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Time Evolution for Infinitely Many Hard Spheres
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Abstract. We construct the time evolution for infinitely many particles in Rv

interacting by the hard-sphere potential

\ 0

Because there are abundant examples of hard-sphere configurations with
more than one solution to the Newtonian equations of motion, we introduce
the concept of a regular solution, in which the growth of velocities and
crowding of particles at infinity are limited. We prove that (1) regular solutions
exist with probability one in every equilibrium state, and (2) any configuration
of the infinite system is the initial point of at most one regular solution.
Equilibrium states are invariant under the time-evolution.

0. Introduction

0.1. Imagine infinitely many billiard balls of mass m and diameter a at positions
^e]Rv, ϊ=l,2, . . . (where \qi — q^ ^a if iΦj), with corresponding momenta pjeRv,
i = l,2, ... . The problem is to solve the Newtonian equations of motion when
these particles interact by the hard-sphere potential

The equations of motion take, roughly speaking, the form

a: = pJm
*' yι> (0.1.2)
p/ = 0+ elastic reflection at collisions .

Rigorous work on time-evolution of classical systems of infinitely many particles
was pioneered by Lanford [4-5]. Lanford's 1974 Battelle lectures [6] contain

* Part of this work forms part of the author's doctoral dissertation written at the University of
California, Berkeley, under the direction of O.E. Lanford III
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his construction of time-evolution for particles in v-dimensions with long range
superstable interactions, as well as a summary of other approaches. Hard core
systems have been studied by Ya. Sinai, who constructed dynamics for infinitely
many particles in one dimension [10], and in v-dimensions at low density [11],
when the interaction is finite-range and singular at the hard core radius.

There is no hope of solving the Equations (0.1.2) for all initial configurations.
With the naked hard-sphere potential (0.1.1) the positions and momenta of out-
going particles after grazing or triple collisions do not depend smoothly — some-
times not even continuously — on incoming data, so we must exclude all con-
figurations which evolve to a grazing or triple collision.

A more serious difficulty is that initial configurations can have more than
one solution. Here is a simple example, complementary to that given by Lanford
[6]. Place particles at positions qt, i = l, 2, ... in a straight line so that

00

Σ (4i+ι-4i- f l)<°° (Each gi + ι-4i>0.)
ι = l

All pt = 0. One solution is: all particles remain at rest forever. For a second solution,
choose a number v>0 and for i = 1, 2, . . . let the particle at qt begin to move toward
the particle at qt _ t with speed v at time

and come to rest when it collides with the particle at qi_ί at time ί._ 1 = ί.+

^ter-Si-i-fl).
It is easy to see that by allowing a moderate growth in speed as i tends to

infinity one can relax the requirements that the particles lie in a straight line and
that the sum of the interparticle distances be finite.

To exclude pathological examples like this one and the one given by Lanford,
we introduce in § 4 the notion of a regular solution. Exponential growth of veloci-
ties (which occurs in Lanford's example) and too-close crowding of particles at
infinity (as in this example) will be prohibited. It will be shown that any con-
figuration of the infinite system has at most one regular solution, and that almost
every configuration (in the sense of equilibrium probability) has a regular solution.

0.2. Notations, Conventions. We take our particles to have diameter a and mass m,
fixed positive numbers. Positions and momenta of particles are vectors q, p,
respectively, of IRΛ Positions of n particles are points q of IR"V, which we think
of as π-tuples (qι,...,qn) of points of Rv; similarly for momenta.

A bounded Lebesgue-measurable subset A of IRV has volume \A\.
In a set Ω, with subset AcΩ, AC = Ω\A is the complement of A. IA is the indi-

cator function of A, i.e., the function on Ω which is 1 on A and 0 on Ac.
Boltzmann factors involving the hard-sphere potential Φ reduce to indicators;

they occur so frequently that we give them a name:

Here [\qι—q2 §;<z] means the set of points (q^q2) of IR2v satisfying \ql-q2\^a.
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1. Phase Space

1.1. Definition. 3̂ , the phase space for infinitely many particles in IRV, is the set
of all functions x from IRV x Rv to the non-negative integers such that for any
bounded set /1CIRV,

Σ xfep)<cx). (1.1.1)
(4,p)eylx]R v

1.2. An element x of X^ is called a locally finite configuration; x(q, p) is the
number of particles at the position q having momentum p. For Lebesgue measur-
able yic!Rv we define XΛ, the space of locally finite configurations of particles
in A, in the obvious way; thus we have the decomposition

3^ = ̂ x3^ (1-2.1)

which simply says that a configuration consists of the particles inside A and those
outside A.

