(x(6)dt=(1/2)(logr)™®
jt Injt,(j+ D1

which is impossible because xe[4,(j1)]°.

Moreover, if at any time t, —k<t=<k, x,(t) had N(r) particles in A(r) at
positions qy,...,qy With |g;.; —q;|<a+2(logr)™® for i=1,2,...,N—1, then by
choosing j so that jt is the integral multiple of t nearest to t, and letting g,(s)
denote the position at time s of the particle of x, which is at ¢; at time ¢, we would
derive

19:+107) — @GO =194 107 — @i+ 1 (O] +1G;. 4 1(8)) — gD + 19:(8) — q(j0)
<(logr) ®+(a +2(Iogr)“w) +(logr)"“=a+4(logr)~

which is again impossible because xe[4,(j7)]°.
To complete the proof, put X= ﬂ X, Then pX=1 for every Gibbs state p,
k

and every x in ¥ satisfies a) and b).

4.8. Definition. A mapping &:IR—X is a regular solution of the equations of
motion if

a) ¢ is a solution of the equations of motion, with &(t)e & (see 4.2) for all ¢,
and only finitely many collisons occur in any A(r) during any bounded t-interval;
and

b) for any t>0 there is an r; =r,(¢, t) such that if r>r, then

i) for every subinterval I of [ —t, t] of length 1(r),

g Vinax (€(5); A(r))ds = (logr) ™,

i) at no time during [ —t,¢] is there a chain of N(r) particles in A(r) at
positions ¢y, ...,qy such that

9;+ 1—gqil<a+(logr)™”, i=1,2,..,N—1.

The fact that every x,(f) could be S'x for an equilibrium-preserving flow S’
which solves the equations of motion, allows us to combine 4.3 a) and 4.7 to get
that almost every orbit is regular.

4.9. Proposition. Let S' be a one-parameter group of transformations of X given by
solutions of the equations of motion, which leave all Gibbs states invariant. Then
the set of phase points whose orbits are regular solutions has probability one in
every Gibbs state.