We agree to the following abuse of notation: to each configuration x we
associate the function on Rv, also called x, defined by

*(4)= Σ X(&P)'
peIRv

This is a convenient device when only the positions of particles in a configuration
matter.

1.3. #00 has a topology in which two configurations are close if they are close on
a compact set. Let jfi be the space of continuous real functions on IRV x IRV whose
support, projected on the first factor, is compact. For each function φe Jf^ define
a function φ on 3̂  by

φ(x) = Σ x(q,p)φ(q,p).
(q,p)elR vx]R v

The condition (1.1.1) on x and the support properties of φ guarantee that φ
is finite-valued; we give 3;̂  the weakest topology making all functions φ con-
tinuous. It can be shown [4] that 3̂  with this topology is a Polish space, that
is, it has a countable dense subset and the topology comes from a metric in which
3;̂  is complete.

1.4. Definition, ϊ, the space of configurations of hard spheres of diameter α, is
the subset of 3̂  consisting of configurations x such that

a) sup Σ x(q>p}^l>
<jeIRv peIRv

b) x(q) = \ = x(q') and q ή= q' implies \q—qf \ ̂  a.

1.5. Hard-sphere configurations have at most one particle (centered) at any point
of space, and any two of their particles are separated by a distance not less than a.
3£ is evidently 'closed in 3̂ , hence is itself a Polish space.

There is a slight technical difficulty, because the product decomposition
X = XΛx XΛc for subsets A of IRV no longer holds. We circumvent this by identi-
fying X with its image in the product XΛ x %,ΛC, and taking measures on X to be
measures on the product which are zero on the complement of (the image of) 3E.
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2. Gibbs States

2.1. A Gibbs state is a measure on X describing thermal equilibrium. Specifically,
a Gibbs state for the hard-sphere potential Φ, with inverse temperature β and
activity z, is a Borel probability measure μ on 3£ satisfying the Equilibrium
Equations:

For every bounded Borel set Δ ClRv and function φ in !}(£, μ)

HV/2

J rf^ΓUM
X]R™ / < j

\y) - (2.1.1)

The Equilibrium Equations just determine the conditional distribution for x
in XΔ given j; in 3̂ .

In any Gibbs state μ, the number of particles in a bounded Borel set A ClRv —

«d(*)= Σ *fep)
( g , p ) e z J x i R v

is a random variable bounded a.s. — μ by a constant times |zl| because of the
hard core condition; in particular J nAdμ, the mean number of particles in A, is

s
bounded by const \A\.

22. Maxwell Velocity Distribution. It follows from the equilibrium equations that
the momenta in a Gibbs state are independent v-dimensional Gaussian random
variables with mean 0 and variance vm/β. For each bounded Borel set A C IRV we
introduce the useful random variable

Knaχ(*)= Pmaxί*; Λ) = 0 v sup {\p\/m:(q, p}εΛ x IR\ xfe p)= 1} . (2.2.1)

Fmax( yl) is the speed of the fastest particle in A.
Let us first compute an elementary estimate for the conditional probability

that Knax>^>0, given that there are k particles in A. The probability that a
particle has velocity less than λ is

P(λ) = (β/2πm}v/2 J exp [ - βp2/2m] dp
{pelR v : |p |/m<λ}

v/2 mλ

so that

for any 7 < mβ/2.
Using this estimate, we have for any bounded Borel set A

(2.2.2)
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since the sum over k in the last line is just the expectation of nΛ. It follows that
] is μ-integrable for any γ<mβ/2, and

ί exp [y Fm

2

ax(x; A)-]μ(dx)^M\A\ (2.2.3)
£

with a constant M which is independent of A.

23. Correlation Functions. Every Gibbs state μ has correlation functions defined
by [8]

Qn(q1,...,qn) = z" J μ(dy) exp \-β £ Φ(qί-qJ)] exp
* ί >•<./ J

-β Σ

= z"Y\J(qί,q^μ(dy) fl •/(«*<?) (23.1)

If & is some statement about points of IR"V, and A C IRV is a bounded Borel
set, let

E={qeAn:q satisfies^}

then J Qn(q)dq is just the expectation value in the Gibbs state μ of the number
E

of ^-tuples of particles in A satisfying .̂
From the definition one immediately deduces the basic inequality for cor-

relation functions [8, Exercise 4.D]:

Qn(q)^2? Π Jtii'ti' (2 3 2)
1 ^i<j^n

3. Probability Estimates

3.1. Proposition. ("Chain estimate"). Let μ be a Gibbs state for Φ with activity z.
For any bounded Borel set A o/IRv, any integer N>i and any collection ε1?ε2,. ?%-ι
of positive numbers less than 1, the probability that there are N particles in A at
positions qί9...,qN satisfying \qί + ί — qt\^a(i H-ε f) for i= 1, 2 , . . . ,ΛΓ— 1, is less than

N~1 AΓ"1

/ Let X be the random variable which counts the number of TV-tuples of
particles in A satisfying the stated condition; the probability to be estimated is
μ[Jf^l] which is not more than \Xάμ. This integral is given by an integral of
the JV -particle correlation function: put

\qij+ί-qij\^(l + εj)a for 1^/gN-l,

for some permutation z'1? . . . , iN of (1,2,..., N)} .
Then

$ Xdμ= $ ρN(q)dq .
X E

Therefore

l^: |̂  + i -qt\ ^ (1 +ε £ )α, 1 ̂  ί^ N- 1}
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Insert the basic inequality for correlation functions (2.3.2) into this integral and
change to difference variables yt = qt + ί — qt, i = 1, 2,..., N — 1 then

Nγ[ J dy(

i=l α^bi |^α( l +ε t)

2πv/2

i = 1 vi \vι^)

and since (l + ε)v-l<(2v-l)ε if 0<ε<l, the bound (3.1.1) follows.

3.2. Proposition ("Free distance estimate"). Let μ be a Gibbs state for Φ with
inverse temperature β, and let T1 be a one-parameter group of transformations of 3£
leaving μ invariant and having piecewise continuous orbits. For bounded Borel sets
A CIRV define

KnaxW^ KnaxC^? Λ) = SUP {\P\/m'-(^ P)^Λ X 1RV, T* x(q, /?) = 1}

the speed of the fastest particle in A at time t. For any positive number y less than
βm/2 there is a constant M independent of A such that for any τ>0,

"τ

μ J Vmax(t)dt>λ <M\A\ exp(-y/l2/τ2).
o

Proof. Let 0<y<ra/?/2, and define the random variable

o
2Since dt/τ is a probability on [0, τ] and exp [y( )2] is convex, Jensen's inequality

gives

0

Let us show that U2 (and therefore U^ is μ-integrable. We have

-ίi
-ίi .

The last equality is asserted first, and is true because μ is invariant under T*;
then the middle equality follows by Tonelli's theorem. The inequality at the end

Γ τ

is just (2.2.3), and M is independent of Λ. Finally, the event J Vm^(f)dt>λ is
Lo

identical to the event [U1 > exp(y/l2/τ2)], so the desired estimate follows from the
Markov inequality.

3.3. Remark. A similar bound can be proven for μ\ sup ^aχ(0>^l Since this
LO^ί^τ J

is not necessary for our results, we prove it in the appendix.
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4. Partial Flows

4.1. For integers r>ί we define the partial flow in the sphere of radius r about
the origin of IRV, by placing a hard wall at \q\ = r, fixing all particles not entirely
inside, and letting particles inside move according to the elastic reflection law.

For some configurations this prescription leads to triple collisions (simul-
taneous collisions of three or more particles) or grazing collisions (contacts with
zero momentum transfer), beyond which trajectories do not depend smoothly, or
not even continuously, on initial data, or perhaps are not even definable without
ambiguity.

The problem of existence of partial flows for all time has been solved in [1]
and we summarize the results here. Let

Particles of a configuration x which are in Λ(r) are entirely inside the sphere of
radius r centered at the origin of 1RV; they suffer elastic collisions at the boundary,
which consists of the hard wall at \q\=r, together with bumps made by the fixed
particles in the annular region

A(ή={qε1Rv\r-a/2<\q\<r + a/2}.

Any two configurations whose restrictions to Λ(r)vA(r) are the same, have
the same motion in the rth partial flow.

4.2. Definition. xe3£ is a collision point if there exist q, g'eΠΓ with \q — q'\ = a and
x(q) = x(q') = l. xeX has pairwise collisions if x is a collision point and for every
q, q'eW with \q — q'\=a and χ(q) = χ(q')=l there is no q" distinct from q and qf

with \q" — q\ = a or \q" — q'\ = a and x(q") = l. xeX has non-grazing collisions if
whenever x(q,p) = x(q'9p') = l with \q — q'\ = a, one has <p — p',q — g'>φO.

Let 5̂  be the subset of 3£ consisting of configurations with no collisions, or
collision points with pairwise, nongrazing collisions. Then ̂  is a dense Gδ, with
full measure in every Gibbs state.

Now let TJf be the transformation of 3E which shifts a configuration t units
along its trajectory under the flow in Λ(r), wherever the latter is defined. The
methods of [1, Chapter II] may be applied to show that every Tr is defined for
all time almost everywhere; we summarize these results in the next Proposition,
which shows that the estimates on the Tr to be proven in the remainder of this
Chapter are not vacuous.

The estimates we shall prove have a wider application: they will show that
any flow on 3E which solves the equations of motion and leaves equilibrium states
invariant, must have orbits with very good regularity properties.

4.3. Proposition, a) Let S* be a one-parameter group of transformations of X given
by solutions of the equations of motion, and leaving all Gibbs states invariant. Then
there is a dense Gδ subset of X, of full measure in every Gibbs state, consisting of
configurations whose orbits He entirely in ^, and which have only finitely many
collisions in any Λ(r) during any finite t-interval.

b) There is a dense Gδ subset X of £, of full measure in every Gibbs state, on
which every Ί? is defined for all t; every orbit lies entirely in ̂  and has only finitely
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many collisions during any bounded interval of time. Every Tf leaves all Gibbs
states invariant.

For the proof, we refer to [1]. In particular, the last statement of b) is proven
by conditioning on A°(ή and using the Equilibrium Equations (2.1.1) and the
fact, proven in [1, Chapter II] that Liouville's theorem holds for the flow in Λ(r).

4.4. The estimates of the following sections will hold both for the partial flows
and for any equilibrium-preserving global flow. Thus for each integer r>l let

xr(t)=Tr

tx (xe£)

or

xr(t) = Stx

with S* satisfying the conditions of 4.3 a).
Choose two numbers α>5/2 and c>0. Put

(4.4.1)

and choose ω in the open interval (2α/5, 3α/5 — 1/2); then

l<2α/5 = α-f7<ω<f7-l/2 (4.4.2)

and

2(η-ω)>l. (4.4.3)

Let r, an integer greater than 1, be large enough that

4(logr)~ω<α, (4.4.4)

8(logr)~ω<c(logr)α"λ/ (4.4.5)

and define

JV = JV(r) = [(2a)"1c(logr)a~l/], (4.4.6) 1

*. (4.4.7)

Let μ be a Gibbs state for Φ with inverse temperature β and activity z, and
let y<βm/2 and M be the constants for which 3.2 holds. Finally, let C0 be

zN/(N-υ tjmes ^e expression in brackets in (3.1.1).
Define

Kn«(f)= Knax(*rW; Λ(r))= sup{\p\/m:(q, p)eA(r) x 1RV, xr(t)(q, p)= 1} . (4.4.8)

Define Ar(t) to be the event that either

or

b) xr(t) has N(r) particles in A(r) at positions q^...,qN satisfying

], "ceiling of A", is the smallest integer greater than λ
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4.5. Lemma.

μAr(0) ^ \Λ(r) \ {M exp [ - (y/4) (log r)2(f> ~ ω)] + N(r) ! (4c0α " 1 (log r) " T(Γ) " 1 } -

Proof. Immediate. Use 3.1 with eί = 4α"1(logr)"ω [note (4.4.4)]; and use 3.2 with
and >l = (l/2)(logr)~ω.

Now let t0>0 and put

The next lemma is an immediate consequence of the invariance of μ under Tγ or S*.

K-l

4.6. Lemma. Put Br(t0)= (J 4r(/τ). Then μBr(t0)^2KμAr(0).
j=-κ

4.7. Proposition.For every x in a Borel set X of £ of full measure in every Gibbs
state, and every t0 positive there is an r0 = r0(x, t0) such that if r>r0:

a) there is no subinterval /C [ — £0? ^ol °f length τ(r) for which

and

b) at no time ί, — ί0^ί^ί0, does xr(t) have N(r) particles in A(r) at positions

flι» »4jv(r) such

/ For positive integers fc let £k= [_Br(k) i.o.]c. We show £ μBr(k)<oo for any
r

Gibbs state μ, so that μ£fc=l by the Borel-Cantelli lemma.

From 4.5 and 4.6 we have a bound for μ£r(/c) which we write as a sum of two
terms. The first is

K(k) \Λ(r) I M exp [ - (γ/4) (log r)2(η " ω)]

^ const (log r)η - rv exp [ - (y/4) (log r)2(η ~ ω)]

and since 2(η — ω)>l (4.4.3) this term is summable in r.
The second term in the bound for μBr(k) coming from 4.5.6 is

^ const (log r)VΛΓ(r)! exp[-ω(JV(r)-l)loglogr + O(JV(r))] .

Now use Stirling's formula and the definition (4.4.6) to write

N(r) ! - exp [(α - fj)ΛΓ(r) log log r + O(ΛΓ(r))] .

Then the term in question is bounded by

const (log r)η rv exp [c(2α) ~ 1 (α - η - ω) (log r)α ~ "log log r + 0 (log r)α "" **]

and the exponential goes to zero more rapidly than any inverse power of r because
(α — η — ω)<0 and α — η>ί by (4.4.2).
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This completes the proof that ΣμBr(k)<co. Thus for each /c, μ3Efc=l, where
r

3̂  consists of phase points which are in Br(k) for at most finitely many r.
Now if xe[βr(k)]c, there is no interval / of length τ(r) in [ — /c, k] for which

the free distance J Vmax(xr(t))dt exceeds (logr)~ω. For if there were, we could
I

choose 7, -K(k)^j^K(k)-l, so that

U+l)τ

J Fmax(xr(ί))Λ^ J
jτ /n[

which is impossible because xe [Ar(jτJ]c.
Moreover, if at any time ί, — fc^ί^/c, xr(ί) had N(r) particles in Λ(r) at

positions q^...,qN with |gί + 1 — ̂ | <α + 2(logr)~ω for i = l, 2, . . . ,JV — 1, then by
choosing 7 so that 71 is the integral multiple of τ nearest to ί, and letting #f(s)
denote the position at time s of the particle of xr which is at qt at time ί, we would
derive

Ifc + ι(/τ) - βi(/τ)| ̂  Iβi + ι(/τ) - * + ι(OI + Ift + 1 W

which is again impossible because
To complete the proof, put 3E= Q 3Efc. Then μ3E = l for every Gibbs state μ,

k
and every x in ΐ satisfies a) and b).

4.8. Definition. A mapping ξ:IR-»X is a regular solution of the equations of
motion if

a) ξ is a solution of the equations of motion, with ξ(t)e&' (see 4.2) for all ί,
and only finitely many collisons occur in any Λ(r) during any bounded ί-interval;
and

b) for any ί>0 there is an r1 = r1(ξ, t) such that if r>rl then
i) for every subinterval / of [ — ί, f] of length τ(r),

ii) at no time during [ — ί, ί] is there a chain of N(r) particles in A(r) at
positions qly...,qN such that

The fact that every xr(ί) could be S*x for an equilibrium-preserving flow S*
which solves the equations of motion, allows us to combine 4.3 a) and 4.7 to get
that almost every orbit is regular.

4.9. Proposition. Let S* be a one-parameter group of transformations of X given by
solutions of the equations of motion, which leave all Gibbs states invariant. Then
the set of phase points whose orbits are regular solutions has probability one in
every Gibbs state.
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5. Dynamics of the Infinite System

5.1. Proposition. Let xe£ and t0>0; suppose that x(g0, p0) = l and take r>r0(x, ί0)
(r0 given by 4.7) so large that

Put xr(t)=Tr

tx, and denote by q(r\t\ p(r\f) the position and momentum in xr(t) of
the particle which is at (q, p) at time zero (at collisions take all momenta to be
incoming). Then for j= 1, 2, ...,r and for all t, 0^ί^ί0,

$+J\t) = q(5\t) and p(ζ+J\t) = p$(t) .

Remark. This proposition asserts that the effect of particles outside A(r) "pro-
agates with finite speed" when the hard-wall boundary is removed.

Proof. Let r' be any r+j, j=l, 2, ...,r, and say that a particle of x in Λ(r') gets
marked at time t if t is the infimum of the set of times for which the particle's Tr>
motion differs from its Tr motion. For example, all particles in Λ(r')\Λ(r) are
marked at time zero, except those at rest or undergoing a collision which brings
them to rest.

Take any particle of x which is inside Λ(r) at time zero, and which is marked
at some time ί1? Orgί^ίQ. Call this particle 1. We construct a finite chain of
particles reaching from particle 1 to the boundary of A(r\ by the following
procedure.

Step 1. Set k: = 1. Go to Step 2.
Step 2. If particle k gets marked by reaching the boundary of Λ(ή the chain

terminates with particle k. Otherwise go to Step 3.
Step 3. Since particle k is in the interior of Λ(r) at time fk, it gets marked by

colliding under either Tr or Tr> with a particle which is already marked. Call the
latter particle fe+1; it was marked at some time ίk+1 with 0:gίk+1<ίk. Go to
Step 4.

Step 4. Increment k by 1 and return to Step 2.
This construction terminates, resulting in a chain of finite length, because only

finitely many collisions occur in Λ(r) under Tr or Tr, during [0, ί0]. We have, say,
n particles in the chain, and \qn(tn)\ = r. Notice that since a particle behaves the
same under Tr and Tr, until it gets marked, we have q\r\tt) = q(i'\t^} for i = 1, 2, . . . , n.

We are interested in how far a particle can be from the boundary when it
gets marked. Suppose that r-\ql(tl)\>c(l + ίo)1/2(log2r)α. Note first that
\qn(tn) — qι(tί)\>r — \q1(l1)\. Divide the interval [0, ίj into subintervals of length
τ(2r) = (\og2r)~η [preserving the notations of (4.4.1-7)].

Now for k=0, 1, 2, . . ., [tjτ] let ik be the index of the first particle of the chain
to be marked after time feτ. Then there must be an index k for which

\qίk+1((k+l)τ)-qίk(kτ)\>(3/4)c(log2rΓ\

(Else ωυ

^[tι/τ](3/4)c(log2r)α-"<C|t1|(log2rr

<r—\ql(t1)\ which is impossible .)
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But during the interval [feτ, (fc+ l)τ] no particle travels a distance greater than
(logr)~ω in either its Tr or its Tr> motion; therefore at time kι there must be a chain
of at least

particles in Λ(r\ each at a distance smaller than 2(logr)~ω from the next. But
because xeX this is impossible.

5.2. Theorem. For every xe£ the limit lim Tr*x exists in the X-topology uniformly

on compact t-intervals, and for each fixed t defines a Borel-measurable transforma-
tion of 3E into 3£ leaving all Gibbs states invariant.

Proof. Let xe£ and number its particles in the order of their distance from the
origin of IRΛ Let t0>0; for each z = l, 2,... we apply 5.1 repeatedly to show the
existence of an rt so that the z'th particle has the same motion under any Tr>, r'>rt,
throughout [ — ί0, ί0].

Now let φ be a real function on IRV x IRV, the projection of the support of φ
on the first factor being a compact set K (see 1.3). Take r>r0(x, t0) (r0 given by
4.7) so large that all translates of K by distances less than c(l-f-ίo)1/2(logr)α lie
inside Λ(r/4). Then 7^xh X x I R v is independent of r'>r for all t in [ — ί0, ί0], and it
follows that φ(xr'(ί)) is also independent of r', so long as rf>r, for every ί in
[ — *()> ίo]- Since functions of the form φ define the topology of 3E, T^x converges
as r->GQ and the convergence is uniform on compact intervals in t.

The transformation T\ defined for xe £ by T* = lim 7?x, being the pointwise
r— > oo

limit of Borel-measurable transformations, is itself Borel measurable; each orbit
is a regular solution of the equations of motion for the infinite configuration.

We now prove the invariance of Gibbs states under T1. Let μ be a Gibbs
state, /a bounded continuous function on X. For each integer r>l define

Since Tr~
t—>T~t a.s. — μ, we have fr-*f^ a.s. — μ, so /^ is μ-measurable. Moreover

the fr, l<r^oo, are uniformly bounded by H / H ^ , so by the Dominated Con-
vergence Theorem J faodμ= lim J ^//μ= J fdμ, the last equality holding because μ

is invariant under each 7 .̂ This completes the proof, for a Borel probability
measure on a Polish space is uniquely determined by the integrals of bounded
continuous functions with respect to it [9].

Remark. Since 7^ converges almost surely in any Gibbs state μ to T\ it follows
that it converges in probability, and almost uniformly. The proof is exactly as in
the theory of functions of a real variable, and since the fact will not be needed
in the sequel, we omit it.

5.3. Theorem.(Uniqueness of regular solutions). For any xeX there is at most one
regular solution £:IR-»3£ of the equations of motion such that ξ(0) = x.

Proof. Let ξ'9 ξ" be any regular solutions with ξ'(Q) = ξ"(Q) = χ. We write (q'(t)9p'(t))
[resp. (q"(t), p"(t}}~] for the position and momentum in ξ'(t) [resp. ζ"(t)~\ of the
particle of x which has position q, momentum p.
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If ξ is not identical to ξ", we may suppose there is a particle q1 and a time
t1 > 0 (since a time-reversed solution is a solution), so that t1 = inf {t > 0 : gj (ί) φ q'ί(t)}.
Let r be any integer larger than the maximum of \q±\ +a9 r(ξ', ίj, r(ξ", ίt), the last
two numbers coming from the definition 4.8 b).

As in the proof of 5.1 say that a particle of x at q is marked at time t if
(i) ί = 0 and \q\*tr or

(ii) t^t>0 and t = mf{s:q'(s)*q"(s) or \q'(s)\^r}.
In particular qί is marked at time tv Use the fact that ξ', ξ" have only finitely
many collisions in Λ(r) during [0, ίj to construct a chain of particles initially at
qι,...,qn and corresponding times ί1>ί2> ...>ίπ^0 so that for i=l,2,.. .,n— 1,
<2; is marked at time ίf by collision with qi + 1 [in either ξ'^ ) or ζ"(t$\, and I^WI = Γ

(If this construction did not reach the boundary of Λ(r) we would find a particle
which before its first collision moved differently for ξ' and ξ", which is impossible
since both are solutions.)

The same argument as that of 5.1 now shows r — \qί(tί)\<c(l +ίι)1/2(logr)α,
since the velocity bound and chain condition 4.8 (b) for regular solutions must
hold. Therefore

but r> max {|<?ι| + <z, r(ξ', ίj, r(ξ", ίj} was arbitrary. The proof is complete.

5.4. Corollary. Let S* be a one-parameter group of transformations of X into itself
given by translating along solutions of the equations of motion, which leaves all
Gibbs states invariant. Then for all x in the complement of a set which is null for
every Gibbs state, Stx=Ttx for all t.

Proof. Immediate from 4.9 and 5.3.

This result shows that although non-regular solutions exist, they cannot be
pieced together to make a measure-preserving flow.

{T*} can be defined on a set possibly larger than £: if y= TsxφX define T*y
to be Tί + sx for all t. This definition is unambiguous by the uniqueness of regular
solutions, and it extends {T1} to a subset of £ which is invariant under the flow;
thus {T1} becomes a group.

The time evolution in 3£ is not continuous: momenta change discontinuously
at collisions. For single configurations we obtain a continuous time-evolution by
identifying incoming and outgoing momenta at collision points. Since all orbits
lie in the set £P of 4.2, of configurations with either no collisions or only pairwise,
non-grazing collisions, it is enough to perform this identification in Sf.

5.5. Definition. The relation x~y on £f means x = y or
a) x(q) = y(q)ϊoΐ all q in Rv;
b) any non-colliding particle of x and y has the same momentum in both

configurations; and
c) if x and y have colliding particles at q and q' with \q — q' = α, then the

momenta, denoted by px, p'x and py, p'y respectively, either are the same in both
configurations, or are obtained from each other by the elastic reflection law.

It is easy to see that ~ is an equivalence relation, and we write [x] for the
equivalence class of xe<$f. It is now an elementary exercise in point-set topology
to verify the next proposition.
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5.6. Proposition. For xe^ [x] is either finite or uncountable compact and perfect.
Define Ω = <Sf/~ to be the space of equivalence classes with the quotient topology;
then the natural projection P:^^>Ω is closed. By [2, Chapter IX, § 6, Exercise 9 a) ]
there is a Gδ (hence Polish) subset of ^ which meets every equivalence class in
exactly one point, so that Ω, being the one-to-one continuous image of a Polish space,
is a Lusin space. Any function φ in the family of 13 defining the topology of X,
which is constant on equivalence classes, can be factored through the natural pro-
jection P to define a continuous function on Ω; the topology on Ω is the weakest
topology making all such functions continuous.

Passing to the quotient now makes regular solutions continuous. There is
another dividend as well; to formulate it, we define T:IRxPJE-+Ώ as follows. If
yePX we take xeP~1y to be the (unique) representative of its equivalence class
such that all momenta of colliding particles are incoming. We define

for all t.

5.7. Theorem. For any regular solution £:IR-»3£ of the equations of motion, the
mapping P°<J:IR->ί2 is continuous. The mapping T IRx PX^Ω is Borel-measurable
on the product space.

Proof. It is again elementary to verify the first statement. For the second, we have
that (i) for fixed x, the mapping t\->T(t, x) is continuous, and (ii) for fixed t, the
map xh-»T(ί, x) is Borel. The result follows from a theorem of [3].

Acknowledgement. I would like to thank O. E. Lanford III for posing this problem in the first place,
and for much helpful advice as the work progressed.

Appendix

A.I. To prove existence and uniqueness of regular solutions it is enough to
estimate the probability that the time-integral of Fmax be large. Here we bound
the supremem over an interval of Vmax(t); analogous results have been obtained
for other interactions [7,10,11], but the methods do not extend to the pure
hard-sphere case.

A.2. Proposition. Let μ be α Gibbs state for Φ with inverse temperature β and
activity z. Let 0 < y < mβ/2, τ > 0, λ > 0. For each positive integer r put

sup Vma^x; Λ(r))>λ} .
O^t^τ

Then μEr(τ)^ const (l + τ)|/t(r)| exp(-y/l2).

Proof.

First, (2.2.2) gives μFQ ^ const \Λ (r) \ exp(-y/l2). Second, we put P(t) = μFt and
estimate P(τ).
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For any t positive and (5>0 small, P(t + δ) — P(f) is the probability that
Vmax(t)^λ and during the interval [ί, ί + <5] the speed of some particle in Λ(r) is
boosted above λ by collisions. Such a boost requires either (1) two particles, the
sum of whose kinetic energies is greater than m/!2/2, separated by a distance at
most α + 2/1(5, or (2) a particle which can undergo at least two collisions with other
particles during [ί, t + δ~\.

ΎakQδ<α/(3λ).
Estimate the probability of (1) by 3.1 and the Maxwell distribution; choose

y' so that γ < / < w/?/2, so the probability of having two particles which can collide
and produce a particle with speed greater than λ is less than

Next, if Vmax(t)^λ, the velocity of a particle following the first collision after
time t is at most 21/2/l; thus the first particle to suffer at least two collisions in
time <5, must have two particles within α + 2 21/2λδ of it. Apply 3.1 again to bound
the probability of this event by

3!|/t(r)|z3C2(8A2(52/α2). (A.2.2)

Now combine (A.2.1) and (A.2.2) to see that

)^ const \Λ(ή\ exp(-y/l2

as soon as δ is sufficiently small. Thus P(ί) is absolutely continuous; we also have
a bound on its derivative, and it follows by integration that

and the proof is terminated.

A.3. Theorem. // μ is α Gibbs state for Φ with inverse temperature β, and if
c>[2(v + l)//?w]1/2, thenμX(τ) = l, where

sup Fmax(Γ/x;/l(r))<c(logr)1/2} .
O ^ ί ^ τ

Proof. Choose y<mβ/2 positive so that c2>(v+l)/y. Then apply A.2 and the
Borel-Cantelli lemma: with λ = c(\ogr)1/2 in A.2 one has

μEr(τ)^ const (l + τ)rvexp[-yc2 logr]^ const (l + τ)r v~ γ°2 .

A. 4. Now for the time-evolution of the infinite system we establish bounds on
the growth of sup V^^Tx; A(s)) as s tends to infinity. Let x belong to both 3E

O ^ f ^ τ
(of 4.7) and 3£(τ) (of A.3), and take s to be larger than r0(x, τ) from 4.7 and r^x, τ)
in A.3. Now let

The proof of 5.2 then shows that Tx \Λ(s} = T?(s}x [Λ(s) if 0 ̂  t ̂  τ, and we have the
simple estimate

sup Vmax(rx;A(s))^ sup Fmax(Γ/x;/l(r))<C(logr)1/2 .
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The standard asymptotic development from (A.4.1) shows that there is a
constant b > 0 so that

hence

log r (s) ̂  log s + o(log s)

and this proves the following theorem.

A.5. Theorem. Let τ, β be positive, and let c>(2(v + l)/mβ)1/2. If μ is a Gibbs state
for Φ with inverse temperature β, then for μ— a.e. xeX there is an sQ = s0(x,τ)
such that if S>SQ the following inequality holds:

sup Fmax(rxU(s))<c(logs)1/2. (A.5.1)

A.6. Remark. It can be shown that there is a subset of X of full measure in every
Gibbs state simultaneously, consisting of points x for which (A.5.1) holds for s suf-
ficiently large depending on x, provided that the exponent 1/2 is replaced by
1/2 + ε, for any ε positive. In this case the positive constant c is arbitrary. The
proof is the obvious modification of A.3 and A.5, and we omit it.
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